

PRIMEIRA REVISÃO PLANO MUNICIPAL DE SANEAMENTO BÁSICO IRANI – SANTA CATARINA

PRODUTO 07 - Versão Final

PREFÁCIO

Neste relatório é apresentada a Versão Final do Plano Municipal de Saneamento Básico de Irani, que apresenta as revisões dos diagnósticos e prognósticos dos sistemas de abastecimento de água potável, esgotamento sanitário, limpeza pública e manejo de resíduos sólidos, e drenagem e manejo de águas pluviais urbanas, e estabelece programas, projetos e ações para os novos cenários adotados.

Irani – Santa Catarina Setembro 2021

ELABORADO PARA:

Município de Irani

CNPJ nº 82.939.455/0001-31 Rua Eilirio de Gregori, nº 207, Bairro Centro CEP 89.680-000 - Irani - SC

ELABORADO POR:

Consórcio Interfederativo Santa Catarina - CINCATARINA

CNPJ nº 12.075.748/0001-32
Rua General Liberato Bittencourt, 1885, 13º Andar, Sala 1305 – Bairro Canto CEP 88.070-800 – Florianópolis – SC

EQUIPE TÉCNICA

Guilherme Müller

Biólogo CRBio03 053021/03-D

Raquel Gomes de Almeida

Engenheira Ambiental CREA-SC 118868-3

Luiz Gustavo Pavelski

Engenheiro Florestal CREA-SC 104797-2

Maurício de Jesus

Engenheiro Sanitarista e Ambiental. CREA-SC 147737-1

Raphaela Menezes

Geóloga CREA-SC 138824-3

Luís Felipe Braga Kronbauer

Advogado OAB-SC 46772

APOIO OPERACIONAL

Celso Afonso Palhares Madrid Filho

Geoprocessamento e cartografia

Ana Laís Fritsch Didomenico

Estagiária

Engenharia Ambiental e Sanitária

ÍNDICE DE FÍGURAS

Figura 1: Pesquisa de satisfação sobre os serviços de saneamento básico do
município
Figura 2: Convite para a reuniões comunitária29
Figura 3: Reunião comunitária no Plenário da Câmara de Vereadores - 26/05/2021.
29
Figura 4: Website para acompanhamento do processo de revisão do PMSB de Irani.
30
Figura 5: Apresentação da revisão Diagnóstico Social ao Conselho - 1ª Reunião31
Figura 6: Apresentação dos diagnósticos e prognósticos dos serviços ao Conselho -
2ª Reunião31
Figura 7: Apresentação dos diagnósticos e prognósticos dos serviços ao Conselho -
3ª Reunião32
Figura 8: Edital de convocação para Audiência Pública33
Figura 9: Audiência Pública realizada no dia 15/09/2021 no Plenário da Câmara de
Vereadores34
Figura 10: Audiência Pública realizada no dia 15/09/2021 no Plenário da Câmara de
Vereadores34
Figura 11: Localização do Município de Irani
Figura 12: Setores Censitários do município de Irani44
Figura 13: Evolução da distribuição populacional no município de Irani46
Figura 14: Densidade demográfica nos setores censitários de Irani47
Figura 15: Representação da esperança de vida ao nascer em Irani49
Figura 16: Projeções Populacionais para a área urbana51
Figura 17: Histórico do PIB do município de Irani (x 1000 R\$)56
Figura 18: PIB per capita de Irani entre 2010 e 201758
Figura 19: Composição do valor adicionado bruto (V.A.B) de Irani59
Figura 20: Ocupação da população maior de idade em Irani61
Figura 21: Evolução IDH-M no município70
Figura 22:Localização dos poços tubulares- SIAGAS 2020 - IRANI75
Figura 23: Localização dos poços tubulares e seus usos na área urbana de Irani/SC.
Figura 24: Delimitação de Sub-bacia – C1 - Afluente do Rio do Engano78

Figura 25: Delimitação de Sub-bacia - C2 - Rio do Engano	78
Figura 26: Localização das unidades do SAA Urbano	80
Figura 27: Fluxograma do Sistema de Abastecimento de Água Urbano	81
Figura 28: Captação de água subterrânea – Poço 01	82
Figura 29: Medidor de Vazão Tipo Woltmann - Qn 50m³/h — instalado na saída do P	,oĉo
01	82
Figura 30: Estrutura de proteção do painel de comando – Poço 01	83
Figura 31: Área do Poço 02	84
Figura 32: Cavalete – Poço 02	84
Figura 33: Painel de comando – Poço 02	85
Figura 34: Área do Poço 03	86
Figura 35: Medidor de Vazão Tipo Woltmann - Qn 40m³/h — instalado na saída do P	,oĉo
03	86
Figura 36: Tubulação de saída com manômetro e macromedidor – P03	87
Figura 37: Área do Poço 04	
Figura 38: Cavalete – Poço 04	88
Figura 39: Medidor de Vazão Tipo Woltmann - Qn 40m³/h — instalado na saída do P	oço,
04	88
Figura 40: Unidade de tratamento simplificado - ETA 01	89
Figura 41: ETA 01 – Tinas de preparo das soluções de cloro e flúor	90
Figura 42: ETA 01 - Acesso as tinas por escada tipo marinheiro sem gaiola	ı de
proteção	90
Figura 43: Calha vertedora na ETA 01 – Local de dosagem dos produtos químico	s 91
Figura 44: Dosagem de produtos químicos através de boias mecânicas	91
Figura 45: Equipamentos utilizados para realização das análises diárias	92
Figura 46: Unidade de tratamento simplificado - ETA 02	93
Figura 47: Bomba dosadora para dosagens dos produtos químicos – ETA 02	93
Figura 48: Centros de reservação R1 – bairro Centro	94
Figura 49: Macromedidor eletromagnético na tubulação entre a ERAT1 e o R1	95
Figura 50: Novo reservatório R2b (em frente) e reservatório R2a desativados ((aos
fundos)	95
Figura 51: Macromedidor eletromagnético na tubulação de saída do R2b	96
Figura 52: Reservatório R3 – bairro Santo Antônio/COHAB.	97
Figura 53: Macromedidor tipo Woltmann Qn 10 m³/h – R3	97

Figura 54: Reservatório R4 – Loteamento Pereira – PRFV 2 x 20 m³	98
Figura 55: Macromedidor tipo Woltmann Qn 40 m³/h – R4	98
Figura 56: ERAT 01 – 2 conjuntos motobomba de 6 cv	99
Figura 57: ERAT 02 – 1 conjunto motobomba de 12,5 cv e 1 conjunto motobo	mba de
10 cv	100
Figura 58: ERAT 03 – 2,0 cv	100
Figura 59: Booster 01 – 7,5 cv	101
Figura 60: Booster 02 – 2 cv / 2cv	101
Figura 61: Composição do Esgoto Sanitário	136
Figura 62: Representação do traçado de redes coletoras do Bairro Santo A	Antônio.
	140
Figura 63: Sistema de tratamento - Bairro Santo Antônio	140
Figura 64: Sistema de tratamento - Bairro Santo Antônio	141
Figura 65: Caixa de gordura – SES Santo Antônio.	141
Figura 66: Gradeamento grosso – SES Santo Antônio	142
Figura 67: Vista parcial do tanque séptico – SES Santo Antônio	142
Figura 68: Vista parcial do tanque séptico seguido de filtro anaeróbio - SES	S Santo
Antônio.	143
Figura 69: Unidade de desinfecção - SES Santo Antônio	
Figura 70: Entorno das unidades de tratamento.	
Figura 71: Entorno das unidades de tratamento.	145
Figura 72: Localização de fossa séptica comunitária	145
Figura 73: Tubulação de uma das residências interligada a fossa	146
Figura 74: Tubulação de lançamento do efluente tratado após a fossa como	unitária.
	146
Figura 75: Ponto de vazamento da rede coletora de esgoto – Rua Menino Del	us147
Figura 76: Ponto de vazamento da rede coletora de esgoto – SES Alto Irani 0	1148
Figura 77: Tanque séptico seguido de filtro anaeróbio – SES Alto Irani 01	148
Figura 78: Caixa de entrada – SES Alto Irani 01	
Figura 79: Sistema de tratamento – SES Alto Irani 01.	149
Figura 80: Sistema de tratamento – SES Alto Irani 02	150
Figura 81: Tanque séptico seguido de filtro anaeróbio – SES Alto Irani 02	150
Figura 82: Unidade de desinfecção – SES Alto Irani 01	151
Figura 83: Mapa e roteiro da coleta de resíduos não recicláveis.	174

Figura 84: Balança utilizada no controle de pesagem dos resíduos17	75
Figura 85: Barração de recepção de resíduos	76
Figura 86: Esteira de seleção de resíduos.	76
Figura 87: Método de acondicionamento de resíduos para posterior prensagem17	77
Figura 88: Materiais segregados já prensados e prontos para venda17	77
Figura 89: Materiais segregados já prensados e prontos para venda17	78
Figura 90: Materiais aguardando carregamento no pátio17	78
Figura 91: Carregamento do caminhão com rejeitos do processo de triagem17	79
Figura 92: Localização do aterro sanitário	33
Figura 93: Disposição das estruturas no Aterro Sanitário	34
Figura 94: Estrada que dá acesso ao interior do Aterro	35
Figura 95: Frente de trabalho com a presença de muitas aves18	35
Figura 96: Cobertura final do aterro permitindo o contato do resíduo com o meio18	36
Figura 97: Cobertura das células encerradas com gramíneas e vegetação nativa	е
exótica formando a cortina vegetal18	37
Figura 98: Cobertura vegetal do entorno do aterro	37
Figura 99: Impermeabilização da célula encerrada com PEBD18	38
Figura 100: Ausência de sistema de drenagem	39
Figura 101: Ausência de sistema de drenagem	39
Figura 102: Ausência de sistema de drenagem19	90
Figura 103: Ausência de sistema de drenagem	90
Figura 104: Presença de dreno de biogás19	91
Figura 105: Ausência de dreno de biogás na célula em operação19	91
Figura 106: Visão geral do sistema de tratamento do líquido percolado19	92
Figura 107: Sistema de recirculação de efluentes no aterro19	93
Figura 108: Poços de monitoramento instalados na área do aterro19	93
Figura 109: Setores urbanos e cronograma de coleta	95
Figura 110: Roteiro para coleta rural19	96
Figura 111: Tipos de lixeiras e sacos utilizados para a segregação de RSS e resídue	os
comuns nas Unidades de Saúde de Irani20)5
Figura 112: Sala de armazenamento de RSS20)7
Figura 113: Armazenamento de RSS com outros materiais20	38
Figura 114: Abrigo externo de RSS das Unidades Centro e Pronto Atendimento20)9

Figura 115: Depósito para armazenamento externo de resíduos da Unidade Noe	ile
Terezinha Marcon21	0
Figura 116: Parte interna do depósito de RSS21	0
Figura 117: Depósito de RSS da Unidade sede21	1
Figura 118: Acondicionamento de outros materiais além dos RSS no mesmo depósito	э.
21	2
Figura 119: Coletor utilizado na Unidade para acondicionamento dos RSS21	2
Figura 120: Regiões Hidrográficas de Irani	7
Figura 121: Sub-bacias hidrográficas de Irani23	8
Figura 122: Elevação do município de Irani	9
Figura 123: Elevação do perímetro urbano de Irani24	0
Figura 124: Representação de situação de enchente, inundação e alagamento24	1
Figura 125: Área 1 com risco de inundação em Irani24	2
Figura 126: Área 2 com risco de inundação na sede urbana de Irani24	3
Figura 127: Área 3 com risco de inundação na sede urbana de Irani24	4
Figura 128: Área 4 com risco de inundação na sede urbana de Irani24	5
Figura 129: Área sujeita à movimento de massa em Irani	6
Figura 130: Representação das vias pavimentadas e não pavimentadas do perímetro	О
urbano25	0
Figura 131: Modelo de grelha de boca de lobo existente no município25	1
Figura 132: Modelo de grelha de boca de lobo existente no município25.	2
Figura 133: Modelo de grelha de boca de lobo existente no município25	2
Figura 134: Modelo de grelha de boca de lobo existente no município25	3
Figura 135: Precipitação média mensal do município de Irani25	8
Figura 136: Total de precipitação anual (mm) de 1996 a 2019 em Irani25	9
Figura 137: Localização das Áreas-Problema26	3
Figura 138: Localização da AP-0126	4
Figura 139: Tubulações de saída do Lago26	5
Figura 140: Área inundável nas Ruas José Fasolo e Osório de Oliveira Vargas 26	5
Figura 141: Travessia do Rio do Engano na Avenida Governador Ivo Silveira26	6
Figura 142: Rua Vicente Lemos das Neves no local onde o Rio do Engano é tubulado	Э.
26	6
Figura 143: Localização da AP-0226	7
Figura 144: Edificação na APP do córrego na AP-0226	8

Figura 145: Galeria instalada há cerca de dois anos na AP-02268
Figura 146: Localização da AP-03
Figura 147: Ponto-problema na AP-03270
Figura 148: Localização da AP-04271
Figura 149: Edificação localizada em APP do córrego na Rua João Galeazzi271
Figura 150: Rua Luiz Guareski272
Figura 151: Ponto-problema na Rua Luiz Guareski
Figura 152: Ponto-problema na Avenida Governador Ivo Silveira273
Figura 153: Muro de pneus construído próximo a margem córrego na Avenida
Governador Ivo Silveira273
Figura 154: Localização da AP-05
Figura 155: Ponto-problema na AP-05275
Figura 156: Localização da AP-6
Figura 157: Visão geral da AP-6
Figura 158: Edificação na APP do córrego
Figura 159: Edificação sobre a tubulação do córrego na AP-6277
Figura 160: Localização da AP-07
Figura 161: Área de alagamento na AP-07
Figura 162: Córrego existente na AP-07.
Figura 163: Localização da AP-08
Figura 164: Ponto-problema na AP-08281
Figura 165: Ponto-problema na Rua Amarilce Fontana
Figura 166: Localização da AP-09
Figura 167: Ponto-problema na AP-09.
Figura 168: Localização da AP-10
Figura 169: Região com problema na AP-10
Figura 170: Localização da AP-11
Figura 171: Ponto-problema 1 - Córrego canalizado que transborda286
Figura 172: Ponto-problema 2 - Interrupção da tubulação, onde ocorre
transbordamento
Figura 173: Exemplos de valorização da permeabilidade dos solos293
Figura 174: Modelo de cisterna para captação de água pluvial293
Figura 175: Modelo de cisterna para captação de água pluvial294
Figura 176: Exemplo de sistema de asfalto permeável295

Figura 177: Sugestão de trajeto para a nova tubulação do córrego	299
Figura 178: Sugestão de intervenção na AP 6.	300
Figura 179: Proposta de ligação entre duas bocas de lobo	301
Figura 180: Proposta de trajeto para o extravasor do córrego	302

ÍNDICE DE TABELAS

Tabela 1: Aspectos Gerais e Históricos de Irani43
Tabela 2: População residente por situação de domicílio em Irani45
Tabela 3: População total residente por sexo e idade45
Tabela 4: Evolução do crescimento Populacional no município de Irani, no estado de
Santa Catarina e no Brasil46
Tabela 5: Densidade Demográfica dos setores censitários no município de Irani em
201048
Tabela 6: Taxas de Crescimento Populacional49
Tabela 7: Projeções Populacionais - Urbana51
Tabela 8: Projeções adotadas53
Tabela 9: Comparativo Estimativas IBGE x Projeção Adotada54
Tabela 10: Comparativo Projeção PMSB 2011 x Projeção Adotada54
Tabela 11: Valor do Produto Interno Bruto (PIB) em Irani56
Tabela 12: Valor do Produto Interno Bruto (PIB) per capita em Irani57
Tabela 13: Distribuição de Renda por setores59
Tabela 14: Evolução dos índices de pobreza em Irani entre os anos de 1991 e 2010.
60
Tabela 15: Número de escolas por rede escolar no município de Irani61
Tabela 16: Número de docentes por rede escolar no município de Irani61
Tabela 17: Número de alunos por rede escolar no município de Irani62
Tabela 18: Número de pessoas não alfabetizadas no município62
Tabela 19: Taxa de analfabetismo da população de 15 anos ou mais de idade62
Tabela 20: Nível de instrução por faixa etária63
Tabela 21: Doenças de veiculação hídrica no município de Irani65
Tabela 22: Número de Estabelecimento de Saúde de Irani66
Tabela 23: Longevidade, mortalidade e fecundidade no Município de Irani nos anos
de 1991, 2000 e 201068
Tabela 24: Índice de Desenvolvimento Humano Municipal e seus componentes em
Irani69
Tabela 25: Taxa de ocupação por setor censitário70
Tabela 26: Localização poços de abastecimento urbano - CASAN74
Tabela 27: Vazões outorgadas dos poços de abastecimento público de Irani74

Tabela 28: Vazões dos Mananciais – Estudo de regionalização – SAA Urbano79
Tabela 29: Relação das Unidades de Reservação do Sistema Urbano de
Abastecimento94
Tabela 30: Relação das Unidades de Recalque do Sistema Urbano de Abastecimento
99
Tabela 31: Porcentagem de Economias x Faixas de Consumo102
Tabela 32: Consumo anual por categoria
Tabela 33: Idade dos hidrômetros instalados no SAA Irani – ano de referência: 2020.
103
Tabela 34: Número Mínimo de Amostras para o Controle da Qualidade de Água do
SAA Urbano - Mananciais Subterrâneos (Portaria MS de Consolidação nº5 de 2017).
105
Tabela 35: Padrões de Qualidade no Sistema de Abastecimento Urbano - Saída do
tratamento ETA 01 – janeiro a dezembro/2019108
Tabela 36: Padrões de Qualidade no Sistema de Abastecimento Urbano - Saída do
tratamento ETA 02 – janeiro a dezembro/2019109
Tabela 37: Padrões de Qualidade no Sistema de Abastecimento Urbano – Distribuição
- janeiro a dezembro/2019110
Tabela 38: Política Tarifária112
Tabela 39: Despesas 2018 e 2019113
Tabela 40: Despesas e receitas nos anos de 2018 e 2019114
Tabela 41: Dados operacionais no SAA Urbano em 2018 e 2019114
Tabela 42: Sistemas alternativos de abastecimento de água em 2016 - Vigilância
Sanitária116
Tabela 43: Estimativa da população a ser atendida pelo SAA urbano123
Tabela 44: Projeção de Demandas124
Tabela 45: Projeção de ligações e economias no SAA Urbano
Tabela 46: Evolução da extensão de rede de distribuição - SAA Urbano126
Tabela 47: Substituição de hidrômetros ao longo do plano SAA Urbano127
Tabela 48: Estimativa da população a ser atendida pelos sistemas alternativos e do
volume efetivo demando
Tabela 49: Eficiência de Tratamento para Tanque séptico seguido de Filtro Anaeróbio
152

Tabela 50: Tecnicas de esgotamento sanitario utilizada pela população do município
de Irani
Tabela 51: Arrecadação através de Taxa de Serviços para limpeza de fossa x Custos
totais para manutenção dos sistemas coletivos e limpeza de fossas no município.155
Tabela 52: Produção total de efluentes na área urbana do município
Tabela 53: Evolução do Índice de Atendimento do SES Sede Urbana159
Tabela 54: Projeção de ligações e economias ativas do SES160
Tabela 55: Evolução da extensão de rede coletora ativa – novo SES urbano161
Tabela 56: Volume de efluentes a ser tratado em ETE- SES área urbana161
Tabela 57: Evolução da porcentagem de domicílios com sistema de tratamento de
esgoto individual adequado e número de sistemas individuais a implantar/adequar.
165
Tabela 58: Responsáveis pela gestão dos serviços de manejo, coleta, transporte e
destino final de resíduos sólidos
Tabela 59: Responsáveis pela execução dos serviços de manejo de resíduos sólidos.
173
Tabela 60: Gravimetria estimada de resíduos provenientes da coleta de orgânicos e
rejeitos em Irani
Tabela 61: Coleta de orgânicos e rejeitos - Quantidade anual de resíduos em
toneladas de 2017 a 2020
Tabela 62: Produção <i>per capita</i> de resíduos orgânicos e rejeitos181
Tabela 63: Custos com coleta, transporte e disposição final de resíduos orgânicos e
rejeitos194
Tabela 64: Quantidades de recicláveis coletadas entre 2018 e 2020198
Tabela 65: Produção per capita de resíduos recicláveis199
Tabela 66: Tipos de RSS produzidos nas unidades de saúde204
Tabela 67: Quantidade de RSS coletada no município em 2019204
Tabela 68: Produção per capita de resíduos de serviços de saúde214
Tabela 69: Arrecadação – Taxa de Serviço Público de coleta de lixo222
Tabela 70: Relação de custos com limpeza pública e manejo de resíduos sólidos no
município222
Tabela 71: Comparativo entre o custo com manejo de resíduos sólidos e a
arrecadação nos anos de 2019 e 2020.

Tabela 72: Estimativa da quantidade de orgânicos e rejeitos gerados durante o
horizonte de projeto225
Tabela 73: Projeção da quantidade de resíduos recicláveis produzida226
Tabela 74: Estimativa da quantidade de RSS gerados durante o horizonte de projeto.
227
Tabela 75: Estágios do desenvolvimento sustentável da drenagem urbana nos países
desenvolvidos234
Tabela 76: Áreas das sub-bacias inseridas no município de Irani238
Tabela 77: Fatores que afetam o sistema de drenagem pluvial249
Tabela 78: Períodos de retorno em função da ocupação da área255
Tabela 79: Parâmetros para o município de Irani
Tabela 80: Intensidade da chuva, em mm/h, para o município de Irani257
Tabela 81: Máxima precipitação diária entre 1996 e 2020 em Irani260
Tabela 82: Indicadores de Fragilidade do Sistema (IFS)
Tabela 83: Áreas-problema identificadas
Tabela 84: Doenças de veiculação hídrica no município de Irani288
Tabela 85: Situação da incidência e letalidade da leptospirose em Irani288
Tabela 86: Indicadores Gerais de Fragilidade das AP do município de Irani289
Tabela 87: Proposta de ações a serem tomadas nas AP304
Tabela 88: Prioridades nas propostas de estruturação a serem tomadas306
Tabela 89: Cronograma de metas para o SAA – Ano 1 ao Ano 10312
Tabela 90: Cronograma de metas para o SAA – Ano 11 ao Ano 20313
Tabela 91: Resumo Investimentos SAA314
Tabela 92: Cronograma de metas para o SES – Ano 1 ao Ano 10315
Tabela 93: Cronograma de metas para o SES – Ano 11 ao Ano 20316
Tabela 94: Resumo Investimentos SES317
Tabela 95: Cronograma de metas para os serviços de Limpeza pública e manejo de
resíduos – Ano 01 ao Ano 10318
Tabela 96: Cronograma de metas para os serviços de Limpeza pública e manejo de -
Ano 11 ao Ano 20319
Tabela 97: Resumo Investimentos Limpeza Urbana e Manejo de Resíduos Sólidos.
320
Tabela 98: Cronograma de metas para o sistema de drenagem e manejo de águas
pluviais urbana – Ano 1 ao Ano 10321

Tabela 99: Cronograma de metas para o sistema de drenagem e manejo de ág	uas
pluviais urbana – Ano 11 ao Ano 20	322
Tabela 100: Resumo Investimentos Manejo de Águas Pluviais e Drenagem Urba	ana
	323
Tabela 101: Cenário 1 – Investimento SES+SAA -Prestador dos serviços	326
Tabela 102: Cenário 2 - Investimento SAA (Prestador dos serviços) + 50%	dos
Investimentos SES através de recursos não onerosos.	327
Tabela 103: Arrecadação x Despesas (2020).	328
Tabela 104: Ações de resposta a emergências e contingências	331

SUMÁRIO

1	APRESENTAÇÃO	21
2	PRINCÍPIOS	23
3	OBJETIVOS GERAIS	25
4	CONTROLE SOCIAL NA REVISÃO DO PMSB	
4.1	PESQUISA DE SATISFAÇÃO (<i>ON-LINE</i>)	28
4.2		
4.3	B WEBSITE	30
4.4	CONSELHO MUNICIPAL DE SANEAMENTO BÁSICO	30
4.5		
5	LEGISLAÇÃO	35
5.1	ÂMBITO FEDERAL	35
5.2	2 ÂMBITO ESTADUAL	38
5.3		
6	DIAGNÓSTICO SOCIAL	42
6.1		
6.2	2 DISTRIBUIÇÃO DA POPULAÇÃO	44
6.3	B TAXAS DE CRESCIMENTO	46
6.4	DENSIDADE DEMOGRÁFICA	47
6.5	S ESPERANÇA DE VIDA AO NASCER	48
6.6	DADOS DEMOGRÁFICOS E PROJEÇÕES POPULACIONAIS	49
6.6	6.1 Projeções Populacionais	49
6.7	Z ECONOMIA	56
6.7	7.1 PIB	56
6.7	7.2 Renda	59
6.7	7.3 Emprego	60
6.8	B EDUCAÇÃO	61
6.8	•	
6.8	3.2 Escolaridade	63
6.9	SAÚDE	
6.9	0.1 Doenças	65
6.9	0.2 Infraestrutura dos Serviços de Saúde	66
6.9	0.3 Indicadores Epidemiológicos	67
6.1	0 ÍNDICE DE DESENVOLVIMENTO HUMANO MUNICIPAL (IDHM)	68

6.11 H	HABITAÇÃO70
6.12 (CONSIDERAÇÕES FINAIS71
7 SIS	STEMA DE ABASTECIMENTO DE ÁGUA73
7.1	APRESENTAÇÃO73
7.2	DIAGNÓSTICO DO SISTEMA DE ABASTECIMENTO73
7.2.1	Mananciais e Disponibilidade Hídrica73
7.2.1.	1 Mananciais subterrâneos73
7.2.1.	2 Mananciais superficiais76
7.2.2	Sistema de Abastecimento de Água Urbano79
7.2.2.	1 Infraestrutura81
7.2.2.	2 Economia e micromedição102
7.2.2.	3 Índice de atendimento104
7.2.2.	4 Qualidade104
7.2.2.	5 Quadro de pessoal, manutenção e controle operacional111
7.2.2.	6 Política Tarifária e Regulação112
7.2.2.	7 Receitas Despesas e Resultados
7.2.2.	
7.2.3	Abastecimento de Água na Área Rural116
7.3	AVALIAÇÃO DO ATENDIMENTO ÀS PROPOSIÇÕES DO PLANO DE
SANE	AMENTO BÁSICO DE 2011 E SUAS PROPOSTAS DE INVESTIMENTOS 119
7.4 F	PROGNÓSTICO DO SISTEMA DE ABASTECIMENTO123
7.4.1	Prognóstico de demandas123
7.4.1.	1 SAA urbano123
7.4.1.	
7.4.2	Prognóstico do Sistema129
7.4.2.	1 SAA urbano129
7 4 0	2 Sistemas alternativos rurais131
7.4.2.	
	CONSIDERAÇÕES FINAIS132
7.5 (8 ES	GOTAMENTO SANITÁRIO134
7.5 (8 ES	
7.5 (8 ES (8.1 A	GOTAMENTO SANITÁRIO134
7.5 (8 ES (8.1 A	GOTAMENTO SANITÁRIO134 APRESENTAÇÃO134
7.5 (8 ES 8.1 / 8.2 [GOTAMENTO SANITÁRIO

8.2.2.2 Sistemas individuais de tratamento	.151
8.2.2.3 Custos x receitas	.154
8.3 AVALIAÇÃO DO ATENDIMENTO ÀS PROPOSIÇÕES DO PLANO	DE
SANEAMENTO BÁSICO DE 2011 E SUAS PROPOSTAS DE INVESTIMENTOS	156
8.4 PROGNÓSTICO	.158
8.4.1 Área Urbana	.158
8.4.2 Área Rural	.164
8.5 CONSIDERAÇÕES FINAIS	.166
9 LIMPEZA URBANA E MANEJO DE RESÍDUOS SÓLIDOS	.168
9.1 APRESENTAÇÃO	.168
9.2 CARACTERÍSTICAS GERAIS	
9.3 CLASSIFICAÇÃO	
9.4 DIAGNÓSTICO	.173
9.4.1 Prestação de Serviços Públicos	.173
9.4.1.1 Resíduos Domiciliares – Resíduos Orgânicos e Rejeitos –	Não
Recicláveis	.174
9.4.1.1.1 Coleta	.174
9.4.1.1.2 Transporte, pesagem e triagem	.175
9.4.1.1.3 Caracterização qualitativa e quantitativa	.179
9.4.1.1.4 Produção <i>per capita</i> de resíduos orgânicos e rejeitos	.181
9.4.1.1.5 Destino final dos resíduos domiciliares – rejeitos	
9.4.1.1.6 Custos	.194
9.4.1.2 Resíduos Domiciliares – Recicláveis	.195
9.4.1.2.1 Coleta	.195
9.4.1.2.2 Triagem	.196
9.4.1.2.3 Caracterização qualitativa e quantitativa	.197
9.4.1.2.4 Produção per capita de resíduos recicláveis	.199
9.4.1.2.5 Custos	.199
9.4.1.3 Coleta Informal	.200
9.4.1.4 Serviços de Limpeza Pública	.200
9.4.1.4.1 Varrição e Capina	
9.4.1.4.2 Serviços de Poda e Roçada	.201
9.4.1.5 Resíduos de Serviços de Saúde (RSS)	.201
9.4.1.5.1 Geração de RSS nos Estabelecimentos Públicos	.203

9.4.1.5.2	Segregação e Acondicionamento dos RSS nos Estabeleciment	ios
Públicos	2	04
9.4.1.5.3	Armazenamento dos RSS nos Estabelecimentos Públicos2	06
9.4.1.5.4	Coleta, Transporte e Destino Final dos RSS de Estabelecimen	nto
Públicos	2	13
9.4.1.5.5	Coleta, Transporte e Destino Final dos RSS de Estabeleciment	tos
Privados	2	13
9.4.1.5.6	Produção per capita de resíduos dos serviços de saúde – RSS2	13
9.4.1.5.7	Custos2	14
9.4.1.6	Resíduos Domiciliares Especiais2	14
9.4.1.7	Resíduos de Estabelecimentos Comerciais Prestadores de Serviços2	17
9.4.1.8	Resíduos da Construção Civil2	17
9.4.1.9	Programas e Ações de Sensibilização Ambiental2	20
	eceitas x Custos2	
9.5 OUVI	IDORIA2	23
9.6 AVAL	LIAÇÃO DO ATENDIMENTO ÀS PROPOSIÇÕES DO PLANO I	ΣE
SANEAME	ENTO BÁSICO DE 2011 E SUAS PROPOSTAS DE INVESTIMENTOS 2	23
9.7 PRO	GNÓSTICO2	25
9.7.1 Es	timativa de Geração de Resíduos Orgânicos e Rejeitos2	25
9.7.2 Es	timativa de Geração de Resíduos Recicláveis2	26
	timativa de Geração de Resíduos dos Serviços de Saúde – RSS2	
9.8 CON	SIDERAÇÕES FINAIS2	27
	GEM E MANEJO DAS ÁGUAS PLUVIAIS URBANAS2	
	ESENTAÇÃO2	
10.2 CON	TEXTUALIZAÇÃO2	31
10.2.1 lm	pactos da urbanização2	31
	Novo e Atual Conceito de Drenagem2	
	omponentes do Sistema de Drenagem2	
10.3 DIAG	NÓSTICO2	36
	oleta de Dados2	
	drografia Municipal2	
_	elevo2	
10.3.4 Ár	eas de Risco de Inundação e Movimentos de Massa Associados à Fa	lta
de Infraes	trutura de Drenagem 2	4 0

10.3.4.1	Área 1 com risco de inundação	242
10.3.4.2	Área 2 com risco de inundação	243
10.3.4.3	Área 3 com risco de inundação	243
10.3.4.4	Área 4 com risco de inundação	244
10.3.4.5	Área 1 com risco de deslizamento	245
10.3.5 Es	strutura, Operação e Manutenção do Sistema de Drenagem	246
10.3.5.1	Sustentabilidade econômico-financeira	247
10.3.6 Fu	uncionalidade do Sistema de Drenagem	248
10.3.7 R	edes Existentes e Índice de Cobertura	250
10.3.8 Pi	rojetos	253
10.3.9 In	tensidade, Duração e Frequência – IDF	254
10.3.10 Pi	recipitação Pluviométrica	258
10.3.11 Á	reas-Problema – AP	260
10.3.11.1	Metodologia para identificação das áreas-problema	260
10.3.11.2	Identificação das áreas-problema atuais	262
10.3.11.3	Descrição das áreas-problema identificadas	263
10.3.11.3.	1 AP-01 - Rua Vicente Lemos das Neves, Avenida Governador	Ivo
Silveira, R	lua José Fasolo e Rua Osório de Oliveira Vargas	263
10.3.11.3.	2 AP-02 – SC 473 próximo à Rua Santa Catarina	267
10.3.11.3.	3 AP-03 – Avenida Santo Antônio	269
10.3.11.3.	4 AP-04 – Rua João Galeazzi, Rua Luiz Guareski e Avenida Governa	ador
Ivo Silveir	a	270
	5 AP-05 – Avenida Governador Ivo Silveira com a Marli de Gregori	
	6 AP-06 – Rua Lindo Tebaldi	
10.3.11.3.	7 AP-07 – Rua Santo Antônio	278
10.3.11.3.	8 AP-08 – Rua Neri Guareski	280
10.3.11.3.	9 AP-09 – Rua da Paz	282
10.3.11.3.	10 AP-10 – Rua Menino Deus esquina com a Rua Santa Maria	283
10.3.11.3.	11 AP-11 – Rua Rosalino Rodrigues e Avenida Governador Ivo Silveira	285
-	roblemas Associados à Alagamentos e Inundações	
10.3.13 ĺn	dice de Fragilidade do Sistema – IFS	288
	LIAÇÃO DA RESOLUÇÃO DAS PROPOSTAS DO PMSB	
10.5 PRO	GNÓSTICO	290
10.5.1 Da	a Materialização das Propostas	291

10.5.2 Confiabilidade e Segurança das Soluções	291
10.5.3 Macrodrenagem	292
10.5.4 Detenção e Permeabilidade	292
10.5.5 Remuneração pelos Serviços	295
10.5.6 Alternativas para Solução das Áreas-Problema Diagnosticada:	s297
10.5.6.1 AP-01 – Rua Vicente Lemos das Neves, Avenida Governador I	vo Silveira,
Rua José Fasolo e Rua Osório de Oliveira Vargas	297
10.5.6.2 AP-02 – SC 273 próximo à Rua Santa Catarina	297
10.5.6.3 AP-03 – Avenida Santo Antônio	298
10.5.6.4 AP-04 – Rua João Galeazzi, Rua Luiz Guareski e Avenida Gove	ernador Ivo
Silveira	298
10.5.6.5 AP-05 – Avenida Governador Ivo Silveira com a Marli de Gregor	i298
10.5.6.6 AP-06 – Rua Lindo Tebaldi	299
10.5.6.7 AP-07 – Rua Santo Antônio	300
10.5.6.8 AP-08 – Rua Neri Guareski	
10.5.6.9 AP-09 – Rua da Paz	301
10.5.6.10 AP-10 - Rua Menino Deus esquina com a Rua Santa Maria	301
10.5.6.11 AP-11 – Rua Rosalino Rodrigues e Avenida Governador Ivo Silv	∕eira302
10.5.6.12 Vias não pavimentadas	302
10.5.7 Ações Propostas por Área-Problema	304
10.6 CONSIDERAÇÕES FINAIS	308
11 PLANO DE METAS, PROGRAMAS, PROJETOS E AÇÕES	310
12VIABILIDADE FINANCEIRA DOS SISTEMAS	324
13AÇÕES DE RESPOSTA A EMERGÊNCIAS E CONTINGÊNCIAS	330
14INTEGRAÇÃO COM POLÍTICAS E	PLANOS
NACIONAIS/ESTADUAIS/MUNICIPAIS	332
15REGULAÇÃO	333
16INSTRUMENTOS DE AVALIAÇÃO E MONITORAMENTO	334
16.1 ESTRUTURA DE GESTÃO DO PLANO	334
16.2 INDICADORES SETORIAIS	335
17DIVULGAÇÃO DO PLANO	337
18CONSIDERAÇÕES GERAIS	
19ANEXOS	339
20DEEEDÊNCIAS BIBLIOCDÁEICAS	240

1 APRESENTAÇÃO

O presente relatório traz a Versão Final da 1ª Revisão do Plano Municipal de Saneamento Básico de Irani, que contempla os serviços de abastecimento de água potável, esgotamento sanitário, limpeza urbana e manejo de resíduos sólidos, e drenagem e manejo das águas pluviais urbanas, estando nele integrados todos os relatórios anteriores com respectivas atualizações. Foi desenvolvido conforme Proposta nº 132/2020 firmada entre o Município de Irani e o Consórcio Interfederativo Santa Catarina - CINCATARINA.

Essa versão é o produto resultante do processo de revisão e apresenta o conteúdo da Versão Preliminar submetida à apreciação do Conselho Municipal de Saneamento e apresentada em Audiência Pública, atendendo ao que estabelece a legislação quanto ao princípio fundamental "Controle Social" das ações de saneamento básico. Os produtos anteriores que nesta versão final estão inseridos são: Diagnóstico Social, Diagnóstico e Prognóstico dos Serviços de Abastecimento de Água, Diagnóstico e Prognóstico dos Serviços de Esgotamento Sanitário e Diagnóstico, Diagnóstico e Prognóstico do Sistema de Limpeza Urbana e Manejo de Resíduos Sólidos e Prognóstico dos Serviços de Drenagem e Manejo das Águas Pluviais Urbanas. Nas considerações finais dos diagnósticos setoriais foram apresentadas recomendações que neste documento serão tratadas como programas, projetos e ações para os cenários adotados e na observância aos princípios fundamentais das políticas públicas de prestação dos serviços de saneamento básico.

O Plano Municipal de Saneamento Básico (PMSB), a Regulação dos Serviços e o Controle Social são os itens centrais das políticas públicas municipais de saneamento básico definidas na Lei Federal nº 11.445/2007 e no decreto que a regulamentou, Decreto Federal nº 7.217/2010. O PMSB é o instrumento que norteará os programas, projetos e ações do poder público nesta área, legitimado pela transparência dos processos decisórios e pela participação da sociedade na sua elaboração com mecanismos de controle social, subordinando as ações de saneamento ao interesse público conforme estabelecido no texto legal.

O princípio fundamental "Eficiência e Sustentabilidade Econômica", das políticas públicas de saneamento básico, remete ao estabelecimento de tarifas e taxas módicas para os serviços de saneamento básico de maneira que estes tenham receita

própria adequada às necessidades de prestação dos serviços e de investimentos. O plano de investimentos em melhorias e ampliação dos serviços de saneamento deve ser construído de forma que a prestação de serviço adequado aconteça em condições de sustentabilidade.

Os produtos que integram este PMSB foram produzidos com base nas informações obtidas:

- Da prestadora dos serviços de abastecimento de água CASAN;
- Do prestador dos serviços de coleta, transporte, triagem e destinação dos resíduos sólidos domiciliares e comerciais – CRI – Coleta e Industrialização de Resíduos Ltda;
- Dos órgãos municipais, estaduais e federais, ligados ao saneamento básico;
- Em levantamentos de campo;
- Em reuniões com o Conselho Municipal de Saneamento;
- Em pesquisa on-line sobre a satisfação da população de Irani em relação aos serviços de saneamento;
- Em consulta a trabalhos, estudos e documentos que versam sobre o tema;
- Em experiências anteriores desta equipe técnica.

2 PRINCÍPIOS

A Lei Federal nº 11.445 de 2007 estabelece as diretrizes nacionais para o saneamento básico e para Política Federal de Saneamento Básico, em seu art. 2º define os princípios fundamentais para a prestação dos serviços públicos de saneamento básico:

- I universalização do acesso e efetiva prestação do serviço;
- II integralidade, compreendida como o conjunto de atividades e componentes de cada um dos diversos serviços de saneamento que propicie à população o acesso a eles em conformidade com suas necessidades e maximize a eficácia das ações e dos resultados;
- III abastecimento de água, esgotamento sanitário, limpeza urbana e manejo dos resíduos sólidos realizados de forma adequada à saúde pública, à conservação dos recursos naturais e à proteção do meio ambiente;
- IV disponibilidade, nas áreas urbanas, de serviços de drenagem e manejo das águas pluviais, tratamento, limpeza e fiscalização preventiva das redes, adequados à saúde pública, à proteção do meio ambiente e à segurança da vida e do patrimônio público e privado;
- V adoção de métodos, técnicas e processos que considerem as peculiaridades locais e regionais;
- VI articulação com as políticas de desenvolvimento urbano e regional, de habitação, de combate à pobreza e de sua erradicação, de proteção ambiental, de promoção da saúde, de recursos hídricos e outras de interesse social relevante, destinadas à melhoria da qualidade de vida, para as quais o saneamento básico seja fator determinante;
- VII eficiência e sustentabilidade econômica;
- VIII estímulo à pesquisa, ao desenvolvimento e à utilização de tecnologias apropriadas, consideradas a capacidade de pagamento dos usuários, a adoção de soluções graduais e progressivas e a melhoria da qualidade com ganhos de eficiência e redução dos custos para os usuários;
- IX transparência das ações, baseada em sistemas de informações e processos decisórios institucionalizados;
- X controle social;
- XI segurança, qualidade, regularidade e continuidade;
- XII integração das infraestruturas e dos serviços com a gestão eficiente dos recursos hídricos;
- XIII redução e controle das perdas de água, inclusive na distribuição de água tratada, estímulo à racionalização de seu consumo pelos usuários e fomento à eficiência energética, ao reúso de efluentes sanitários e ao aproveitamento de águas de chuva;
- XIV prestação regionalizada dos serviços, com vistas à geração de ganhos de escala e à garantia da universalização e da viabilidade técnica e econômico-financeira dos serviços;
- XV seleção competitiva do prestador dos serviços; e
- XVI prestação concomitante dos serviços de abastecimento de água e de esgotamento sanitário.

Da mesma forma, a Política Municipal de Saneamento Básico de Irani, estabelecida pela Lei Complementar nº 68/2011, define as diretrizes gerais, os princípios fundamentais e os objetivos para a prestação dos serviços de saneamento básico no município, em seu art. 7º apresenta que:

A Política Municipal de Saneamento Básico tem por objetivo a preservação, melhoria e recuperação da qualidade ambiental propícia à vida, com base nos seguintes princípios:

I - universalização do acesso:

II - integralidade, compreendida como o conjunto de todas as atividades e componentes de cada um dos diversos serviços de saneamento básico, propiciando à população o acesso na conformidade de suas necessidades e maximizando a eficácia das ações e resultados;

III - abastecimento de água, esgotamento sanitário, limpeza urbana e manejo dos resíduos sólidos realizados de formas adequadas à saúde pública e à proteção do meio ambiente;

IV - disponibilidade, em todas as áreas urbanas, de serviços de drenagem e de manejo das águas pluviais adequados à saúde pública e à segurança da vida e do patrimônio público e privado;

V - adoção de métodos, técnicas e processos que considerem as peculiaridades locais e regionais;

VI - articulação com as políticas de desenvolvimento urbano e regional, de habitação, de combate à pobreza e de sua erradicação, de proteção ambiental, de promoção da saúde e outras de relevante interesse social voltadas para a melhoria da qualidade de vida, para as quais o saneamento básico seja fator determinante;

VII - eficiência e sustentabilidade econômica;

VIII - utilização de tecnologias apropriadas, considerando a capacidade de pagamento dos usuários e a adoção de soluções graduais e progressivas;

IX - transparência das ações, baseada em sistemas de informações e processos decisórios institucionalizados;

X - controle social;

XI - segurança, qualidade e regularidade;

XII - integração das infraestruturas e serviços com a gestão eficiente dos recursos hídricos.

3 OBJETIVOS GERAIS

Os objetivos gerais adotados nessa Revisão do Plano Municipal de Saneamento Básico seguem as recomendações do Guia Para a Elaboração de Planos Municipais de Saneamento (BRASIL, 2011):

Promoção e melhoria da salubridade ambiental e da saúde coletiva.

Garantir a qualidade ambiental como condição essencial para a promoção e melhoria da saúde coletiva; garantir um nível razoável de atendimento com sistemas e serviços de saneamento; promover a recuperação e o controle da qualidade ambiental, garantindo acesso pleno dos cidadãos aos serviços e sistemas de saneamento básico.

Proteção dos Recursos Hídricos e Controle da Poluição

Garantir a qualidade dos recursos hídricos superficiais e subterrâneos, principalmente os mananciais destinados ao consumo humano; garantir um nível razoável de atendimento com sistemas de drenagem e tratamento dos efluentes (em particular os domésticos); promover a recuperação e o controle da qualidade dos recursos hídricos superficiais e subterrâneos, por meio do tratamento e da redução das cargas poluentes e da poluição difusa.

Abastecimento de Água às Populações e às Atividades Econômicas

Assegurar uma gestão racional da demanda de água, em função dos recursos disponíveis e das perspectivas socioeconômicas; procurar uma gestão sustentável e integrada dos mananciais subterrâneos e superficiais; garantir a quantidade de água necessária para o abastecimento às populações e o desenvolvimento das atividades econômicas; promover a conservação dos recursos hídricos por meio da redução das perdas nos sistemas ou da reutilização da água.

Proteção da Natureza

Assegurar a proteção do meio ambiente, com ênfase na proteção do solo e nos meios aquáticos e ribeirinhos com maior interesse ecológico, a proteção e recuperação de habitat e condições de suporte das espécies nos meios hídricos; estabelecer condições adequadas de manejo do solo para evitar degradação;

estabelecer vazões "ecológicas" e evitar a excessiva artificialização do regime hidrológico dos cursos de água.

Proteção Contra Situações Hidrológicas Extremas e Acidentes de Poluição

Promover a minimização dos efeitos econômicos e sociais das secas por meio de medidas de gestão em função das disponibilidades de água, impondo restrições ao fornecimento em situação de seca e promovendo a racionalização dos consumos através de planos de contingência; promover a minimização dos efeitos econômicos e sociais das enchentes por meio do ordenamento da ocupação das áreas ribeirinhas sujeitas a inundações e o estabelecimento de mapas de risco de inundação, a regularização e a conservação da rede de drenagem; a implantação de obras de controle; promover a minimização dos efeitos econômicos e sociais de acidentes de poluição, via o estabelecimento de planos de emergência, visando à minimização dos seus efeitos.

Valorização Social e Econômica dos Recursos Ambientais

Estabelecer prioridades de uso para os recursos ambientais e definir a destinação dos diversos resíduos provenientes da atividade humana; promover a identificação dos locais com aptidão para usos específicos relacionados ao saneamento ambiental; promover a valorização econômica dos recursos ambientais, ordenando os empreendimentos no território.

Ordenamento do Território

Preservar as áreas de várzea; impor condicionamentos aos usos do solo por meio da definição de diretrizes de ordenamento e de ocupação; promover a reabilitação e renaturalização dos leitos de rios e canais; promover o zoneamento em termos de uso e ocupação do solo.

Normatização Jurídico-Institucional

Assegurar a simplificação e racionalização dos processos de gestão da política e dos sistemas de saneamento básico; promover a melhoria da coordenação interinstitucional, corrigir eventuais deficiências da legislação vigente.

Sustentabilidade Econômico-financeira

Promover a sustentabilidade econômica e financeira dos sistemas de saneamento e a utilização racional dos recursos hídricos, incentivar a adoção dos princípios usuário-pagador e poluidor-pagador.

Outros Objetivos

Aprofundar o conhecimento dos recursos hídricos; promover o monitoramento quantitativo e qualitativo das águas superficiais e subterrâneas; promover o estudo e a pesquisa aplicada, criando e mantendo as bases de dados adequadas ao planejamento e à gestão sustentável dos recursos hídricos; promover a participação da população através da informação, formação e sensibilização para as necessidades de proteger os recursos naturais, especificamente os recursos hídricos; incentivar a implantação de programa de controle da erosão do solo.

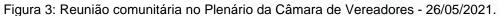
4 CONTROLE SOCIAL NA REVISÃO DO PMSB

4.1 PESQUISA DE SATISFAÇÃO (ON-LINE)

Visando à participação da população na etapa de diagnóstico dos serviços de saneamento básico (abastecimento de água potável, esgotamento sanitário, resíduos sólidos e drenagem urbana) do processo de revisão do Plano Municipal de Saneamento Básico, foi disponibilizada uma pesquisa *on-line* para coletar informações sobre a satisfação dos munícipes sobre a prestação desses serviços no município A pesquisa foi disponibilizada no dia 14/07/2020 e ficou disponível para preenchimento até o dia 05/02/2021, tendo recebido 171 participações durante esse período. Os resultados dessa pesquisa são apresentados no Anexo 01.

4.2 REUNIÃO COMUNITÁRIA

Com o objetivo de garantir mais uma forma de participação da população no processo de revisão, e complementar as informações coletadas através da Pesquisa de Satisfação, foi realizada uma reunião comunitária no dia 26 de maio de 2021, as às 18:30 horas, no Plenário da Câmara de Vereadores. Essa reunião estava prevista ainda para o ano de 2020, no entanto, em função da pandemia do coronavírus (Covid-



19), se fez necessário o seu adiamento até que esta pudesse acontecer de forma segura.

Na reunião, após breve introdução sobre os aspectos legais das Políticas Federal e Municipal de Saneamento, a metodologia de estudo da revisão do PMSB e os serviços de saneamento básico que integram esse plano, as pessoas presentes puderam se manifestar sobre o tema, expondo dificuldades e expectativas de melhorias para os serviços de saneamento básico no município.

Figura 2: Convite para a reuniões comunitária.

Fonte: Acervo próprio.

4.3 WEBSITE

Com o intuito de permitir o acesso da população aos materiais produzidos durante o processo de revisão, foi criado um website, que pode ser acessado através do link:<https://planejamentourbano.cincatarina.sc.gov.br/default.aspx?municipio= iranipmsb&idref=54818>. No website, além de disponibilização dos materiais produzidos, também foram vinculadas informações sobre o andamento do processo de revisão, concentrando notícias relacionadas ao processo de revisão.

Figura 4: Website para acompanhamento do processo de revisão do PMSB de Irani.

4.4 CONSELHO MUNICIPAL DE SANEAMENTO BÁSICO

O Conselho Municipal de Saneamento Básico de Irani foi instituído pela Lei Municipal nº 68/2011, no ano de 2016 as atribuições e composição deste conselho foram alteradas pela Lei nº 1.805/2016. Os membros do conselho durante o processo de revisão foram nomeados através dos Decretos nº 115/2020 e nº 68/2021.

No dia 09 de novembro de 2020, realizou-se a primeira reunião com o conselho, tendo sido apresentada a metodologia do processo de revisão e o Produto 01- Revisão do Diagnóstico Social (Figura 5). A segunda reunião ocorreu no dia 26 de maio de 2021, nesta foram apresentadas as revisões dos diagnósticos e prognósticos dos serviços de abastecimento de água e esgotamento sanitário (Figura 6). A terceira

reunião foi realizada de forma *on-line*, através da plataforma Google Meet, no dia 05 de agosto de 2021, quando foram apresentadas as revisões dos diagnósticos e prognósticos dos serviços de limpeza urbana e manejo de resíduos sólidos e de manejo de águas pluviais e drenagem urbana. As sugestões e apontamentos foram considerados, e após avaliação, incorporados nesta versão final.

Figura 5: Apresentação da revisão Diagnóstico Social ao Conselho - 1ª Reunião

Fonte: Acervo próprio.

Figura 6: Apresentação dos diagnósticos e prognósticos dos serviços ao Conselho - 2ª Reunião

Fonte: Acervo próprio.

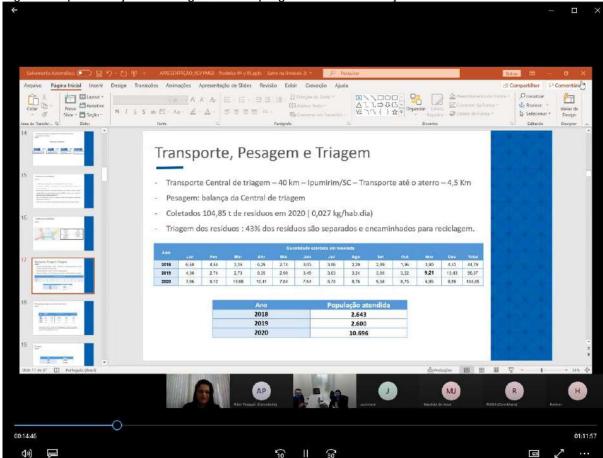


Figura 7: Apresentação dos diagnósticos e prognósticos dos serviços ao Conselho - 3ª Reunião

Fonte: Acervo próprio.

4.5 AUDIÊNCIA PÚBLICA

Após apresentação ao Conselho Municipal de Saneamento da Versão Preliminar da 1ª Revisão do Plano de Saneamento Básico, foi realizada Audiência Pública para apresentação deste material à população.

Essa audiência pública ocorreu no dia 15 de setembro de 2021, às 18:00 horas, no Plenário da Câmara de Vereadores (Figura 8 a Figura 10). Na ocasião os produtos elaborados foram apresentados à comunidade, tendo sido disponibilizado tempo para questionamentos e contribuições, de modo a garantir que esta revisão esteja adequada ao interesse público, refletindo os anseios e atendendo as necessidades da população do município, conforme estabelece a legislação.

Figura 8: Edital de convocação para Audiência Pública.

Figura 9: Audiência Pública realizada no dia 15/09/2021 no Plenário da Câmara de Vereadores.

Figura 10: Audiência Pública realizada no dia 15/09/2021 no Plenário da Câmara de Vereadores.

5 LEGISLAÇÃO

O Plano Municipal de Saneamento Básico (PMSB) de Irani foi elaborado no ano de 2011. Na sequência são apresentados os principais dispositivos legais que regulamentam as questões relacionadas ao saneamento básico no município.

5.1 ÂMBITO FEDERAL

- Lei Federal nº 6.050, de 24 de maio de 1974.

Dispõe sobre a fluoretação da água em sistemas de abastecimento.

- Lei Federal nº 6.766, de 19 de dezembro de 1979.

Dispõe sobre o Parcelamento do Solo Urbano e dá outras providências.

- Lei Federal nº 9.433, de 8 de janeiro de 1997.

Institui a Política Nacional de Recursos Hídricos, cria o Sistema Nacional de Gerenciamento de Recursos Hídricos, regulamenta o inciso XIX do art. 21 da Constituição Federal, e altera o art. 1º da Lei nº 8.001, de 13 de março de 1990, que modificou a Lei nº 7.990, de 28 de dezembro de 1989.

- Lei Federal nº 11.445, de 05 de janeiro de 2007.

Estabelece as diretrizes nacionais para o saneamento básico; cria o Comitê Interministerial de Saneamento Básico; altera as Leis nos 6.766, de 19 de dezembro de 1979, 8.666, de 21 de junho de 1993, e 8.987, de 13 de fevereiro de 1995; e revoga a Lei nº 6.528, de 11 de maio de 1978.

- Lei Federal nº 12.305, de 02 de agosto de 2010.

Institui a Política Nacional de Resíduos Sólidos; altera a Lei nº 9.605, de 12 de fevereiro de 1998; e dá outras providências.

- Lei Federal nº 14.026, de 15 de julho de 2020.

Atualiza o marco legal do saneamento básico e altera a Lei nº 9.984, de 17 de julho de 2000, para atribuir à Agência Nacional de Águas e Saneamento Básico (ANA) competência para editar normas de referência sobre o serviço de saneamento, a Lei nº 10.768, de 19 de novembro de 2003, para alterar o nome e as atribuições do cargo

de Especialista em Recursos Hídricos, a Lei nº 11.107, de 6 de abril de 2005, para vedar a prestação por contrato de programa dos serviços públicos de que trata o art. 175 da Constituição Federal, a Lei nº 11.445, de 5 de janeiro de 2007, para aprimorar as condições estruturais do saneamento básico no País, a Lei nº 12.305, de 2 de agosto de 2010, para tratar dos prazos para a disposição final ambientalmente adequada dos rejeitos, a Lei nº 13.089, de 12 de janeiro de 2015 (Estatuto da Metrópole), para estender seu âmbito de aplicação às microrregiões, e a Lei nº 13.529, de 4 de dezembro de 2017, para autorizar a União a participar de fundo com a finalidade exclusiva de financiar serviços técnicos especializados.

- Decreto Federal nº 76.872, de 22 de dezembro de 1975.

Regulamenta a Lei nº 6.050, de 24 de maio de 1974, que dispõe sobre a fluoretação da água em sistemas públicos e abastecimento.

- Decreto Federal nº 5.440, de 4 de maio de 2005.

Estabelece definições e procedimentos sobre o controle de qualidade da água de sistemas de abastecimento e institui mecanismos e instrumentos para divulgação de informação ao consumidor sobre a qualidade da água para consumo humano.

- Decreto Federal nº 7.217, de 21 de junho de 2010.

Regulamenta a Lei nº 11.445, de 5 de janeiro de 2007, que estabelece diretrizes nacionais para o saneamento básico, e dá outras providências.

- Decreto Federal nº 7.404, de 23 de dezembro de 2010.

Regulamenta a Lei nº 12.305, de 2 de agosto de 2010, que institui a Política Nacional de Resíduos Sólidos, cria o Comitê Interministerial da Política Nacional de Resíduos Sólidos e o Comitê Orientador para a Implantação dos Sistemas de Logística Reversa, e dá outras providências.

- Resolução CONAMA nº 258, de 26 de agosto de 1999.

Destinação ambientalmente adequada a pneumáticos.

Resolução CONAMA nº 275, de 25 de abril de 2001.

Estabelece o código de cores para os diferentes tipos de resíduos, a ser adotado na identificação de coletores e transportadores, bem como nas campanhas informativas para a coleta seletiva.

- Resolução CONAMA nº 307, de 5 de julho de 2002.

Estabelece diretrizes, critérios e procedimentos para a gestão dos resíduos da construção civil.

- Resolução CONAMA nº 357, de 17 de março de 2005.

Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências.

- Resolução CONAMA nº 358, de 29 de abril de 2005.

Dispõe sobre o tratamento e a disposição final dos resíduos dos serviços de saúde e dá outras providências.

- Resolução CONAMA nº 401, de 4 de novembro de 2008.

Estabelece os limites máximos de chumbo, cádmio e mercúrio para pilhas e baterias comercializadas no território nacional e os critérios e padrões para o seu gerenciamento ambientalmente adequado, e dá outras providências.

- Resolução CONAMA nº 430, de 13 de maio de 2011.

Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução nº 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente-CONAMA.

- Resolução CONAMA nº 431, de 24 de maio de 2011.

Altera o art. 3º da Resolução nº 307, de 5 de julho de 2002, do Conselho Nacional do Meio Ambiente - CONAMA, estabelecendo nova classificação para o gesso.

- Resolução CONAMA nº 448, de 18 de janeiro de 2012.

Altera os arts. 2º, 4º, 5º, 6º, 8º, 9º, 10º, 11º da Resolução no 307, de 5 de julho de 2002, do Conselho Nacional do Meio Ambiente – CONAMA.

- Resolução ANVISA RDC nº 222, de 28 de março de 2018.

Regulamenta as Boas Práticas de Gerenciamento dos Resíduos de Serviços de Saúde e dá outras providências.

- Portaria de Consolidação MS/GM n°05, de 28 de setembro de 2017 (ANEXO XX)
- Alterada pela Portaria GM/MS nº 888 de 04 de maio de 2021 Normas e Padrões sobre Fluoretação da Água dos Sistemas Públicos de Abastecimento, Destinada ao Consumo Humano.

Do Controle e da Vigilância da Qualidade da Água para Consumo Humano e Seu Padrão De Potabilidade

- Portaria de Consolidação MS/GM n°05, de 28 de setembro de 2017 (ANEXO XXI) Normas e Padrões sobre Fluoretação da Água dos Sistemas Públicos de Abastecimento, Destinada ao Consumo Humano.

5.2 ÂMBITO ESTADUAL

- Lei Estadual nº 6.320, de 20 de dezembro de 1983.

Dispõe sobre normas gerais de saúde, estabelece penalidades e dá outras providências.

- Lei Estadual nº 9.748, de 30 de novembro de 1994.

Dispõe sobre a política estadual de recursos hídricos e dá outras providências.

- Lei Estadual nº 11.347, de 17 de janeiro de 2000.

Dispõe sobre a coleta, o recolhimento e o destino final de resíduos sólidos potencialmente perigosos que menciona, e adota outras providências

- Lei Estadual nº 11.376, de 18 de abril de 2000.

Estabelece a obrigatoriedade da adoção de plano de gerenciamento dos resíduos de serviços de saúde nos casos que menciona.

- Lei Estadual nº 12.375, de 16 de julho de 2002.

Dispõe sobre a coleta, o recolhimento e o destino final de pneus descartáveis e adota outras providências.

- Lei Estadual nº 12.863, de 12 de janeiro de 2004.

Dispõe sobre a obrigatoriedade do recolhimento de pilhas, baterias de telefones celulares, pequenas baterias alcalinas e congêneres, quando não mais aptas ao uso e adota outras providências.

- Lei Estadual nº 13.517, de 20 de outubro de 2005.

Dispõe sobre a Política Estadual de Saneamento e estabelece outras providências.

- Lei Estadual nº 14.330, de 18 de janeiro de 2008.

Institui o programa estadual de tratamento e reciclagem de óleos e gorduras de origem vegetal, animal e de uso culinário.

- Lei Estadual nº 14.496, de 07 de agosto de 2008.

Dispõe sobre a coleta, o recolhimento e o destino final das embalagens plásticas de óleos lubrificantes e adota outras providências.

Lei Estadual nº 14.675, de 13 de abril de 2009.

Institui o Código Estadual do Meio Ambiente e estabelece outras providências.

- Lei Estadual nº 17.492, de 22 de janeiro de 2018.

Dispõe sobre a responsabilidade territorial urbana, o parcelamento do solo, e as novas modalidades urbanísticas, para fins urbanos e rurais, no Estado de Santa Catarina e adota outras providências.

- Decreto nº 6.214, de 27 de dezembro de 2002.

Regulamenta a lei nº 12.375, de 16 de julho de 2002, que dispõe sobre a coleta, o recolhimento e o destino final de pneus descartáveis e adota outras providências.

- Decreto Estadual nº 4.778, de 11 de outubro de 2006.

Regulamenta a outorga de direito de uso de recursos hídricos, de domínio do estado, de que trata a Lei Estadual nº 9.748, de 30 de novembro de 1994, e estabelece outras providências.

- Decreto Estadual nº 1.846, de 20 de dezembro de 2018.

Regulamenta o serviço de abastecimento de água para consumo humano no Estado de Santa Catarina e estabelece outras providências.

- Resolução CERH nº 001/2008

Dispõe sobre a classificação dos corpos de água de Santa Catarina e dá outras providências.

- Portaria SES n° 421 de 13 de maio de 2016.

Estabelece o teor ótimo de concentração do íon fluoreto na água destinada ao consumo humano no Estado de Santa Catarina.

5.3 ÂMBITO MUNICIPAL

- Lei Municipal nº 917, de 23 de dezembro de 1997.

Institui o Código Tributário do Município.

- Lei Municipal nº 924, de 19 de junho de 1998.

Dispõe sobre os atos de limpeza pública, e dá outras providências.

- Lei Municipal nº 1.512, de 18 de dezembro de 2009.

Ratifica o Protocolo de Intenções e autoriza o ingresso do Município de Irani no Consórcio Público denominado de Agência Reguladora Intermunicipal de Saneamento (ARIS), e dá outras providências. (Redação dada pela Lei nº1.836/2017).

- Lei Complementar nº 68 de 22 de dezembro de 2011.

Dispõe sobre a Política Municipal de Saneamento Básico e dá outras providências.

- Lei Municipal nº 1.805, de 15 de dezembro de 2016.

Dispõe sobre a criação do Conselho Municipal de Controle Social de Saneamento Básico no âmbito do município de Irani - SC.

- Lei Complementar Nº 89, de 24 de abril de 2018.

Dispõe sobre normas relativas às edificações do município de Irani, Estado de Santa Catarina - código de edificações - e dá outras providências.

- Lei complementar nº 90 de 24 de abril de 2018.

Institui o código de posturas para o município de Irani e dá outras providências.

- Lei Complementar Nº 91, de 24 de abril de 2018.

Institui a lei de uso, ocupação e parcelamento do solo do município de Irani.

- Lei complementar nº 92 de 25 de abril de 2018.

Regulamenta a limpeza e conservação dos lotes urbanos no município de Irani e dá outras providências.

- Lei Municipal nº 1897, de 19 de fevereiro de 2019.

Dispõe sobre a criação do Plano Municipal de Desenvolvimento Agropecuário e Saneamento Básico Rural.

- Lei Municipal nº 1.917, de 16 de outubro de 2019.

Ratifica as alterações realizadas no protocolo de intenções consubstanciado no contrato de consórcio público da Agência Reguladora Intermunicipal de Saneamento (ARIS), e dá outras providências.

- Decreto nº 115, de 26 de junho de 2020.

Nomeia membros para o Conselho Municipal de Controle de Saneamento Básico e dá outras providências.

- Decreto nº 68, de 24 de março de 2021.

Nomeia membros para o Conselho Municipal de Controle de Saneamento Básico e dá outras providências.

6 DIAGNÓSTICO SOCIAL

6.1 HISTÓRICO

A região do município de Irani começou a ser desbravada e ocupada no início do século XIX, por fazendeiros e colonos vindos principalmente do norte do Rio Grande do Sul. Os primeiros habitantes do território foram: Leopoldino Fabrício das Neves, Dinarte Antunes, Pedro Kades, Alexandre Telles e Miguel Fabrício das Neves, este último, vendeu suas terras para Manuel Galdino, que por sua vez demarcou os lotes e os vendeu separadamente (IRANI, 2014).

O município de Irani foi criado pela Lei Promulgada nº 916 de 11 de setembro de 1963, e sua instalação ocorreu em 12 de janeiro de 1964, pertencente à Comarca do município de Cruzeiro, atualmente Joaçaba.

O município faz parte da Associação dos Municípios do Alto Uruguai Catarinense (AMAUC), sendo sua localização ilustrada na Figura 11.

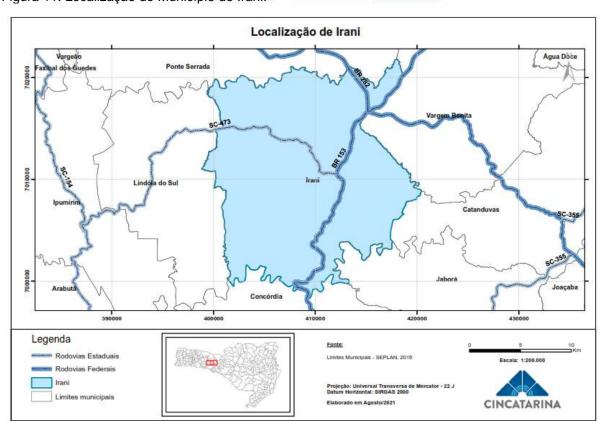


Figura 11: Localização do Município de Irani.

Na Tabela 1 a seguir, é possível observar as principais informações gerais do município de Irani.

Tabela 1: Aspectos Gerais e Históricos de Irani.

Aspectos Gerais e Históricos Aspectos Gerais e Históricos					
Localização – Mesorregião IBGE	Oeste Catarinense				
Associação de Municípios	AMAUC - Associação dos Municípios do Alto Uruguai Catarinense				
Área Territorial (Km²)	329,6				
Distância da Capital (Km)	435				
Altitude (m)	1.047				
População de 2010	9.531 habitantes				
População Estimada 2019	10.419 habitantes				
Densidade demográfica 2010 (hab/Km²)	28,92				
Data da Fundação	11 de setembro de 1963				
Gentílico	Iraniense				
Número de Eleitores	7.313				
Principais atividades econômicas	Agricultura, pecuária e indústria madeireira				
Colonização	Italiana e alemã				

Fontes: SEBRAE (2010); IBGE (2010/2019).

O município de Irani possui 17 setores censitários¹, sendo 8 deles áreas urbanas e 9 sendo caracterizados como setores censitários rurais.

A Figura 12 apresenta como estão distribuídos espacialmente os setores censitários na área do município.

¹ O setor censitário é a unidade territorial estabelecida para fins de controle cadastral, formado por área contínua, situada em um único quadro urbano ou rural, com dimensão e número de domicílios que permitam o levantamento por um recenseador. Assim sendo, cada recenseador procederá à coleta de informações tendo como meta a cobertura do setor censitário que lhe é designado (IBGE, 2010).

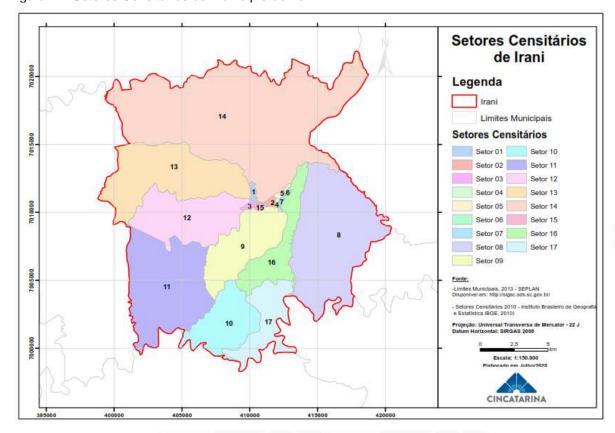


Figura 12: Setores Censitários do município de Irani.

6.2 DISTRIBUIÇÃO DA POPULAÇÃO

O município de Irani apresenta levantamentos de sua população desde o censo demográfico de 1970. Considerando todos os censos demográficos e contagens realizados até aqui, observa-se que entre 1970 e 2010, a população total cresceu a uma taxa média anual de 1,08%, totalizando 53,97% de aumento no período estudado.

Destaca-se, no mesmo período, o decrescimento na área rural atingiu 1,68% ao ano, totalizando para o período uma diminuição na população rural de 49,19%. Entretanto, na área urbana houve um acréscimo populacional de 8,35% ao ano, totalizando assim aumento de 2.369,69% na população urbana do município. A Tabela 2 apresenta os dados retirados do IBGE.

Tabela 2: População residente por situação de domicílio em Irani.

Situação do domicílio	Censo 1970	Censo 1980	Censo 1991	Ano Contagem 1996	Censo 2000	Contagem 2007	Censo 2010
Urbana	264	564	3.291	3.858	5.058	5.817	6.520
Rural	5.926	5.704	4.309	4.085	3.544	3.496	3.011
Total	6.190	6.268	7.600	7.943	8.602	9.313	9.531

Fonte: IBGE (2010).

Considerando a distribuição populacional por sexo, segundo dados do IBGE extraídos do último Censo, no município, os homens representavam, em 2010, 50,88% da população e as mulheres, 49,11%.

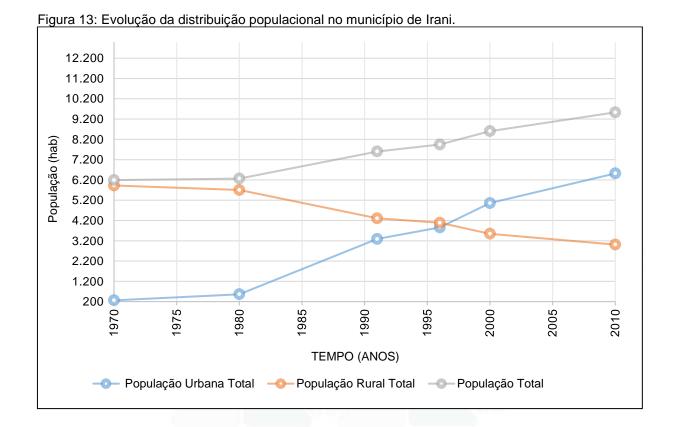

Na Tabela 3 é possível observar os detalhes da distribuição populacional urbana segundo faixa etária e sexo no município.

Tabela 3: População total residente por sexo e idade.

Tabela 5. T opt	ilação total les	idente poi sexo	e luaue.				
Idada	Homem		Mu	Mulher		Total	
Idade	2000	2010	2000	2010	2000	2010	
0 a 9 anos	902	717	897	701	1.799	1.418	
10 a 19	943	906	863	873	1806	1.779	
anos	0.0			0.0	.000		
20 a 59	2.270	2.747	2.084	2.585	4.354	5.332	
anos) <u></u>			
60 ou mais	292	480	351	522	643	1.002	
Total	4.407	4.850	4.195	4.681	8.602	9.531	

Fonte: IBGE (2010).

A evolução da distribuição da população no município de Irani é apresentada na Figura 13, que mostra a tendência de urbanização.

6.3 TAXAS DE CRESCIMENTO

As taxas de crescimento entre os últimos dois censos demográficos estão apresentadas na Tabela 4.

Tabela 4: Evolução do crescimento Populacional no município de Irani, no estado de Santa Catarina e no Brasil

	Censo 2000	Censo 2010	Crescimento Populacional	% ao ano
Brasil	183.987.291	190.732.694	6.745.403	1,21
Santa Catarina	5.866.252	6.249.682	383.430	2,13
Irani	8.602	9.531	929	1,03
Irani (Sede Urbana)	5.058	6.520	1.462	2,57
População Rural	3.578	3.011	-567	-1,61

Fonte: IBGE (2010).

Observa-se que Irani, no período de 2000 a 2010, apresentou crescimento populacional inferior ao observado para o estado de Santa Catarina e para o Brasil. No entanto, houve um movimento de aumento da população urbana e diminuição da população rural, comprovando a tendência de urbanização da população.

6.4 DENSIDADE DEMOGRÁFICA

A Densidade Demográfica Municipal é a relação entre o número de habitantes e a área do município. Já a densidade demográfica urbana expressa o número total de pessoas residindo na área urbana dividida pela referida área de ocupação.

As densidades são de extrema importância para o planejamento municipal, pois são utilizadas no dimensionamento e localização da infraestrutura, dos equipamentos sociais e de serviços públicos, cita-se: esgotamento sanitário, iluminação pública, distribuição de água, escolas, transporte coletivo, parques, área de lazer e outros.

Baseado nas informações populacionais do censo demográfico de 2010, Irani possuía naquele ano uma densidade demográfica de 0,29 hab/ha. A densidade demográfica foi calculada a partir dos dados dos setores censitários do IBGE (2010), sendo que o setor 6, localizado na área urbana, apresentava, em 2010, a maior densidade com 43,02 hab/ha. A representação das densidades demográficas do município de Irani apresenta-se de acordo com a Figura 14.

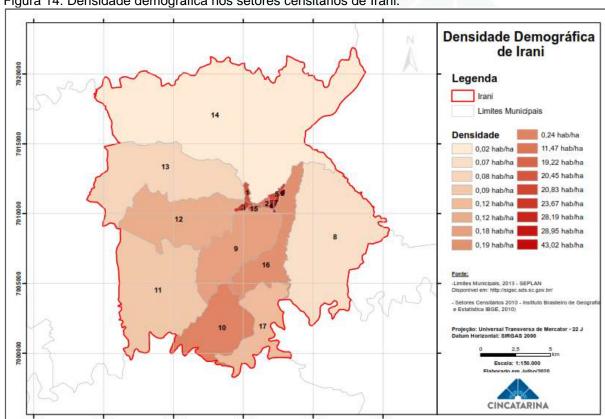


Figura 14: Densidade demográfica nos setores censitários de Irani.

As densidades por setor censitário são apresentadas conforme a Tabela 5.

Tabela 5: Densidade Demográfica dos setores censitários no município de Irani em 2010.

Setor	Situação setor	População	Área (ha)	Densidade (hab/ha)
1	Urbano	1.191	58,23	20,45
2	Urbano	564	49,14	11,48
3	Urbano	1.128	47,65	23,67
4	Urbano	731	25,25	28,95
5	Urbano	848	40,71	20,83
6	Urbano	733	17,04	43,02
7	Urbano	728	25,82	28,20
8	Rural	396	5.132,07	0,08
9	Rural	381	2.061,43	0,18
10	Rural	440	3.971,46	0,11
11	Rural	386	2.538,53	0,15
12	Rural	324	3.637,72	0,09
13	Rural	305	10.563,85	0,03
14	Rural	305	31,05	9,82
15	Urbano	597	1.485,40	0,40
16	Rural	292	1.464,00	0,20
17	Rural	182	1.781,82	0,10
То	tal	9.531	32.931,17	0,29

Fonte: IBGE (2010).

O setor censitário mais populoso do município de Irani, conforme Censo demográfico (IBGE, 2010) era o setor 1 com 1.191 habitantes e o menos populoso o setor rural 17, com 182 habitantes.

6.5 ESPERANÇA DE VIDA AO NASCER

A expectativa de vida é um índice (número médio) que representa quantos anos se espera que um grupo de indivíduos nascidos no mesmo ano possa viver quando nasce. É um indicador utilizado para compor o Índice de Desenvolvimento Humano Municipal (IDHM).

No município, a esperança de vida ao nascer cresceu 2,7 anos na última década, passando de 73,1 anos, em 2000, para 75,8 anos, em 2010 (PNUD, Ipea, FJP, 2013).

75,8 76,6 78 76 **73,1** 73,7 74 **69,6** 70,2 72 70 68,6 68 64,7 66 64 62 1991 2000 2010 Expectativa de vida Irani ■ Santa Catarina ■ Brasil

Figura 15: Representação da esperança de vida ao nascer em Irani.

Fonte: PNUD, Ipea, FJP (2013).

6.6 DADOS DEMOGRÁFICOS E PROJEÇÕES POPULACIONAIS

Como mencionado anteriormente, o PMSB de 2011, utilizou como base os levantamentos censitários de 1991, 1996, 2000, 2007 e 2010. Além destes estão apresentados também os números dos censos de 1970 e 1980, apresentados na Tabela 6.

Tabela 6: Taxas de Crescimento Populacional.

Levantamentos IBGE		Censos e Contagem						
Levantamentos IBGE	1970	1980	1991	1996	2000	2007	2010	
Total Urbana	264	564	3.291	3.858	5.058	5.817	6.520	
% anual de cresc.	-	7,88%	17,39%	3,23%	6,82%	2,11%	3,87	
Total Rural	5.926	5.704	4.309	7.085	3.578	3.496	3.011	
% anual de cresc.	201	-0,38%	-2,51%	10,45	-15,70%	-0,33	-4,85	
Total Município	6.190	6.268	7.600	10.943	8.602	9.313	9.531	
% anual de cresc.	-	0,12%	1,76%	7,56%	-5,84%	1,14%	0,77	

Fonte: IBGE (2010).

6.6.1 Projeções Populacionais

As projeções populacionais são essenciais para o planejamento das infraestruturas do município e não é diferente para os serviços de saneamento básico onde as demandas são calculadas a partir das projeções populacionais.

As projeções populacionais são calculadas a partir de tendências matemáticas que têm como base dados populacionais existentes do local em estudo. Nesta revisão, semelhante ao que foi feito na primeira versão do PMSB, também foram elaborados modelos populacionais a partir de tendências lineares, polinomiais e logarítmicas dos dados oficiais disponíveis entre 1991 e 2010.

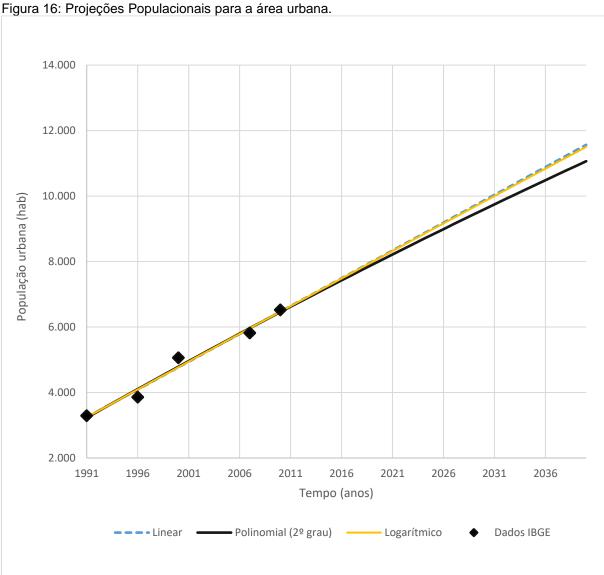
No entanto, os modelos construídos nesta revisão consideraram apenas os dados da população urbana, divergindo do método do PMSB de 2011 que utilizou os dados populacionais de toda a população do município.

Os intervalos de dados utilizados nas projeções foram: Censo 1991, Contagem 1996, Censo 2000, Contagem de 2007 e Censo de 2010.

Os modelos obtidos foram os seguintes:

- Modelo linear

$$y = 169,82207578 x - 334.871,20922570 (R^2 = 0,97735071)$$


- Modelo polinomial de 2º grau

$$y = -0.33539715 x^2 + 1.511.89859260 x - 1.677.419.51545703 (R^2 = 0.97745435)$$

- Modelo logarítmico

$$y = 339.769,49866346 \ln(x) - 2.577.779,83782255 (R^2 = 0,97737521)$$

O gráfico abaixo apresenta as tendências obtidas por estes modelos.

As projeções populacionais apresentadas na Tabela 7 foram ajustadas ao censo de 2010, ou seja, alterou-se a população de 2010 dos modelos para a mensurada no censo, tendo sido mantidas as tendências de crescimento obtidas.

Tabela 7: Projeções Populacionais - Urbana.

Ano	Projec	Projeção linear		Projeção polinomial 2º		logarítmica
	População	Taxa de crescimento	População	grau Taxa de crescimento	População	Taxa de crescimento
2010	6.520		6.520		6520	
2011	6.691	2,62%	6.685	2,53%	6.690	2,61%
2012	6.862	2,56%	6.849	2,46%	6.861	2,54%
2013	7.033	2,49%	7.012	2,39%	7.031	2,48%
2014	7.204	2,43%	7.175	2,32%	7.201	2,42%

Ano	Projeção linear		Projeção polinomial 2º grau		Projeção logarítmica	
	População	Taxa de crescimento	População	Taxa de crescimento	População	Taxa de crescimento
2015	7.376	2,37%	7.337	2,26%	7.371	2,36%
2016	7.547	2,32%	7.499	2,20%	7.541	2,30%
2017	7.718	2,27%	7.660	2,14%	7.710	2,25%
2018	7.889	2,22%	7.820	2,09%	7.880	2,20%
2019	8.060	2,17%	7.979	2,04%	8.050	2,15%
2020	8.231	2,12%	8.138	1,99%	8.219	2,11%
2021	8.402	2,08%	8.296	1,94%	8.389	2,06%
2022	8.573	2,04%	8.453	1,90%	8.558	2,02%
2023	8.744	2,00%	8.610	1,85%	8.728	1,98%
2024	8.915	1,96%	8.766	1,81%	8.897	1,94%
2025	9.087	1,92%	8.921	1,77%	9.066	1,90%
2026	9.258	1,88%	9.076	1,73%	9.235	1,86%
2027	9.429	1,85%	9.230	1,70%	9.404	1,83%
2028	9.600	1,81%	9.383	1,66%	9.573	1,80%
2029	9.771	1,78%	9.536	1,63%	9.742	1,76%
2030	9.942	1,75%	9.688	1,59%	9.910	1,73%
2031	10.113	1,72%	9.839	1,56%	10.079	1,70%
2032	10.284	1,69%	9.990	1,53%	10.247	1,67%
2033	10.455	1,66%	10.139	1,50%	10.416	1,64%
2034	10.626	1,64%	10.289	1,47%	10.584	1,62%
2035	10.798	1,61%	10.437	1,44%	10.753	1,59%
2036	10.969	1,58%	10.585	1,42%	10.921	1,56%
2037	11.140	1,56%	10.732	1,39%	11.089	1,54%
2038	11.311	1,54%	10.879	1,37%	11.257	1,52%
2039	11.482	1,51%	11.025	1,34%	11.425	1,49%
2040	11.653	1,49%	11.170	1,32%	11.593	1,47%
2041	11.824	1,47%	11.314	1,29%	11.761	1,45%

Podemos observar na Tabela 7 uma similaridade nas projeções, principalmente entre os modelos linear e logarítmico. Nesta revisão, como no PMSB 2011, também se optou por adotar o modelo polinomial de 2 º grau, uma vez que este apresentou melhor ajuste aos dados do IBGE.

Conforme pôde se observar na Tabela 2, apresentados anteriormente, a população rural tem decrescido ao longo dos anos. A aplicação dos modelos através da regressão dos últimos levantamentos mostrou-se pouco realista, assim, optou-se

por adotar a taxa de decrescimento média, 1,03 % ao ano, observada entre os censos de 2000 e 2010 como tendência de decrescimento da população rural no município.

A síntese das projeções populacionais adotadas nesta revisão, para os próximos 20 anos, é apresentada na Tabela 8.

Tabela 8: Projeções adotadas.

Ano	População Urbana (hab)	População Rural (hab)	População Total (hab)
2020	8.138	2.558	10.696
2021	8.296	2.517	10.813
2022	8.453	2.476	10.929
2023	8.610	2.436	11.046
2024	8.766	2.397	11.163
2025	8.921	2.358	11.279
2026	9.076	2.320	11.396
2027	9.230	2.282	11.512
2028	9.383	2.245	11.628
2029	9.536	2.209	11.745
2030	9.688	2.173	11.861
2031	9.839	2.138	11.977
2032	9.990	2.104	12.094
2033	10.139	2.070	12.209
2034	10.289	2.036	12.325
2035	10.437	2.003	12.440
2036	10.585	1.971	12.556
2037	10.732	1.939	12.671
2038	10.879	1.908	12.787
2039	11.025	1.877	12.902
2040	11.170	1.847	13.017
2041	11.314	1.817	13.131

A Tabela 9 apresenta a comparação das Estimativas do IBGE, para fins de cálculo do Fundo de Participação dos Municípios (FPM), com a projeção final adotada nesta revisão para a população total do município.

Tabela 9: Comparativo Estimativas IBGE x Projeção Adotada.

Ano	Projeção Adotada	Estimativa IBGE
2011	9.647	9.595
2012	9.763	9.656
2013	9.880	9.948
2014	9.996	10.033
2015	10.113	10.118
2016	10.229	10.202
2017	10.346	10.285
2018	10.463	10.339
2019	10.579	10.419

Sabe-se que as estimativas do IBGE por muitas vezes podem divergir da população residente devido a sua metodologia. Nestes casos estas estimativas são ajustadas nos censos e contagens. Observa-se que os valores calculados pela projeção adotada nesta revisão estão próximos dos valores adotados pelo IBGE, para as projeções feitas até 2019, apresentando um pequeno afastamento nos anos mais recentes.

Para que estes desvios sejam controlados, a cada novo Censo e/ou contagem deve-se aferir a projeção e sua distribuição. É importante que a administração pública municipal periodicamente faça a confirmação da projeção populacional e caso necessário ajustes no planejamento dos serviços.

Na Tabela 10 é feito um comparativo entre as projeções apresentadas no PMSB de 2011 e a projeção adotada nesta revisão. Sendo a partir de agora, tanto para população urbana quanto para população total do município, a projeção adotada a referência para planejamento desta revisão.

Tabela 10: Comparativo Projeção PMSB 2011 x Projeção Adotada.

Ano	Projeção PMSB anterior		Projeção adotada		
Ano	Urbana	Total	Urbana	Total	
2011	6.522	9.534	6.685	9.647	
2012	6.589	9.632	6.849	9.763	
2013	6.652	9.724	7.012	9.880	
2014	6.710	9.809	7.175	9.996	
2015	6.763	9.887	7.337	10.113	
2016	6.813	9.960	7.499	10.229	
2017	6.859	10.027	7.660	10.346	

	Projeção PM	SB anterior	Projeção adotada		
Ano	Urbana	Total	Urbana	Total	
2018	6.902	10.090	7.820	10.463	
2019	6.942	10.148	7.979	10.579	
2020	6.978	10.201	8.138	10.696	
2021	7.012	10.250	8.296	10.813	
2022	7.043	10.296	8.453	10.929	
2023	7.071	10.337	8.610	11.046	
2024	7.097	10.375	8.766	11.163	
2025	7.121	10.410	8.921	11.279	
2026	7.142	10.440	9.076	11.396	
2027	7.161	10.468	9.230	11.512	
2028	7.177	10.492	9.383	11.628	
2029	7.192	10.513	9.536	11.745	
2030	7.204	10.531	9.688	11.861	
2031	-	-	9.839	11.977	
2032	-	\- /	9.990	12.094	
2033	(-	->-	10.139	12.209	
2034	-	-77	10.289	12.325	
2035	-	-	10.437	12.440	
2036	-	-	10.585	12.556	
2037	-	-	10.732	12.671	
2038	-	-	10.879	12.787	
2039	-	N- 11	11.025	12.902	
2040	-		11.170	13.017	
2041	-	to all	11.314	13.131	

6.7 **ECONOMIA**

6.7.1 PIB

O Produto Interno Bruto (PIB) é o principal indicador usado para mensurar o crescimento econômico dos países, estados e municípios. O PIB representa a soma, em valores monetários, dos bens e serviços finais produzidos em um período. Para calcular o valor final desses bens e serviços produzidos, o IBGE deduz o valor estimado das matérias-primas adquiridas de outros setores, para que um mesmo produto não seja contabilizado duplamente. Na Figura 17 pode-se observar os valores do PIB do município entre os anos de 1999 e 2017.

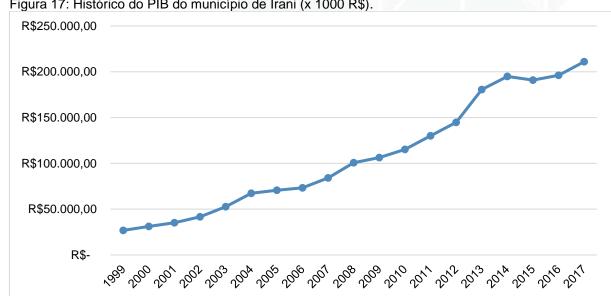


Figura 17: Histórico do PIB do município de Irani (x 1000 R\$).

Fonte: IBGE Cidades (2017).

O município de Irani apresentou um crescimento anual do PIB de 12,13%, atingindo uma evolução de 685,23% no período mencionado. O PIB municipal do ano de 2017 foi de R\$ 210.976,78 ocupando a 153ª posição entre os municípios do Estado de Santa Catarina.

Na Tabela 11 pode-se verificar a evolução do valor do Produto Interno Bruto municipal.

Tabela 11: Valor do Produto Interno Bruto (PIB) em Irani.

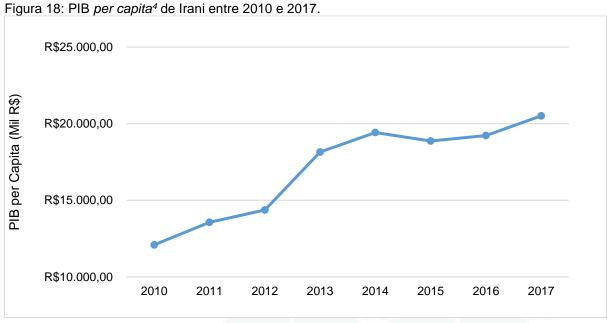
Ano	PIB (R\$)	Ranking Estadual
2010	130.312,00 ²	151°
2011	148.981,00 ²	151°

Ano	PIB (R\$)	Ranking Estadual
2012	138.711,00²	149°
2013	180.512,00 ³	144°
2014	194.845,79 ³	144°
2015	190.920,88 ³	147°
2016	196.138,18 ³	154°
2017	210.976,78 ³	153°

Fonte: IBGE (2017).

Em relação PIB *per capita* municipal, este também ocupou em 2017 a 153^a posição entre os municípios catarinenses, com PIB *per capita* de R\$ 20.513,06. Apenas como referência, o PIB *per capita* estadual no mesmo ano foi de R\$ 32.289,58.

A série histórica entre os anos de 2010 e 2017, para o município de Irani está apresentada na Tabela 12 e Figura 18.


Tabela 12: Valor do Produto Interno Bruto (PIB) per capita em Irani.

Ano	PIB per capita (R\$)	Ranking Estadual
2010	12.093,54 ²	252°
2011	13.563,31	244°
2012	14.365,30 ²	239°
2013	18.145,52 ³	230°
2014	19.420,49³	224°
2015	18.869,43³	245°
2016	19.225,46 ³	263°
2017	20.513,06 ³	251°

Fonte: IBGE (2017).

² Série encerrada

³ Série revisada

Fonte: IBGE (2017).

A participação dos setores econômicos no VAB (Valor Adicionado Bruto) do município de Irani está dividida conforme a Figura 19. Na avaliação dos setores econômicos do município, a agropecuária teve um crescimento de 4,76% ao ano, a indústria com 4,77%, os serviços 12,20% e administração pública 10,40% ao ano.

Relacionado a composição do valor adicionado bruto de 2017, a contribuição a agropecuária foi de 22,20%, da indústria 8,48%, dos serviços 39,21% e da administração pública 22,94%.

⁴ Série revisada.

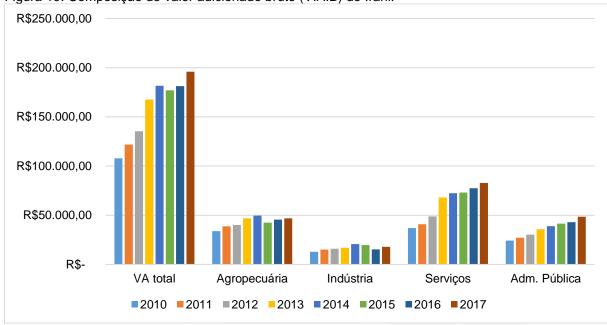


Figura 19: Composição do valor adicionado bruto (V.A.B) de Irani.

Fonte: IBGE (2017).

6.7.2 Renda

A distribuição da renda através dos setores, em 2010, se dava de acordo com o apresentado na Tabela 13.

Tabela 13: Distribuição de Renda por setores.

Setor	Situação setor	Renda	Domicílios	Renda/domicílio mês
1	Urbano	R\$ 541.389,00	334	R\$ 1.620,93
2	Urbano	R\$ 514.447,00	190	R\$ 2.707,62
3	Urbano	R\$ 661.696,00	348	R\$ 1.901,43
4	Urbano	R\$ 416.557,00	234	R\$ 1.780,16
5	Urbano	R\$ 367.901,00	251	R\$ 1.465,74
6	Urbano	R\$ 301.616,00	221	R\$ 1.364,78
7	Urbano	R\$ 378.307,00	215	R\$ 1.759,57
8	Rural	R\$ 317.008,00	118	R\$ 2.686,51
9	Rural	R\$ 238.986,00	110	R\$ 2.172,60
10	Rural	R\$ 203.492,00	140	R\$ 1.453,51
11	Rural	R\$ 176.833,00	111	R\$ 1.593,09
12	Rural	R\$ 130.843,00	93	R\$ 1.406,91
13	Rural	R\$ 179.141,00	96	R\$ 1.866,05
14	Rural	R\$ 151.094,00	88	R\$ 1.716,98
15	Urbano	R\$ 552.922,00	200	R\$ 2.764,61
16	Rural	R\$ 229.770,00	90	R\$ 2.553,00
17	Rural	R\$ 100.040,00	59	R\$ 1.695,59

Setor Situação setor	Renda	Domicílios	Renda/domicílio mês
Total	R\$5.462.042,00	2.898	R\$1.884,76

Fonte: IBGE, 2010.

Como os dados apresentados são do levantamento realizado pelo IBGE em 2010, destaca-se que o salário-mínimo da época da pesquisa era de R\$ 510,00.

Relacionado a incidência de pobreza extrema no município, a proporção de pessoas pobres, ou seja, com renda domiciliar per capita inferior a R\$ 140,00 (a preços de agosto de 2010), passou de 58,35%, em 1991, para 23,28%, em 2000, e para 5,71%, em 2010. A evolução da desigualdade de renda nesses dois períodos pode ser descrita através do Índice de Gini, que passou de 0,56, em 1991, para 0,62, em 2000, e para 0,42, em 2010 (PNUD, Ipea. FJP, 2013). A evolução dos índices de pobreza no município entre os anos de 1991 e 2010 é apresentada na Tabela 14.

Tabela 14: Evolução dos índices de pobreza em Irani entre os anos de 1991 e 2010.

Índices de Pobreza	1991	2000	2010
Renda per capita (em R\$)	205,98	582,52	686,25
% de extremamente pobres	29,72	6,47	1,15
% de pobres	58,35	23,28	5,71
Índice de Gini	0,56	0,62	0,42

Fonte: PNUD, Ipea e FJP (2013).

O Índice de Gini foi criado pelo matemático italiano Conrado Gini, e é um instrumento que serve para medir o grau de concentração de renda de um determinado grupo. Ele aponta a diferença entre os rendimentos dos mais pobres e dos mais ricos, quanto mais próximo de 1 for o índice, maior a desigualdade de renda do local, observa-se que em 2010 o índice atingiu o seu menor valor.

6.7.3 Emprego

Entre 2000 e 2010, a taxa de atividade da população de 18 anos ou mais (ou seja, o percentual dessa população que era economicamente ativa) passou de 64,26% em 2000 para 76,94% em 2010. Ao mesmo tempo, sua taxa de desocupação (ou seja, o percentual da população economicamente ativa que estava desocupada) passou de 4,54% em 2000 para 4,14% em 2010. (PNUD, Ipea e FJP, 2013).

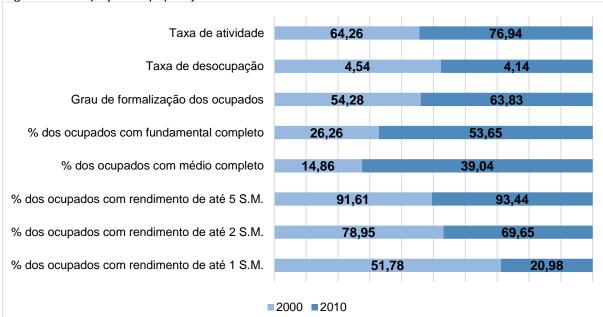


Figura 20: Ocupação da população maior de idade em Irani.

Fonte: PNUD, Ipea e FJP (2013).

6.8 EDUCAÇÃO

A Tabela 15 apresenta o número de escolas por rede escolar no município de Irani, segundo INEP, 2018.

Tabela 15: Número de escolas por rede escolar no município de Irani.

Rede de Ensino	Ensino Pré-escolar	Ensino Fundamental	Ensino Médio
Escola Pública Municipal	4	4	0
Escola Pública Estadual	0	4	2

Fonte: IBGE. Ministério da Educação, Instituto Nacional de Estudos e Pesquisas Educacionais - INEP – Censo Educacional (2018).

Na Tabela 16 são apresentados o número de docentes por rede de ensino. Há destaque na rede de ensino municipal que concentra o maior número de docentes.

Tabela 16: Número de docentes por rede escolar no município de Irani.

Rede de Ensino	Ensino Pré-escolar	Ensino Fundamental	Ensino Médio
Escola Pública Municipal	18	48	0
Escola Pública Estadual	0	38	32

Fonte: IBGE. Ministério da Educação, Instituto Nacional de Estudos e Pesquisas Educacionais - INEP - Censo Educacional (2019).

A Tabela 17 apresenta a distribuição dos alunos por nível escolar, divididos entre a rede pública municipal e estadual.

Tabela 17: Número de alunos por rede escolar no município de Irani.

Rede de Ensino	Ensino Pré-escolar	Ensino Fundamental	Ensino Médio
Escola Pública Municipal	230	654	0
Escola Pública Estadual	0	536	353
Total	230	1.190	353

Fonte: IBGE. Ministério da Educação, Instituto Nacional de Estudos e Pesquisas Educacionais – INEP – Censo Educacional (2018).

6.8.1 Alfabetização

A disponibilidade de dados sobre o alfabetismo é de extrema relevância na medida em que possibilita identificar áreas com carências educacionais.

O número de pessoas não alfabetizadas no município, em 2010, é apresentado na Tabela 18.

Tabela 18: Número de pessoas não alfabetizadas no município.

Classe Etária	2000	2010
15 a 19 anos	9	11
20 a 39 anos	81	81
40 a 49 anos	76	83
50 anos ou mais	302	357
Total	468	532

Fonte: SIDRA/IBGE (2010).

O índice de analfabetismo, de pessoas com 15 ou mais anos de idade que não sabem ler e escrever pelo menos um bilhete simples, no idioma que conhecem, na população total residente da mesma faixa etária, em determinado espaço geográfico, no ano considerado, tem sua evolução apresentada na Tabela 19, observa-se que vem ocorrendo redução dessa taxa.

Tabela 19: Taxa de analfabetismo da população de 15 anos ou mais de idade

Localidade	Censo 2000	Censo 2010
Irani	7,94%	7,4%
Santa Catarina	5,88%	4,14%
Brasil	12,93%	9,6%

Fonte: IBGE (2010).

6.8.2 Escolaridade

A educação não é apenas um serviço colocado à disposição de uma população, ela é simultaneamente um dos mecanismos através dos quais se distribuem as possibilidades de acesso às posições sociais. Assim, em relação à maior escolaridade, observa-se a probabilidade de ocupação de posições mais elevadas, as quais correspondem não só condições mais favoráveis de trabalho, como também maior remuneração e maior prestígio. A educação se situa, no ponto central de qualquer análise de estrutura social e de suas transformações.

A escolaridade dos responsáveis pelos domicílios, afeta de duas formas seus familiares: orçamentariamente, em relação às oportunidades de bem-estar material de seus dependentes e socioeducacionalmente condicionado às chances de escolarização de seus filhos e a própria ambiência cultural da família. Este condicionamento educacional e sociocultural dos responsáveis pelos domicílios é ressaltado nas avaliações de programas de igualdade de oportunidades escolares quando se enfatiza ser a "família educógena" geralmente mais importante do que os próprios fatores intraescolares no processo de desenvolvimento educacional das crianças.

A Tabela 20 apresenta o percentual da população em sua faixa etária por nível de instrução, referentes ao ano de 2010.

Tabela 20: Nível de instrução por faixa etária.

Idade	Sem instrução e fundamental incompleto	Fundamental completo e médio incompleto	Médio completo e superior incompleto	Superior completo
10 a 14 anos	790	108	-	-
15 a 19 anos	207	383	290	
20 a 24 anos	182	151	402	48
25 a 29 anos	159	133	404	65
30 a 34 anos	342	114	236	72
35 a 39 anos	382	79	162	51
40 a 44 anos	384	90	152	71
45 a 49 anos	344	122	113	57
50 a 54 anos	374	50	72	31
55 a 59 anos	363	41	54	6
60 a 69 anos	553	20	21	-
70 anos ou mais	371	31	10	-
Total Irani	4.451	1.322	1.916	401

Idade	Sem instrução e fundamental incompleto	Fundamental completo e médio incompleto	Médio completo e superior incompleto	Superior completo
Total Santa Catarina	2.459.577	1.054.604	1.341.571	524.209
Total Brasil	8.138.6577	28.178.794	37.980.515	13.463.757

Fonte: IBGE (2010).

O nível de instrução é de suma importância no norteamento das Políticas de Educação Sanitária/Ambiental, influenciando na forma e no tipo de material a ser implementado. A população pode ser envolvida nas formas de divulgação, dependendo do grau de instrução, através de: reuniões, assembleias, audiências, campanhas de rádio, TV e internet e na utilização de materiais como: folders, banners, outdoor e outros meios.

6.9 SAÚDE

A saúde pública busca prevenir doenças, prolongar a vida e promover saúde e eficiência física e mental, através de esforços organizados da comunidade para o saneamento do meio, o controle das doenças infectocontagiosas, a educação do indivíduo em princípios de higiene pessoal, a organização dos serviços médicos e de enfermagem para o diagnóstico precoce e tratamento preventivo das doenças além do desenvolvimento da maquinaria social de modo a assegurar a cada indivíduo da comunidade um padrão de vida adequado à manutenção da saúde (FSESP, 1964).

A salubridade ambiental é o estado de higidez em que vive a população urbana e rural, tanto no que se refere a sua capacidade de inibir, prevenir ou impedir a ocorrência de endemias ou epidemias veiculadas pelo meio ambiente, como no tocante ao seu potencial de promover o aperfeiçoamento de condições mesológicas favoráveis ao pleno gozo de saúde e bem-estar (FUNASA, 2006). Doenças como diarreia, dengue, febre tifoide e malária, que resultam mortes anuais, especialmente de crianças, são transmitidas por água contaminada com esgotos humanos, dejetos de animais e resíduos

6.9.1 Doenças

As principais doenças com veiculação hídrica são: Esquistossomose, Hepatite A/E, Leptospirose, Dengue, Malária, Cólera, Amebíase, Giardíase, Febre Tifoide e Paratifoide. Na Tabela 21 é possível observar o número de algumas doenças de veiculação hídrica no município de Irani de 2012 a 2019. Em consulta ao sistema de informação de vigilância epidemiológica das Doenças Diarreicas Agudas (DDA), 2019, verificou-se, entre 2012 e 2019, 1.642 casos de doenças diarreicas agudas no município.

Tabela 21: Doenças de veiculação hídrica no município de Irani.

Doones	Número de Casos							
Doença	2012	2013	2014	2015	2016	2017	2018	2019
Cólera	0	0	0	0	0	0	0	0
Dengue	0	0	0	0	0	0	0	0
Febre Tifoide	0	0	0	0	0	0	0	0
Hepatite (A, B, C e D)	4	1	2	7	4	17	7	-
Leptospirose	0	0	5	0	0	1	1	2

Doones	Número de Casos							
Doença	2012	2013	2014	2015	2016	2017	2018	2019
Esquistossomose	0	0	0	0	0	0	-	-
Diarreia	229	140	167	226	217	146	167	350

Fonte: TABNET/DATASUS (2017).

Observa-se que no período de registro (2012 a 2019), o município apresentou registros de Hepatite, Leptospirose e Doenças Diarreicas Agudas, e não apresentou nenhum outro registro de doenças de veiculação hídrica. A Hepatite é doença causada por vírus e dividida em tipos. As Hepatites "A" e "E" estão relacionadas com a falta de saneamento básico, pois sua transmissão é do tipo fecal oral, através do contato com alimentos e água contaminados.

A Leptospirose é uma doença causada por bactéria que está intimamente ligada com a presença de ratos, que de modo geral, permanecem em locais onde a limpeza pública (coleta de resíduos sólidos "lixo") é deficiente, e cuja veiculação é potencializada no mau funcionamento dos sistemas de drenagem urbana.

O grupo das Doenças Diarreicas Agudas infecciosas gastrointestinais, são caracterizadas por uma síndrome em que há ocorrência de no mínimo três episódios de diarreia aguda em 24 horas, ou seja, diminuição da consistência das fezes e aumento do número de evacuações, quadro que pode ser acompanhado de náusea, vômito, febre e dor abdominal.

6.9.2 Infraestrutura dos Serviços de Saúde

O município de Irani contava em junho de 2020 com 12 estabelecimentos de saúde que são apresentados na Tabela 22.

Tabela 22: Número de Estabelecimento de Saúde de Irani.

Descrição	Total
Centro de Saúde/Unidade Básica	4
Policlínica	2
Hospital	1
Centro de Regulação de Acesso	1
Unidade de Apoio Diagnose e Terapia	3
Centro de Gestão em Saúde	1
Total	12

Fonte: CNES/DATASUS (2020).

6.9.3 Indicadores Epidemiológicos

Indicadores Epidemiológicos são importantes para representar os efeitos das ações de saneamento, ou da sua insuficiência, na saúde humana e constituem, portanto, ferramentas fundamentais para a vigilância ambiental em saúde e para orientar programas e planos de alocação de recursos em saneamento ambiental (DA COSTA *et al*, 2005).

Taxa de Fecundidade Total

Número médio de filhos nascidos vivos, tidos por uma mulher ao final do seu período reprodutivo, na população residente em determinado espaço geográfico, no ano considerado. A taxa de fecundidade total é obtida pelo somatório das taxas específicas de fecundidade para as mulheres residentes de 15 a 49 anos de idade.

A taxa de fecundidade total em Irani teve queda de 3,4 filhos/mulher em 1991 para 3,2 em 2000 e 2,1 filhos/mulher em 2010 (PNUD, Ipea e FJP (2010).

Taxa de Mortalidade Infantil

Algumas populações são particularmente sensíveis às diversas patologias. As crianças de até um ano de idade são susceptíveis a diversas doenças, inclusive aquelas causadas por fatores ambientais. Idosos sofrem não só as consequências de toda a exposição a uma série de fatores químicos e exposições profissionais, como são mais suscetíveis, pela diminuição da resistência orgânica, para uma série de doenças (respiratórias, fraturas, acidentes e outras). Então, para a análise dos indicadores epidemiológicos foi adotada a faixa etária que engloba crianças menores de um ano e menores de cinco anos, para avaliação de como as ações de melhoria das condições de saneamento estão refletindo mais especificamente na saúde das crianças.

A taxa de mortalidade infantil indica o risco de morte infantil através de frequência de óbitos de menores de um ano de idade na população de nascidos vivos. Este indicador relaciona o número de óbitos de menores de um ano de idade, por mil nascidos vivos, em determinado espaço geográfico, no ano considerado.

É um indicador importante das condições de vida e de saúde de uma localidade, região, ou país, assim como de desigualdades entre localidades. Pode também contribuir para uma avaliação da disponibilidade e acesso aos serviços e recursos relacionados à saúde, especialmente ao pré-natal e seu acompanhamento. Por estar estreitamente relacionado à renda familiar, ao tamanho da família, à educação das mães, à nutrição e à disponibilidade de saneamento básico, é considerado importante para o desenvolvimento sustentável, pois a redução da mortalidade infantil é um dos importantes e universais objetivos do desenvolvimento sustentável.

A Tabela 23 abaixo, mostra longevidade, mortalidade e fecundidade no Município de Irani nos anos 1991, 2000 e 2010.

Tabela 23: Longevidade, mortalidade e fecundidade no Município de Irani nos anos de 1991, 2000 e 2010.

_0.0.				
	Indicadores	1991	2000	2010
Espe	erança de vida ao nascer (anos)	69,63	73,12	75,84
Mortalida	ade infantil (óbitos por mil nascidos vivos)	25,9	21,0	12,4
Mortalidad	de até 5 anos de idade (óbitos por mil nascidos vivos)	29,9	24,2	14,6

Fonte: PNUD, Ipea e FJP (2010).

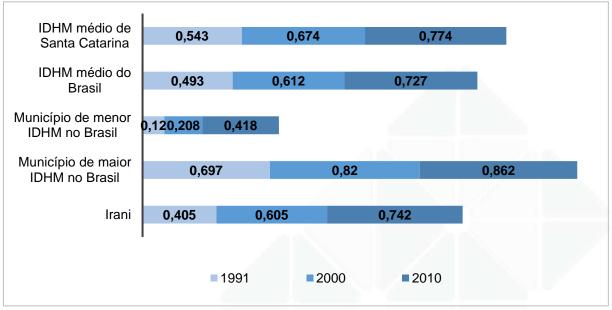
Observa-se que na mortalidade infantil e mortalidade até 5 anos de idade houve uma redução. Com a taxa observada em 2010, o Brasil cumpre uma das metas dos Objetivos de Desenvolvimento do Milênio das Nações Unidas, segundo a qual a mortalidade infantil no país deve estar abaixo de 17,9 óbitos por mil em 2015. Com relação à esperança de vida ao nascer, é observado um aumento no decorrer dos anos, sendo superior à média nacional. No Brasil, a esperança de vida ao nascer era de 73,9 anos, em 2010, de 68,6 anos, em 2000, e de 64,7 anos em 1991.

6.10 ÍNDICE DE DESENVOLVIMENTO HUMANO MUNICIPAL (IDHM)

O Índice de Desenvolvimento Humano Municipal - IDHM é uma medida composta de indicadores de três dimensões do desenvolvimento humano: longevidade, educação e renda (PNUD, 2016), que varia entre 0 e 1, sendo o mais próximo de 1, o maior desenvolvimento humano.

O IDHM do município é 0,789, em 2010, o que situa esse município na faixa de Desenvolvimento Humano Alto (IDHM entre 0,700 e 0,799). A dimensão que mais

contribui para o IDHM do município é Longevidade, com índice de 0,877, seguida de Renda, com índice de 0,781, e de Educação, com índice de 0,718. Na Tabela 24 é possível observar de forma detalhada os diferentes IDHM's.


Tabela 24: Índice de Desenvolvimento Humano Municipal e seus componentes em Irani.

IDHM e COMPONENTES	1991	2000	2010
IDHM Educação	0,171	0,401	0,675
% de 18 anos ou mais com ensino fundamental completo	11,67	22,26	47,58
% de 5 a 6 anos frequentando a escola	18,98	77,91	94,96
% de 11 a 13 anos frequentando os anos finais do ensino fundamental	43,96	71,09	93,11
% de 15 a 17 anos com ensino fundamental completo	10,63	39,89	70,25
% de 18 a 20 anos com ensino médio completo	8,81	25,96	63,06
IDHM Longevidade	0,744	0,802	0,847
Esperança de vida ao nascer (em anos)	69,63	73,12	75,84
IDHM Renda	0,522	0,689	0,715
Renda per capita (em R\$)	205,98	582,52	686,25
IDHM Municipal	0,405	0,605	0,742

Fonte: PNUD, Ipea, FJP (2013).

O IDHM do município passou de 0,405, em 1991, para 0,742, em 2010, enquanto o IDHM do Estado de Santa Catarina passou de 0,543 para 0,774. Isso implica em uma taxa de crescimento de 83,21% para o município e 42% para o Estado. No município, a dimensão cujo índice mais cresceu em termos absolutos foi Educação (com crescimento de 0,504), seguida por Longevidade e por Renda. No Estado, por sua vez, a dimensão cujo índice mais cresceu em termos absolutos foi Educação (com crescimento de 0,358), seguida por Longevidade e por Renda. A evolução do índice pode ser verificada na Figura 21 apresentada a seguir.

Figura 21: Evolução IDH-M no município.

Fonte: PNUD, Ipea, FJP (2013).

6.11 HABITAÇÃO

A habitação ou espaço doméstico é o nome dado ao lugar onde o ser humano vive, se destaca como uma necessidade básica do ser humano, sendo determinante para a qualidade de vida da população. Sendo o mesmo, normalmente, constituído essencialmente por uma estrutura artificial conhecida por paredes, geralmente com fundações e uma cobertura que pode ser, ou não, um telhado. O conhecimento sobre os domicílios, a taxa de ocupação e o acesso aos serviços de infraestrutura básica fornecem subsídios necessários para traçar a caracterização da área e as condições oferecidas aos seus moradores.

De acordo com estatísticas do IBGE de 2010, o município contava, naquele ano, com uma taxa de ocupação 3,29 hab/dom, na área urbana essa taxa era de 3,27 hab/dom e na área rural 3,33 hab/dom.

Abaixo são apresentadas as taxas de ocupação, referentes ao ano de 2010, por setor censitário (Tabela 25).

Tabela 25: Taxa de ocupação por setor censitário.

Setor	Situação do domicílio	Habitantes	Domicílios	Taxa de Ocupação hab/dom
1	Urbano	1191	334	3,57
2	Urbano	564	190	2,97
3	Urbano	1128	348	3,24

Setor	Situação do domicílio	Habitantes	Domicílios	Taxa de Ocupação hab/dom
4	Urbano	731	234	3,12
5	Urbano	848	251	3,38
6	Urbano	733	221	3,32
7	Urbano	728	215	3,39
8	Rural	396	118	3,36
9	Rural	381	110	3,46
10	Rural	440	140	3,14
11	Rural	386	111	3,48
12	Rural	324	93	3,48
13	Rural	305	96	3,18
14	Rural	305	88	3,47
15	Urbano	597	200	2,99
16	Rural	292	90	3,24
17	Rural	182	59	3,08
Total		9.531	2.898	3,29

Fonte: IBGE, 2010.

6.12 CONSIDERAÇÕES FINAIS

Com relação às projeções populacionais de uma cidade, é importante destacar que os fatores que comandam esse crescimento apresentam características de instabilidade que podem ser questionadas para o horizonte a longo prazo. Qualquer que seja o modelo matemático utilizado, este deve ser verificado periodicamente e ajustado às informações mais recentes pelo setor de planejamento. O equacionamento matemático e os parâmetros adotados representam apenas uma hipótese de cálculo com base em dados conhecidos, mas sujeitos à novas situações, imprevisíveis inicialmente.

Conforme descrito no PMSB 2011, a população urbana tem apresentado tendência de crescimento, enquanto a população rural tem diminuído nas últimas décadas. A densidade populacional é maior na área urbana, entretanto há uma menor média de residentes por domicílio no perímetro urbano, foi verificado também que a renda per capita nas áreas rurais é maior que na área urbana e que a maior parte da população não tem o ensino médio completo.

Estas características devem ser levadas em conta no momento de planejamento, as ações de educação ambiental e planejamento dos investimentos devem levar em conta as características de ocupação do município e suas

peculiaridades na distribuição de renda, acesso aos serviços de saúde e educação, bem como o grau de instrução da população de estudo.

7 SISTEMA DE ABASTECIMENTO DE ÁGUA

7.1 APRESENTAÇÃO

Neste capítulo é apresentada a revisão do Diagnóstico e do Prognóstico do Sistema de Abastecimento de Água Potável, contendo: a descrição e avaliação do sistema operado pela Companhia Catarinense de Águas e Saneamento (CASAN) e a verificação da execução das proposições e metas do PMSB 2011. Após a avaliação do sistema, são projetadas as demandas deste serviço durante o período de planejamento, sendo ao final apresentadas recomendações para a solução dos atuais problemas vivenciados no município, bem como a adequação às boas práticas de operação.

7.2 DIAGNÓSTICO DO SISTEMA DE ABASTECIMENTO

A Companhia Catarinense de Águas e Saneamento (CASAN), empresa pública de economia mista e de capital aberto, é atualmente a responsável pela operação do sistema de abastecimento de água (SAA) da sede urbana do município de Irani. A prestação dos serviços de abastecimento de água pela CASAN se dá através de Convênio de Cooperação com o Governo do Estado de Santa Catarina, que visou a Gestão Associada com a Companhia Catarinense de Águas e Saneamento - CASAN, autorizado pela Lei nº 1.427 de 20 de maio de 2008, pelo prazo de 15 (quinze) anos.

Este diagnóstico tem por função atualizar os dados da caracterização feita no PMSB do ano de 2011. Para tanto foram utilizados dados enviados pela prestadora dos serviços (Anexo 02), bem como relatórios da agência reguladora que presta serviço ao município, a ARIS, (Anexo 03) e outras fontes oficiais como: o Sistema Nacional de Informação sobre Saneamento (SNIS), além de visitas *in loco* ao sistema e suas unidades.

7.2.1 Mananciais e Disponibilidade Hídrica

7.2.1.1 Mananciais subterrâneos

Os mananciais subterrâneos figuram como uma interessante alternativa para o abastecimento público de água. Segundo Conicelli e Hirata (2016), estes são

considerados uma fonte segura de água em períodos de seca, quando as águas superficiais normalmente se tornam escassas. Além disso, apresentam menor vulnerabilidade à contaminação, possuem água de excelente qualidade natural e que, geralmente, dispensa qualquer tipo de tratamento, sendo necessária apenas a etapa de desinfecção.

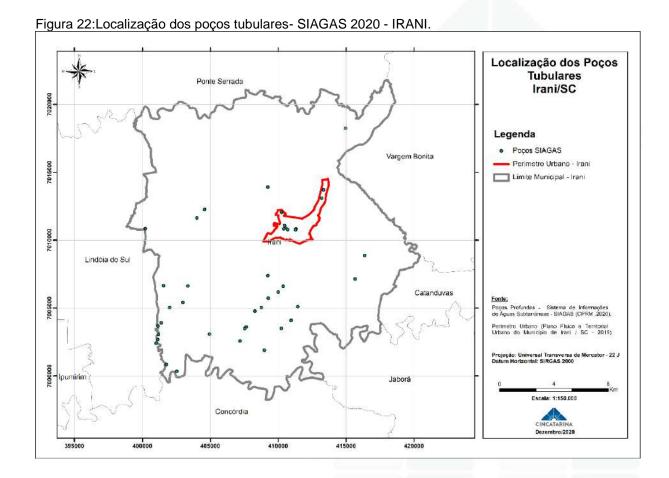
O Sistema Urbano de Abastecimento do município de Irani é totalmente suprido por captações subterrâneas. Para atendimento da demanda de água são explorados 4 poços tubulares profundos, cuja localização é apresentada através da Tabela 26.

Tabela 26: Localização poços de abastecimento urbano - CASAN.

Captação	Coordenadas UTM – SIRGAS 2000		
Poço 01	411263 m E; 7010769 m S		
Poço 02	410642 m E; 7010737 m S		
Poço 03	410509 m E; 7010831 m S		
Poço 04	411893 m E; 7011121 m S		

A outorga de uso é instrumento de gestão previsto nas Políticas Nacionais e Estaduais de Recurso Hídricos. Conforme o Decreto Estadual nº 4.778/2006, "O uso de recursos hídricos, do domínio do Estado de Santa Catarina, fica sujeito ao regime de outorga de direito, de acordo com o art. 4º da Lei Estadual nº 9.748 de 30 de novembro de 1994. Conforme Portaria nº 177/2016 da Secretária de Estado e Desenvolvimento Econômico Sustentável, os 4 poços possuem outorga de direito de uso até o ano de 2026. As vazões outorgadas e características de exploração são apresentadas abaixo:

Tabela 27: Vazões outorgadas dos poços de abastecimento público de Irani.


Captação	Vazão máxima (m³/h)	Volume máximo (m³/dia)	Tempo de operação (h/dia)
Poço 01	16,00	200,00	12,5
Poço 02	21,35	362,95	17
Poço 03	22,25	278,125	12,5
Poço 04	16,85	269,60	16
Total	76,45 ⁵	1.110,675	-

Conforme informações disponíveis no sistema SIAGAS (CPRM), em dezembro de 2020 havia 42 poços subterrâneos cadastrados no município, sendo que destes

⁵ Considerando operação simultânea dos poços.

apenas 22 estavam em operação e a maioria deles eram utilizados para abastecimento doméstico e dessedentação de animais. A localização destes poços é apresentada através da Figura 22, informações mais detalhadas são apresentadas no Anexo 04.

Em dezembro de 2020 havia 9 poços cadastrados no SIAGAS no perímetro urbano (Figura 23). Três destes se referem aos Poços P01, P02 e P03 utilizados pela CASAN para abastecimento urbano, não foi identificado o cadastro do poço P04, que está em operação desde 2011. Não há informações quanto a conflitos de uso de água no município.

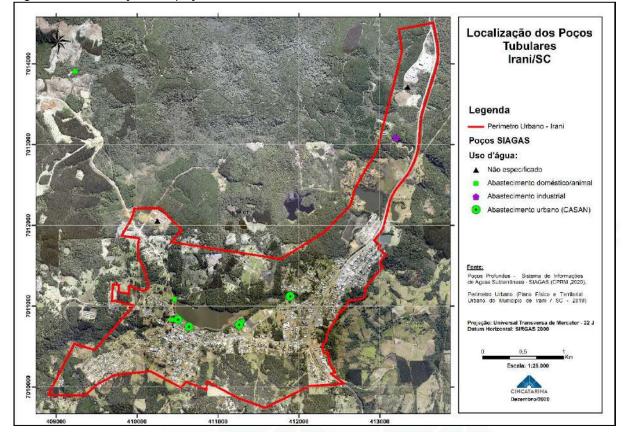


Figura 23: Localização dos poços tubulares e seus usos na área urbana de Irani/SC.

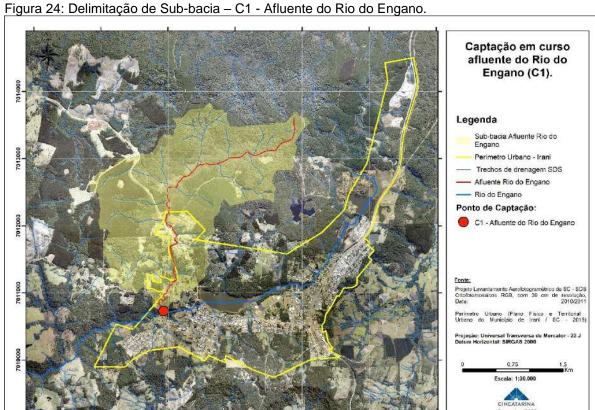
7.2.1.2 Mananciais superficiais

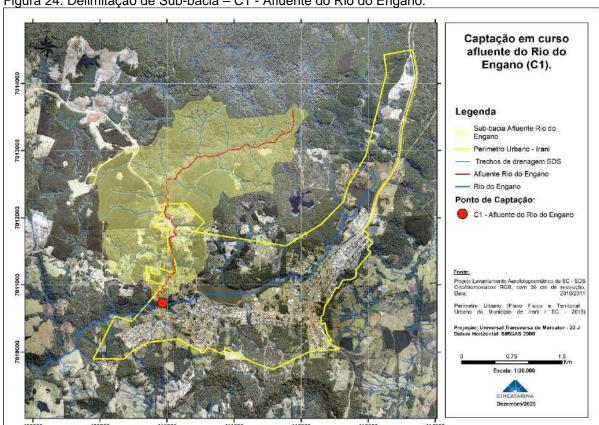
Os cursos d'água do município de Irani apresentam enquadramento classe II, conforme Art. 42 da Resolução do CONAMA nº 357/2005 (Conselho Nacional do Meio Ambiente) e Resolução 01/2008 do CERH (Conselho Estadual de Recursos Hídricos), exigindo, inicialmente, tratamento convencional para o consumo humano.

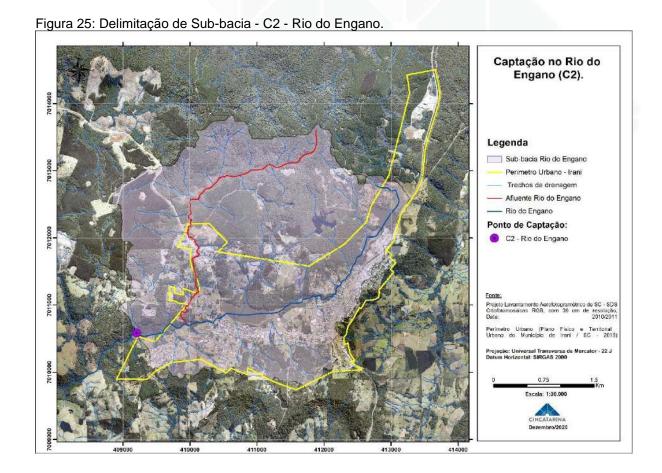
Os principais mananciais próximos a sede urbana e que podem figurar como uma alternativa para o aumento da capacidade de produção do sistema de abastecimento urbano de Irani são o Rio do Engano e seus afluentes, o Lajeado Cordeiro, o Lajeado Guarani, o Lajeado do Meio e o Rio Moinho Velho.

A escolha de um novo manancial, no entanto, deve avaliar não só a proximidade, mas as características quantitativas e qualitativas dos cursos d'água de interesse, o relevo e as diferenças de cota entre a captação e os pontos a serem abastecidos.

Além disso, na avaliação de disponibilidade hídrica, deve-se considerar os critérios técnicos para a outorga de direito de uso dos recursos hídricos de natureza superficial em rios de domínio do Estado de Santa Catarina definidos pela Portaria


SDS nº 36, de 29 de julho de 2008 (alterada pela portaria nº 51 de 2 de outubro de 2008), destacando-se:


Art. 2º - Para a análise de disponibilidade hídrica para captações ou derivação de cursos d'água de domínio do Estado de Santa Catarina, será adotada, como vazão de referência, a Q98 (vazão de permanência por 98% do tempo): § 1º - A vazão outorgável será equivalente a 50% da vazão de referência. (conforme alteração dada pela Portaria SDS 051/2008, de 02.10.2008). § 2° - Enquanto o limite máximo de derivações consuntivas em todas as seções de controle de uma bacia hidrográfica for igual ou inferior a 50% da vazão de referência Q98, as outorgas poderão ser emitidas pela SDS, baseadas na inexistência de conflito quantitativo para uso consuntivo da água. (conforme alteração dada pela Portaria SDS 051/2008, de 02.10.2008). § 3º - O limite máximo individual para usos consuntivos a ser outorgado na porção da bacia hidrográfica limitada por cada seção fluvial considerada é fixado em 20% da vazão outorgável, podendo ser excedido até o limite de 80% da vazão outorgável quando a finalidade do uso for para consumo humano, desde que seu uso seja considerado racional. (§ incluído pela Portaria SDS 051/2008, de 02.10.2008).

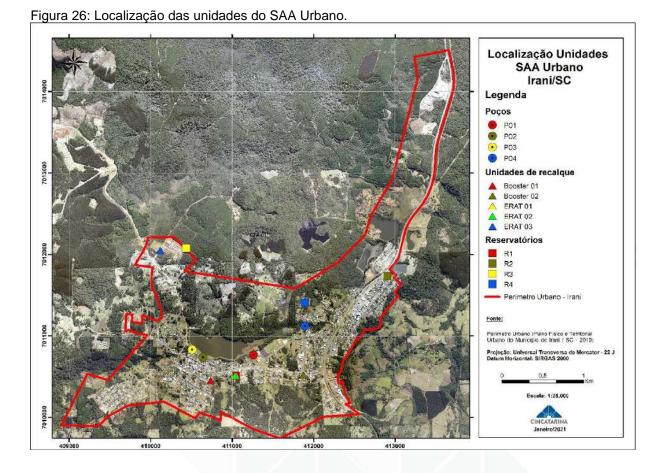

Assim, considerando a avaliação de uma captação de água para o abastecimento público de Irani, a vazão máxima possível de ser retirada de um manancial superficial pela prestadora dos serviços seria de 80% da vazão outorgável, que por sua vez é 50% da vazão de referência Q98.

Na sequência é apresentada a avaliação de dois pontos com potencial para implantação de uma captação superficial, sendo que a adoção desses pontos se deu considerando apenas a proximidade com a Sede Urbana e uma menor diferença de cota para integração ao sistema existente. O primeiro ponto avaliado (C1) se encontra em um afluente do Rio do Engano (Figura 24), o outro ponto de captação (C2) se encontra no próprio Rio do Engano em ponto a jusante do primeiro (Figura 25).

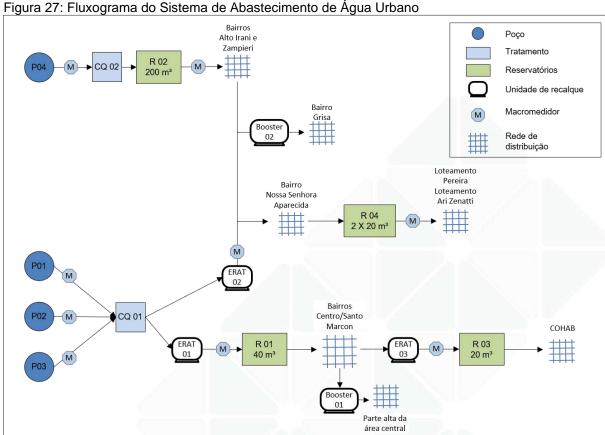
Em função da inexistência de dados fluviométricos para os locais em estudo, para o cálculo das vazões médias de longo termo (Q_{MLT}) e vazões específicas se utilizou o método de regionalização de vazões definido por SANTA CATARINA (2006), tendo como parâmetros de entrada a área drenada e a precipitação pluviométrica média anual nas sub-bacias de interesse.

A Tabela 28 apresenta o resultado da regionalização de vazões (Q_{MLT} e Q₉₈) e as vazões de outorga conforme portaria SDS nº36/2008.

Tabela 28: Vazões dos Mananciais – Estudo de regionalização – SAA Urbano.


Vazões	Afluente Rio do Engano (C1)	Rio do Engano (C2)
Q _{MLT} (m³/h)	709,3	1.647,5
Q ₉₈ (m³/h)	78,0	181,2
Q _{out} (m³/h)	39,0	90,6
Q _{MAX} (m³/h) (0,8 Q _{OUT}) – SAA CASAN	31,2	72,5

Com base nos resultados dos cálculos de regionalização de vazões apresentados, verifica-se que uma captação no C1 poderia não ser tão interessante, pois não proporciona um aumento de vazão tão significativo. Já uma captação no C2 se mostra mais interessante, proporcionando uma vazão horária similar ao somatório da vazão dos 4 poços em operação atualmente.


Destaca-se, no entanto, que por se tratar de pequenas áreas de drenagem os resultados apresentados podem apresentar distorções significativas. Deste modo, é mais prudente a realização de medições contínuas de vazão nos mananciais de interesse, de modo a ser possível uma avaliação mais precisa. Além disso, destaca-se novamente que a escolha de um novo manancial deverá ainda ser embasada por estudo qualitativo e financeiro.

7.2.2 Sistema de Abastecimento de Água Urbano

O Sistema de Abastecimento Urbano de Irani é suprido por 4 poços tubulares profundos. A água captada passa por processo de tratamento em duas unidades de tratamento simplificado (UTS), denominadas pela CASAN como ETA 01 e ETA 02. Das UTS a água segue para distribuição, o sistema de distribuição conta com 4 centros de reservação, com capacidade de 300m³, 5 unidades de recalque de água tratada e cerca de 53 km de redes. As localizações das principais unidades do sistema são representadas na Figura 26 – Anexo 05.

A partir da documentação entregue e das informações coletadas durante visita as unidades foi elaborado um fluxograma do abastecimento de água urbano do município, que é mostrado na Figura 27.

7.2.2.1

Captação

Infraestrutura

O poço 01(P01) está instalado em terreno da Prefeitura Municipal, próximo ao Ginásio Modesto Tortelli (coordenadas UTM: 411263 m E; 7010769 m S), no bairro Centro. O acionamento do poço se dá por chave de partida direta, sendo sua operação controlada por timer. No cavalete do poço há um manômetro para controle da pressão. Segundo informação da prestadora de serviço, o poço opera por aproximadamente 18 horas por dia, de forma intermitente, com uma vazão média de 17 m³/h. A água captada pelo P01 é direcionada para a uma unidade de tratamento simplificado denominada pela CASAN como ETA 01, localizada no bairro centro.

Fonte: Acervo próprio.

Na saída do P01 está instalado um macromedidor do tipo Woltmann para controle do volume captado (Figura 29).

Figura 29: Medidor de Vazão Tipo Woltmann - Qn 50m³/h – instalado na saída do Poço 01.

Figura 30: Estrutura de proteção do painel de comando - Poço 01.

Fonte: Acervo próprio.

O poço 02 (P02) se encontra instalado em terreno na Rua José Fasolo (coordenadas UTM: 410642 m E; 7010737 m S), no bairro Centro. A área do poço é cercada e possui portão com cadeado, evitando que pessoas não autorizadas acessem o local (Figura 31). A partida do poço se dá de forma indireta através de soft starter. O poço opera conforme o nível do tanque de contato da ETA01, com acionamento remoto por sistema de telecontrole via rádio. Conforme informações do funcionário que acompanhou a visita, o poço opera por aproximadamente 18 horas por dia de forma intermitente. A água captada é encaminhada para a ETA 01. No cavalete do P02 está instalado um manômetro para controle da pressão e macromedidor do tipo Woltmann para controle do volume captado com vazão nominal (Qn) de 15 m³/h. Como o poço possui vazão média de 23 m³/h, o macromedidor instalado está operando acima da faixa recomendada, o que pode comprometer tanto a medição de volume como a vida útil do equipamento.

Figura 31: Área do Poço 02.


Fonte: Acervo próprio.

Figura 32: Cavalete - Poço 02.

Figura 33: Painel de comando - Poço 02.

Fonte: Acervo próprio.

O poço 03 (P03) está instalado em terreno na Rua Osório de Oliveira Vargas (coordenadas UTM: 410509 m E; 7010831 m S), no bairro Centro. O acionamento do poço se dá por partida indireta, através de soft starter, sendo sua operação condicionada ao nível do taque de contato da ETA 01, que aciona o P03 por sistema de telecontrole via rádio. Segundo informação da prestadora de serviço, o poço opera por aproximadamente 18 horas por dia, de forma intermitente, e com vazão média de 14 m³/h. A água captada pelo P03 também é direcionada a ETA 01. No dia da visita, era possível acessar o P03 pela lateral do terreno, mesmo com o portão fechado, já que parte do alambrado que circunda a área havia sido danificado por uma enxurrada recente.

Figura 34: Área do Poço 03.

Fonte: Acervo próprio.

Na saída do P03 está instalado um macromedidor do tipo Woltmann para controle do volume captado e um manômetro para controle da pressão (Figura 35 e Figura 36).

Figura 35: Medidor de Vazão Tipo Woltmann - Qn 40m³/h – instalado na saída do Poço 03.

Figura 36: Tubulação de saída com manômetro e macromedidor - P03.

Fonte: Acervo próprio.

O poço 04 (P04), que começou a operar em 2011, se encontra instalado em terreno no fim da Rua João Padilha (coordenadas UTM: 411893 m E; 7011121 m S), no bairro Nossa Senhora Aparecida. A área do poço é cercada e possui portão com cadeado. (Figura 37). A partida do poço se dá de forma indireta através de soft starter. O poço opera conforme o nível do reservatório R2, com acionamento remoto por sistema de telecontrole via rádio. Conforme informações do funcionário que acompanhou a visita, o poço apresenta vazo média de 16,5 m³/h e opera por aproximadamente 18 horas por dia. A água captada é encaminhada para unidade de tratamento simplificado denominada pela CASAN como ETA 02, localizada no mesmo terreno onde se encontra o reservatório R2.

Figura 37: Área do Poço 04.

Figura 38: Cavalete - Poço 04.

Fonte: Acervo próprio.

No cavalete do poço há um manômetro para controle da pressão, já o controle do volume captado no P04 se dá através de macromedidor do tipo Woltmann, com vazão nominal (Qn) de 40 m³/h, instalado em tubulação após o cavalete (Figura 39).

Figura 39: Medidor de Vazão Tipo Woltmann - Qn 40m³/h - instalado na saída do Poço 04.

Fonte: Acervo próprio.

A ETA 01 foi inaugurada no ano de 1979, e encontra-se na Rua Caixa D'água (coordenadas UTM: 411046 m E; 7010512 m S), no bairro Centro. Nesta a água captada pelos poços P01, P02 e P03 passa por tratamento simplificado, sendo

submetida a processo de desinfecção pela dosagem de solução de hipoclorito de cálcio e por processo de fluoretação pela adição de ácido fluossilícico.

Figura 40: Unidade de tratamento simplificado - ETA 01

Fonte: Acervo próprio.

As tinas que armazenam as soluções estão alocadas em cima da sala onde ficam as ERATs 01 e 02, e abaixo do R1 (Figura 41). O acesso a estas se dá por escada metálica simples com inclinação de 90º (tipo marinheiro), através da qual também se dá o acesso ao reservatório R1 (Figura 42). Destaca-se que a escada não possui gaiola de proteção conforme estabelece a NR 12, expondo os operadores ao risco de queda. Além disso, não há dispositivo para elevação dos produtos químicos até as tinas, assim os operadores precisam subir a escada carregando os produtos químicos que serão dosados.

Figura 41: ETA 01 – Tinas de preparo das soluções de cloro e flúor.

Fonte: Acervo próprio.

Figura 42: ETA 01 – Acesso as tinas por escada tipo marinheiro sem gaiola de proteção.

A dosagem das soluções acontece em calha vertedora instalada na ETA 01, através de boias de nível mecânicas (Figura 43 e Figura 44), sendo então direcionada para o tanque de contato.

Figura 43: Calha vertedora na ETA 01 – Local de dosagem dos produtos químicos

Fonte: Acervo próprio.

Os produtos químicos ficam armazenados dentro da Casa Química 1, não existindo estrutura de contenção para prevenir o risco de contaminação do solo em casa de vazamento dos produtos.

A água tratada é então direcionada para as ERAT 01 e ERAT 02, no mesmo terreno onde está a ETA 01. Na mesma estrutura onde ficam as ERATS, há uma sala onde são realizadas as análises físico-químicas: turbidez, cloro residual livre e fluoreto (Figura 45).

Fonte: Acervo próprio.

A ETA 02 entrou em operação em 2011, esta encontra-se na Rua Monge João Maria (coordenadas UTM: 412907 m E; 7011733 m S), no bairro Alto Irani. Nesta unidade de tratamento simplificado, a água captada no poço P04 passa por processo de desinfecção, pela dosagem de solução de hipoclorito de cálcio, e por processo de

fluoretação, pela adição de ácido fluossilícico. A dosagem de produtos se dá através de bombas dosadoras diretamente na tubulação de entrada do reservatório R2.

Figura 46: Unidade de tratamento simplificado - ETA 02.

Fonte: Acervo próprio.

Figura 47: Bomba dosadora para dosagens dos produtos químicos – ETA 02.

Fonte: Acervo próprio.

As paredes internas e externas da ETA 02 não foram pintadas, além disso há espaço entre o telhado e as paredes, que permite a entrada de pássaros na instalação. O local não possui aberturas para ventilação adequada do espaço. As tinas com as soluções químicas estão sobre o piso, não havendo sistema para contenção dos produtos químicos em caso de vazamentos.

Reservação

O sistema de distribuição possui atualmente 4 centros de reservação, com capacidade total de 300 m³. A relação das unidades de reservação presentes no sistema de abastecimento da sede municipal e suas características são apresentadas na Tabela 29.

Tabela 29: Relação das Unidades de Reservação do Sistema Urbano de Abastecimento

Denominação	Localização	Volume	Tipo	Situação
R1	ETA 01	40 M³	Concreto elevado	Em operação
R2a	ETA 02	40 M³	Concreto elevado	Desativado
R2b	ETA 02	200 M³	Aço inoxidável apoiado	Em operação
R3	Bairro COHAB	20 M³	Concreto elevado	Em operação
R4	Loteamento Pereira	2 x 20 M³	Fibra de vidro elevado	Em operação

O reservatório R1 está instalado no mesmo terreno da ETA 01, ele recebe água da ERAT 01 e distribui água por gravidade para toda a área central do município. Há um macromedidor na tubulação de entrada do R1, conforme Figura 49.

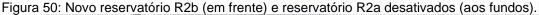
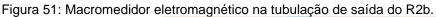
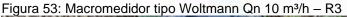

Figura 48: Centros de reservação R1 – bairro Centro.

Figura 49: Macromedidor eletromagnético na tubulação entre a ERAT1 e o R1.


Fonte: Acervo próprio.

O centro de reservação R2 se encontra no terreno no mesmo terreno da ETA 02, o reservatório R2a foi desativado no início de 2020, quando o reservatório R2b, em aço inoxidável, foi instalado. Na saída do R2b há um macromedidor tipo Woltmann, cuja informações podem ser visualizadas através do sistema supervisório instalado na agência. Este reservatório abastece os bairros Alto Irani e o Loteamento Zampieri.

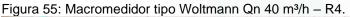
Fonte: Acervo próprio.


O reservatório R3, localizado no bairro Santo Antônio, está em operação desde 1994. Este recebe água da ERAT 03 e a distribui por gravidade no bairro COHAB. Na tubulação de entrada do reservatório há um macromedidor tipo Woltmann para controle dos volumes distribuídos (Figura 53).

O R3, que tem estrutura em concreto, necessita de nova pintura, além disso, o acesso as tampas de inspeção se dão por escada metálica simples com inclinação de 90°, sem gaiola de proteção conforme estabelece a NR 12, expondo os operadores ao risco de queda.

Figura 52: Reservatório R3 - bairro Santo Antônio/COHAB.

Fonte: Acervo próprio.


Fonte: Acervo próprio.

O reservatório R4, localizado no Loteamento Pereira, está em operação desde 2017. Este recebe água da ERAT 02 e abastece por gravidade os loteamentos Pereira e Ari Zenatti. Este centro de reservação é composto por dois reservatórios em PRFV de 20 m³ cada. Há um macromedidor tipo Woltmann instalado na tubulação de saída do reservatório para controle do volume distribuído.

Figura 54: Reservatório R4 – Loteamento Pereira – PRFV 2 x 20 m³.

Fonte: Acervo próprio.

Fonte: Acervo próprio.

Fica o registro de que os centros de reservação R1 e R3 precisam receber manutenção corretiva, com o conserto de rachaduras e pintura.

Recalque de água tratada

Para garantir a distribuição e a manutenção da pressão mínima na rede, o sistema conta com 5 unidades de recalque de água tratada. As unidades que integram o sistema de abastecimento da sede municipal são listadas na Tabela 30 e apresentadas através das Figura 56 a Figura 60.

Tabela 30: Relação das Unidades de Recalque do Sistema Urbano de Abastecimento

Denominação atual	Localização	Potência	Abastece
ERAT 01	ETA 01	6 cv / 6 cv R1	
ERAT 02	ETA 01	Parte alta do B. Centro, 12,5 cv / 10 cv Nossa Senhora Aparecida Grisa, Booster 02	
ERAT 03	Rua Bom Jesus - bairro COHAB	2 cv R3	
BOOSTER 01	Rua Rodrigues – bairro Centro	7,5 cv	Parte Alta do B. Centro
BOOSTER 02	Rua Izabete Grisa – bairro Centro	2 cv	Bairro Grisa

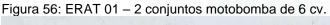


Figura 57: ERAT 02 – 1 conjunto motobomba de 12,5 cv e 1 conjunto motobomba de 10 cv.

Fonte: Acervo próprio.

A ERAT 03, instalada na Rua Bom Jesus - bairro COHAB, é utilizada para recalcar a água da rede até o reservatório R3. A operação da ERAT se dá conforme o nível do R3, controlado por boia elétrica, funcionando por cerca de 12 horas/dia, por partida direta. Esta unidade de recalque possui dois conjuntos motobomba de 2 cv, no entanto, no dia da visita apenas um dos conjuntos estava instalado. A estrutura civil necessita de conserto de rachaduras e nova pintura.

Fonte: Acervo próprio.

O Booster 01, instalado na Rua Rosalino Rodrigues – bairro Centro, no início de 2020, opera conforme programador de horário (*timer*), por cerca de 18 h/dia. Esta unidade de recalque possui um conjunto motobomba de 7,5 cv, com partida indireta

através de inversor de frequência, sendo utilizada para atender a parte alta do bairro Centro. A operadora informou manter um conjunto motobomba reserva no almoxarifado para rápida troca em caso de falha no conjunto em operação.

Figura 59: Booster 01 - 7,5 cv

Fonte: Acervo próprio.

O Booster 02, também instalado no ano de 2020, opera atualmente cerca de 18 h/ dia, conforme programador de horário (*timer*). Esta unidade de recalque possui dois conjuntos motobomba de 2 cv, com partida indireta através de inversor de frequência. O painel de comando já possui componentes para telemetria, no entanto as informações da unidade ainda não podem ser visualizadas no sistema supervisório da operadora.

Figura 60: Booster 02 - 2 cv / 2cv.

Fonte: Acervo próprio.

Rede de distribuição

O cadastro de rede fornecido pela prestadora dos serviços apresenta apenas o traçado destas, sem informações quanto ao diâmetro e material das redes implantadas, impossibilitando uma análise mais completa do sistema de distribuição e de possíveis problemas de subdimensionamento.

Em relação a extensão, foi disponibilizada apenas a extensão total da rede, 53.259 m. No entanto, no cadastro não constava a sua última data de atualização.

Como, conforme dados do SNIS (2020), em 2019 a extensão total da rede era 52.870 m, acredita-se que a última atualização tenha acontecido em 2020, uma vez que neste já estão representados os dois boosters que começaram a operar neste mesmo ano e o novo reservatório de 200 m³.

7.2.2.2 Economia e micromedição

O SAA possuía 2.859 economias ativas no mês de dezembro de 2019. Para estudo do padrão de consumo no município foram utilizados os histogramas de consumo dos anos de 2018 e 2019, para a avaliação dos efeitos da sazonalidade no município.

A compilação dos dados de consumo fornecidos pelo CASAN é apresentada na Tabela 31, que apresenta a porcentagem de economias por faixa de consumo em cada categoria.

Tabela 31: Porcentagem de Economias x Faixas de Consumo

Faixa de Consumo	Residenciais	Residenciais Social	Comerciais	Industriais	Públicas
Até 10 m³	68,50%	86,69%	68,63%	41,67%	56,86%
De 11 a 25 m ³	30,75%	12,60%	20.70%	30,70% 58,33%	43,14%
De 26 a 50 m ³	0,72%	0,71%	30,70%		
Maior que 50 m³	0,04%	0,00%	0,67 %	//	
Total	100%	100%	100%	100%	100%

Fazendo a relação do consumo por categoria de acordo com os dados apresentados no histograma de consumo e os dados operacionais fornecidos obtiveram-se os dados apresentados na Tabela 32.

Tabela 32: Consumo anual por categoria.

	Residenciais	Residenciais Social	Comerciais	Industriais	Públicas	Totais
Média de consumo por economia (m³)	8,67	5,72	8,71	14,51	17,76	8,81
Percentual de consumo total	87,81%	0,95%	7,24%	0,12%	3,88%	100%

A CASAN informou possuir índice de micromedição de 100%, no entanto, o quadro de hidrometria (Tabela 33) fornecido apresenta quantidade de hidrômetros (2.197 unidades) inferior ao número de ligações informadas no relatório BADOP (2.481 unidades).

Conforme quadro de hidrometria, que apresenta o número de hidrômetros por anos completos instalados, o parque de hidrômetros do sistema urbano de Irani possuía idade média de 5,76 anos em 2020, com 58% do parque de hidrômetros tendo sido instalado há mais de 5 anos.

Tabela 33: Idade dos hidrômetros instalados no SAA Irani – ano de referência: 2020.

Anos completos instalado	Hidrômetros	
0	318	
1	193	
3	165	
4	137	
5	111	
6	199	
7	161	
8	514	
9	145	
10	108	
14	146	
Total	2.197	

Fonte: CASAN.

Nielsen et al. (2003) aponta que a eficácia dos medidores velocimétricos é função do tempo de instalação e decresce com o tempo de uso. Na literatura geralmente se recomenda que os hidrômetros, especialmente os velocímetros sejam substituídos a cada 5 anos.

Verifica-se, desta forma, a necessidade de criação de uma rotina de manutenção e troca de medidores, priorizando as ações em grandes consumidores e executando as atividades de forma contínua e sistemática com o objetivo de manter o parque de hidrômetros dentro de uma faixa ideal de operação e assim reduzir as perdas de faturamento por submedição.

7.2.2.3 Índice de atendimento

Conforme os dados repassados pela CASAN, o sistema de abastecimento de água urbano atende 100% da população urbana, e uma parcela da população rural que vive no entorno do perímetro urbano. Em 2019, a prestadora informou abastecer um total de 8.473 pessoas, sendo 7.473 pessoas residentes na área urbana e 1.000 pessoas em área rural.

Questiona-se, entretanto, a distribuição da população em relação a sua situação. Conforme cadastro de redes fornecidos, não se verifica um número de domicílios/empreendimentos que justifique a população rural atendida informada.

Com base nas novas projeções populacionais adotadas nesta revisão (Produto 01) e a população total atendida informada pela CASAN, estima-se que, em 2019, 7.979 pessoas tenham sido atendidas na área urbana (100%) e cerca de 494 pessoas na área rural circundante (19% da população rural).

7.2.2.4 Qualidade

A Portaria de Consolidação nº 5 de 2017- Anexo XX do Ministério da Saúde - alterada pela Portaria GM/MS nº 888/2021, vigente a partir de maio de 2021, é atualmente o documento que dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade.

Conforme informações coletadas durante visita ao sistema de abastecimento, os parâmetros cloro residual, fluoreto e turbidez são analisados diariamente pelos funcionários da Agência de Irani. Os parâmetros cor, pH, coliformes totais e *Escherichia coli*, assim como os parâmetros de monitoramento trimestral e semestral, são analisados pelo Laboratório Regional da CASAN, locado em Chapecó/SC.

Com o intuito de avaliar o plano de amostragem realizado pela CASAN em 2019, foi elaborada a Tabela 34, que apresenta o plano de amostragem mínimo exigido para os sistemas de abastecimento de água de Irani para o ano de 2019, considerando o que determinava a então vigente Portaria de Consolidação nº 5 de 2017- Anexo XX do Ministério da Saúde.

Tabela 34: Número Mínimo de Amostras para o Controle da Qualidade de Água do SAA Urbano - Mananciais Subterrâneos (Portaria MS de Consolidação nº5 de 2017).

Locais	Análises	Amostras		
		Número	Frequência	Total Mês
Manancial	Escherichia coli	1	Mensal	1
Subterrâneo	Demais Parâmetros	1	Semestral ¹	-
	Cor	1	Semanal	4
	Turbidez	1	2 vezes por semana	8
	рН	1	2 vezes por semana	8
Saída do	Cloro Residual Livre	1	2 vezes por semana	8
Tratamento (ETA 01 –	Fluoreto	1	2 vezes por semana	8
P01/P02/P03)	Gosto e Odor	1	Semestral	-
	Coliformes Totais	1	2 vezes por semana	8
	Escherichia coli	1	2 vezes por semana	8
	Demais Parâmetros	1	Semestral ¹	-
	Cor	1	Semanal	4
	Turbidez	1	2 vezes por semana	8
	рН	1	2 vezes por semana	8
Saída do	Cloro Residual Livre	1	2 vezes por semana	8
Tratamento (ETA 02 –	Fluoreto	1	2 vezes por semana	8
P04)	Gosto e Odor	1	Semestral	-
	Coliformes Totais	1	2 vezes por semana	8
	Escherichia coli	1	2 vezes por semana	8
	Demais Parâmetros	1	Semestral ¹	-
	Cor	5	Mensal	5
	Turbidez	17	Mensal	17
	Cloro Residual Livre	17	Mensal	17
Distribuição	Prod. Sec. da Cloração - THM	1	Anual	-
٠	Coliformes Totais	17	Mensal	17
	Escherichia coli	17	Mensal	17
	Heterotróficas	4	Mensal	4
	Demais Parâmetros	1	Semestral ²	-
	Ob	servações		
	ses devem atender ao dispost 117 do Ministério da Saúde e a			e Consolidação
As análi 2 Consolid	ses devem atender ao dispos dação nº 05/2017 do Ministé o da periodicidade de amostr	sto nos Ánexos 7, erio da Saúde e	8 e 9 do Anexo XX demais disposições	pertinentes. A

	após o inventário inicial, realizado semestralmente no período de 2 anos, respeitando a sazonalidade pluviométrica. O plano de amostragem para os parâmetros de agrotóxicos deverá considerar a avaliação dos seus usos na bacia hidrográfica do manancial de contribuição, bem como a sazonalidade das culturas
3	Dispensada análise na rede de distribuição quando o parâmetro não for detectado na saída do tratamento e, ou, no manancial, à exceção de substâncias que potencialmente possam ser introduzidas no sistema ao longo da distribuição.
OBS	Em toda amostra microbiológica deve ser efetuada na hora da coleta a medida de cloro residual e determinada a turbidez. A autoridade de saúde poderá alterar a frequência mínima de amostragem conforme o disposto no art. 45 do Anexo XX da Portaria de Consolidação no 05/2017 do Ministério da Saúde.

Através dos relatórios de monitoramento da qualidade da água que foram disponibilizadas pela CASAN pode-se criar as Tabela 35, Tabela 36 e

Tabela 37 com as análises que apresentaram resultados fora do padrão e verificar assim como estava a situação do tratamento de água e a qualidade da água distribuída no ano de 2019.

Em relação a frequência de monitoramento na saída das ETA 01 e ETA 02, analisando os relatórios fornecidos, verifica-se que está é adequada, sendo que em geral a prestadora realiza o monitoramento com frequência superior ao que determina a legislação.

Em relação a qualidade da água na saída do tratamento, foram verificadas alterações constantes no parâmetro fluoreto. Considerando a faixa de concentração de fluoreto definida pela Portaria SES nº 421 de 13 de maio de 2016, em todos os meses de 2019 foram observadas desconformidades nas concentrações desse parâmetro na saída da ETA 01 e ETA 02. Destaca-se os resultados nos meses de fevereiro e março, quando no mês de 42% das amostras analisada na ETA 01 e 46% das amostras analisada na ETA 02, respectivamente, apresentaram valores fora do intervalo determinado pela Portaria. Algumas análises de fluoreto na saída da ETA 02 também indicaram concentrações superiores ao valor máximo permitido pela Portaria de Consolidação nº 5 de 2017- Anexo XX do Ministério da Saúde.

No monitoramento do sistema de distribuição, em relação ao número de amostras, verifica-se que nos meses junho, julho e agosto o número de amostra para o parâmetro cor foi inferior ao que determina a legislação. Com relação aos resultados, foram identificadas alterações pontuais nos parâmetros turbidez, cloro residual livre, e coliformes totais.

Segundo informações da prestadora, não há uma frequência pré-determinada para limpeza dos reservatórios, sendo que semestralmente avalia-se a qualidade da

água na saída dos reservatórios para avaliar a necessidade de limpeza destas unidades, sendo a limpeza realizada geralmente uma vez ao ano.

Tabela 35: Padrões de Qualidade no Sistema de Abastecimento Urbano – Saída do tratamento ETA 01 – janeiro a dezembro/2019.

Local	Parâmetro		Jan/19	Fev/19	Mar/19	Abr/19	Mai/19	Jun/19	Jul/19	Ago/19	Set/19	Out/19	Nov/19	Dez/19
	Turbidez	Total	39	36	39	38	39	38	39	39	38	39	38	39
		Total	4	4	4	4	4	4	4	4	4	4	4	4
	Cor Aparente	Fora do Padrão	0	0	0	0	0	0	0	0	0	0	0	0
		% Fora do Padrão	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		Total	8	8	8	8	8	8	8	8	8	8	8	8
	рН	Fora do Padrão	0	0	0	0	0	0	0	0	0	0	0	0
	9	% Fora do Padrão	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		Total	39	36	39	38	39	38	39	39	38	39	38	39
	Fluoreto (Portaria nº	Fora do Padrão	0	0	0	0	0	0	0	0	0	0	0	0
	5/2017 MS)	% Fora do Padrão	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	(Portaria SES n° 421 de 13 de maio de 2016)	Total	39	36	39	38	39	38	39	39	38	39	38	39
Saída do Tratamento		Fora do Padrão	4	15	4	4	3	5	3	3	3	6	7	2
		% Fora do Padrão	10%	42%	10%	11%	8%	13%	8%	8%	8%	15%	18%	5%
		Total	39	36	39	38	39	38	39	39	38	39	38	39
	Cloro Residual	Fora do Padrão	0	0	0	0	0	0	0	0	0	0	0	0
		% Fora do Padrão	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		Total	8	8	8	8	8	8	8	8	8	8	8	8
	Coliformes Totais	Fora do Padrão	0	0	0	0	0	0	0	0	0	0	1	0
	Totals	% Fora do Padrão	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	13%	0%
		Total	8	8	8	8	8	8	8	8	8	8	8	8
	Escherichia Coli	Fora do Padrão	0	0	0	0	0	0	0	0	0	0	0	0
		% Fora do Padrão	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Tabela 36: Padrões de Qualidade no Sistema de Abastecimento Urbano – Saída do tratamento ETA 02 – janeiro a dezembro/2019.

Local	Parâmetro		Jan/19	Fev/19	Mar/19	Abr/19	Mai/19	Jun/19	Jul/19	Ago/19	Set/19	Out/19	Nov/19	Dez/19
	Turbidez	Total	39	36	39	38	39	38	39	39	38	39	38	39
		Total	4	4	4	4	4	4	4	4	4	4	4	4
	Cor Aparente	Fora do Padrão	0	0	0	0	0	0	0	0	0	0	0	0
		% Fora do Padrão	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		Total	8	8	8	8	8	8	8	8	8	8	8	8
	pH P	Fora do Padrão	0	0	0	0	0	0	0	0	0	0	0	0
		% Fora do Padrão	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	Fluoreto Fo	Total	39	36	39	38	39	38	39	39	38	39	38	39
		Fora do Padrão	0	0	0	1	1	0	0	0	0	1	0	0
Saída do Tratamento	5/2017 MS)	% Fora do Padrão	0%	0%	0%	3%	3%	0%	0%	0%	0%	3%	0%	0%
Tratamento	Fluoreto (Portaria SES n° 421 de 13	Total	39	36	39	38	39	38	39	39	38	39	38	39
		Fora do Padrão	1	3	18	10	3	3	4	4	6	9	2	4
	de maio de 2016)	% Fora do Padrão	3%	8%	46%	26%	8%	8%	10%	10%	16%	23%	5%	10%
		Total	39	36	39	38	39	38	39	39	38	39	38	39
	Cloro	Fora do Padrão	0	0	0	0	0	0	0	0	0	0	0	0
	Residual	% Fora do Padrão	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		Total	8	8	8	8	8	8	8	8	8	8	8	8
	Coliformes	Fora do Padrão	0	0	0	0	0	0	0	0	0	0	0	0
	Totais	% Fora do Padrão	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Local	Parâmetro		Jan/19	Fev/19	Mar/19	Abr/19	Mai/19	Jun/19	Jul/19	Ago/19	Set/19	Out/19	Nov/19	Dez/19
		Total	8	8	8	8	8	8	8	8	8	8	8	8
	Escherichia	Fora do Padrão	0	0	0	0	0	0	0	0	0	0	0	0
	Coli	% Fora do Padrão	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Tabela 37: Padrões de Qualidade no Sistema de Abastecimento Urbano – Distribuição – janeiro a dezembro/2019.

Local	Parâmetro		Jan/19	Fev/19	Mar/19	Abr/19	Mai/19	Jun/19	Jul/19	Ago/19	Set/19	Out/19	Nov/19	Dez/19
		Total	18	23	27	23	22	20	20	21	21	25	21	21
	Turbidez P:	Fora do Padrão	0	1	0	1	0	0	0	0	0	0	0	0
		% Fora do Padrão	0%	4%	0%	4%	0%	0%	0%	0%	0%	0%	0%	0%
		Total	6	10	10	10	7	3	2	4	7	7	7	7
	Cor Aparente	Fora do Padrão	0	0	0	0	0	0	0	0	0	0	0	0
	Ool Aparente	% Fora do Padrão	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	Cloro Pa Residual %	Total	18	23	27	23	22	20	20	21	21	25	21	21
Distribuição		Fora do Padrão	0	0	0	0	1	0	0	0	0	0	0	0
		% Fora do Padrão	0%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%
		Total	18	23	23	23	22	20	20	21	21	21	21	21
	Coliformes	Fora do Padrão	0	1	0	1	1	0	0	0	0	0	0	0
	totais	% Fora do Padrão	0%	4%	0%	4%	5%	0%	0%	0%	0%	0%	0%	0%
	Escherichia	Total	18	23	23	23	22	20	20	21	21	21	21	21
	Escnericnia - Coli	Fora do Padrão	0	0	0	0	0	0	0	0	0	0	0	0

Local	Parâmetro		Jan/19	Fev/19	Mar/19	Abr/19	Mai/19	Jun/19	Jul/19	Ago/19	Set/19	Out/19	Nov/19	Dez/19
		% Fora do Padrão	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

7.2.2.5 Quadro de pessoal, manutenção e controle operacional

No documento de resposta enviado ao município, a CASAN não forneceu informações sobre o número de funcionários alocados para a prestação do serviço no município de Irani. Esta apontou que a prestação de serviço no município não se dá apenas com os funcionários locados na agência, havendo uma estrutura técnico administrativa na Matriz e nas Superintendências que presta suporte para atender a todas as demandas vinculadas a prestação do serviço no município.

Em consulta ao portal da transparência da CASAN, verifica-se que, em dezembro de 2020, o quadro local da agência contava com 3 funcionários com cargos de agentes administrativos operacionais. Estes funcionários são responsáveis pelo atendimento comercial na agência, pelos serviços de manutenção do sistema de distribuição, e pela operação e monitoramento dos poços e unidades de tratamento.

Já os serviços de leitura da micromedição são realizados mensalmente por empresa terceirizada. Não foram fornecidas informações sobre os veículos e máquinas utilizados para manutenção e operação do sistema. De acordo com o funcionário da CASAN que acompanhou a visita, algumas manutenções e serviços de repavimentação são realizados pela Prefeitura Municipal, que posteriormente é reembolsada pela CASAN.

7.2.2.6 Política Tarifária e Regulação

A regulação e fiscalização dos serviços de saneamento é realizada, desde 2009, pela Agência Reguladora Intermunicipal de Saneamento – ARIS, conforme Lei Municipal nº 1.512, de 18 de dezembro de 2009, que autorizou o ingresso do município no Consórcio.

Em novembro de 2019 a estrutura tarifária da CASAN teve reajuste de 2,61% aprovado pela ARESC. A partir de março de 2020, a prestadora do serviço passou a adotar uma nova metodologia de cobrança, com a extinção da taxa de volume mínimo de 10 metros cúbicos e a adoção de uma Tarifa Fixa de Disponibilidade de Infraestrutura (TFDI). Na Tabela 38 estão as categorias e faixas tarifárias do ano base de 2020.

Tabela 38: Política Tarifária

Categoria	TFDI (R\$/mês)	Faixa	Consumo (m³)	Água (R\$/m³)
		1	até 10	0,37
Residencial	5,50	2	11 a 25	2,61
(social)	3,30	3	26 a 50	12,18
		4	maior que 50	15,32
		1	até 10	1,96
Residencial	29,49	2	11 a 25	9,11
Nesidencial	29,49	3	26 a 50	12,18
		4	maior que 50	15,32
		1	até 10	4,34
Comercial	29,49	2	11 a 50	12,18
		3	maior que 50	15,32
Micro e pequeno comércio	29,49	1	até 10	3,06
Micro e pequeno comercio	29,49	2	maior que 10	12,18
Industrial	29,49	1	até 10	4,34
iliuusiilai	29,49	2	maior que 10	12,18
Especial > 5.000 m ³	- //	1	maior que 5.000	contrato especial
Pública	29,49	1	até 10	4,34
Fublica	23,43	2	maior que 10	12,18
Pública especial	8,84	1	Até 10	1,30
rubiica especial	0,04	2	maior que 10	3,65

A lista de serviços específicos e infrações, com valores e prazos para execução, em vigor para a CASAN, é apresentada no Anexo 06.

7.2.2.7 Receitas Despesas e Resultados

A Política Nacional de Saneamento Básico estabelece, em seu art. 2º, a eficiência e sustentabilidade econômica como princípio fundamental para prestação dos serviços públicos de saneamento básico. Assim, a prestação do serviço de abastecimento de água potável deve acontecer de maneira que não seja gerado ônus financeiro ao titular dos serviços, ao prestador e/ou à sociedade devido a práticas de gestão dos sistemas.

A Tabela 39 apresenta um resumo das despesas de 2018 e 2019, disponibilizado pela CASAN, para prestação do serviço de abastecimento de água no município.

Tabela 39: Despesas 2018 e 2019.

Tipo de despesa	2018	2019
Despesas de pessoal (R\$)	601.197,11	700.170,96
Despesas de material (R\$)	57.501,84	60.139,86
Serviços de terceiros (R\$)	430.306,41	430.923,29
Despesas gerais (R\$)	225.515,39	308.203,87
Depreciações, provisões e amortizações (R\$)	49.140,39	49.979,22
Despesas financeiras (R\$)	256.907,06	178.661,36
Despesas fiscais tributárias e provisões (R\$)	28.791,17	102.162,01
Despesas não operacionais (R\$)	77,35	61,22
Impostos de renda e contribuição social diferidos (R\$)	-139.067,45	22.026,51
Total (R\$)	1.510.369,27	1.852.328,30

Fonte: CASAN.

Na Tabela 40 verifica-se o balanço financeiro, receitas e despesas, dos anos 2018 e 2019. Como pode se observar, a prestadora do serviço foi capaz de cobrir seus custos operacionais e administrativos, além de realizar algumas melhorias no sistema.

Tabela 40: Despesas e receitas nos anos de 2018 e 2019.

Ano	Receita (R\$)	Despesa (R\$)	Saldo (R\$)
2018	2.030.071,42	1.510,369.27	+519.702,15
2019	2.105.374,48	1.852.328,30	+253.046,18

Fonte: CASAN.

7.2.2.8 Diagnóstico das Demandas Atuais

A Tabela 41 apresenta informações operacionais referentes ao período de 01/2018 até 12/2019, com base em histórico de dados fornecido disponibilizadas pela CASAN, através de Ofício resposta enviado ao município (Anexo 02).

Tabela 41: Dados operacionais no SAA Urbano em 2018 e 2019.

Parâmetros	2018	2019
Volume Captado Anual (m³)	419.696	445.787
Volume médio captado diário (m³)	1.150	1.221
Volume Processo Anual (m³)	-	-
Volume Operacional Anual (m³) ⁶	250	250
Índice de Perdas de processo e operacional (%)	0,06%	0,06%
Volume Disponibilizado para Consumo Anual	419.446	445.537
Volume Micromedido Anual (m³)	285.808	294.994
Volume Criticado Anual (m³)	10.810	7.076
Volume utilizado Anual (m³)	296.764	302.277
Perdas na distribuição (%)	29,25	32,15
População média atendida	8.225	8.407
Consumo médio per capita de água efetivo (l/hab.dia)	98,04	97,74
Consumo médio per capita demandado (I/hab.dia)	138,57	144,06

Captação/tratamento

A capacidade de produção/exploração dos poços do SAA urbano de Irani está limitada aos volumes máximos diários outorgados definidos pela Portaria SDE nº 177/2016, que totalizam um volume máximo para o SAA de 1.110,68 m³/dia. Verificase através da Tabela 41, no entanto, que tanto em 2018 como em 2019 foram captados volumes diários superiores ao limite outorgado. O tempo de operação atual dos poços também descumpre o estabelecido no documento de outorga.

⁶ Valor adotado, referente a limpeza dos reservatórios e descargas de redes realizadas durante o ano.

Visto que atualmente as captações atuais já não capazes de atender a demanda, considerando as vazões outorgadas, faz-se necessário a realização de estudo para a perfuração de novo poço ou exploração de manancial superficial. De acordo com o funcionário da CASAN que acompanhou a visita, já foi realizado estudo de um local para implantação de um novo poço, que a princípio abasteceria diretamente o reservatório R4.

Como as águas captadas atualmente requerem apenas tratamento por processo de desinfecção e fluoretação, as limitações no tratamento se dão unicamente pelas dimensões dos tanques de contato e dos dispositivos de dosagem. Não foram fornecidas informações suficientes para avaliação da capacidade do processo de tratamento.

Perdas na distribuição

O índice de perdas observado no município, em 2019, foi menor do que o índice médio do estado de Santa Catarina, que foi de 34,5% segundo os dados do SNIS (2020). Conforme Metodologia para Avaliação dos Indicadores de Desempenho definida pela ARIS (2017), o sistema apresenta índice de perdas satisfatório (>28% e menor que 35%), mas acima do ideal (<28%).

Consumo médio per capita

Segundo os dados do SNIS (2020), no ano de 2019 o consumo médio per capita efetivo no estado de Santa Catarina foi de 152,3 l/hab.dia, sendo o consumo médio per capita demandado na região de 232,5 l/hab.dia. Em comparação aos dados apresentados na Tabela 41, observa-se que Irani apresentou um consumo per capita bastante inferior à média regional, existindo a possibilidade de demanda reprimida.

É possível também que essa diferença seja resultado de submedição já que as informações fornecidas pela CASAN indicam que o parque de hidrômetros possui idade média inadequada.

Reservação

Para avaliação da reservação mínima necessária, estimou-se a demanda de água nos dias de maior consumo de 2018 e 2019, aplicando um fator K1 = 1,2 sobre a média de consumo diária. Adotou-se, no entanto, este fator apenas sobre o consumo utilizado, considerando que as perdas se mantiveram constantes, já que em momentos de grande consumo a redução nas pressões diminui as perdas do sistema, não havendo incremento do volume de perdas em função do aumento de consumo. Considerou-se, ainda, uma reservação mínima de 1/3 do volume diário de consumo.

Parâmetros	2018	2019
Volume utilizado Anual (m³)	296.764	302.277
Volume de perdas na distribuição (m³)	122.682	143.260
Reservação mínima (m³)	437	462

O sistema de distribuição possui atualmente 4 centros de reservação, com capacidade total de 300 m³. Observa-se assim, que mesmo a reservação atual, que teve incremento de 200 m³ no início de 2020, não teria sido capaz de garantir reservação mínima no SAA nos anos de 2018 e 2019.

7.2.3 Abastecimento de Água na Área Rural

Conforme apresentado anteriormente, o sistema de abastecimento urbano atendia, em 2019, cerca de 19% da população rural do município. Nos demais locais não cobertos pelo sistema público, que concentram 81% da população rural, o abastecimento de água se dava através de soluções alternativas, tais como poços particulares, poços comunitários, nascentes e córregos. Não há qualquer forma controle por parte da administração pública sobre esses sistemas.

Em dezembro de 2016, a Vigilância Sanitária do município realizou um levantamento dos sistemas alternativos existentes no município. Este levantamento é apresentado através da Tabela 42.

Tabela 42: Sistemas alternativos de abastecimento de água em 2016 - Vigilância Sanitária.

Proprietário	Ano de Perfuração	Profundidade (m)	Vazão (m³/h)	Localidade	População Atendida (famílias)
Olímpio Barbieri	2004	140	4,80	Lag. Anta	15
Jaime Amadei	2004	52	1,00	Cerro Agudo	05

Proprietário	Ano de Perfuração	Profundidade (m)	Vazão (m³/h)	Localidade	População Atendida (famílias)
Joel Sganzerla	2004	103	4,50	Cerro Agudo	06
Elio Amadei	2003	120	-	Cerro Agudo	07
Ari Botega	2008	90	7,50	Cerro Agudo	10
Celso Botega	2002	-	Inativo	Cerro Agudo	-
Vilso Amadei	2010	120	5,00	Cerro Agudo	02
Edenor Lorini	2006	160	11,00	Cordeiro	08
Luisa Ziero	2000	100	-	Engano	Inativo
Saule Agnagua	2002	102	10,00	Caroveira	35
Carlos Pegoraro	2008	185	5,00	Caroveira	Reserva
Reni Trentin	1995	68	11,00	Caroveira	08
Algacir Sganzerla	2000	120	3,60	Caroveira	08
Itacir Sganzerla	2000	86	2,50	Caroveira	02
Altair Sganzerla	1997	121	3,50	Caroveira) -
Levino Sentofante	2006	110	4,00	Caroveira	Inativo
Germano Lohman	2005	184	4,00	Lin. União	22
Valdir Zanini	2002	150	-	Lag.Eio	-
José Farinella	1988	80	-	Lag.Eio	-
Aquiles Leoratto	1998	120	0,50	Lag.Eio	-
Antoninho Savi	2005	75	3,50	Lag. Eio	04
Albino Amancio	2006	80	12,00	Lag.Eio	05
Dirceu Radin	-	110	18,00	Vista Alegre	19
Paulino Lanhi	2010	1012m	3,80	Vista Alegre	01
Acquilino Lanhi	2003	101	2,30	Vista Alegre	04
Sabino Lazarotto	2000	112	Seco	Vista Alegre	
Adão Paiva	1998	88	32,00	Botieiro	01
Osvaldo Bona	2005	170	-	Trevão	06
Vera L. S. Souza	2001	138	10,00	Trevão	02
Elizabete De David			<i>,-</i>	Trevão	-
Zílio Dalla Costa	1988	100	Seco	Alto Cascalho	-
Ari Parizoto	1997	125	0,5	Alto Cascalho	-
Eulares Chitolina	1996	75	28	Alto Cascalho	-
Adelino Forchesat	1997	54	22	Alto Cascalho	-
Vitalino Forchesato	1997	43		Alto Cascalho	-
Ari Sandi	1988	100	5,00	Alto Cascalho	-
Gilberto Vicenzi	1997	34	9,00	Alto Cascalho	-
Adair Belorini	1996	75	28,00	Alto Cascalho	-

Proprietário	Ano de Perfuração	Profundidade (m)	Vazão (m³/h)	Localidade	População Atendida (famílias)
Albino Tiepo	2002	102	-	Alto Cascalho	-
Dalla Costa	-	-	-	Linha Gorette	-
Jairo Farinella	-	-	-	Casagrande	-
Sadia	-	-	-	Linha Fragoso	-
Sadia Trevão	2003	164	-	BR 153	-
Linha Gorette	2001	168	Seco	Linha Gorette	-
Linha Gorette	2002	128	Seco	Linha Gorette	-
Contestado	1999	107	<i>A</i> -	BR 153	-
Linha Antoniolli	2002	162	Seco	Linha Antoniolli	-
Jandir Fornari	2002	104	4,00	Linha Aparecida	-
Nelson Gomes	1999	111	1,00	Linha Guarani	
Nelson Gomes	2000	104	Seco	Linha Guarani	NIT.
Élvio Flores	1999	84	-7,	Flor Pago	-
Adão Paiva	1999	84	30,00	Botieiro	-
Laurindo Souza	1999	92	4,00	Cordeiro	-
Jaime Seganfredo	1999	84	Seco	Caroveira	-
Jaime Seganfredo	1999	100	Seco	Caroveira	-
Noel Sganzerla	1999	103	Seco	Caroveira	-
Milton Albiero	1999	98	Seco	Linha Antoniolli	-
João Schardong	-	-	-	-	-
Posto Colpani	-	-	2		-

Fonte: Vigilância Sanitária Municipal (2016).

Conforme dados acima, em 2016 foram identificados 58 sistemas alternativos no município. No entanto, não há informações complementares disponíveis sobre a infraestrutura desses sistemas alternativos, também não informações sobre a qualidade da água distribuída e se ocorre ou não o tratamento prévio das águas captadas antes do consumo.

Esse levantamento inicial, apesar de importante, não fornece informações suficientes para avaliação desses sistemas.

7.3 AVALIAÇÃO DO ATENDIMENTO ÀS PROPOSIÇÕES DO PLANO DE SANEAMENTO BÁSICO DE 2011 E SUAS PROPOSTAS DE INVESTIMENTOS

O Plano Municipal de Saneamento Básico de Irani, elaborado em 2011, verificou as demandas e deficiências do sistema de abastecimento de água e definiu as metas que deveriam ser desenvolvidas pelo Prestador de Serviços pelo horizonte de 20 anos (2011- 2030). Abaixo são apresentados comentários sobre as ações tomadas até o momento pelos atores envolvidos em relação ao cronograma físico-financeiro definido pelo PMSB 2011.

1 - Ampliação da capacidade de tratamento de água.

<u>Comentários:</u> Item atendido. Foi instalada uma unidade de tratamento simplificado (ETA2) para o tratamento da água proveniente do Poço 04, que entrou em operação em 2011.

2 - Investimento em Ligações com Hidrômetro.

<u>Comentários:</u> Item atendido. Trata-se de ação contínua e por demanda, segundo a CASAN, em todas as novas ligações são instalados hidrômetros.

3 - Investimento com hidrômetros para ampliação do índice de Hidrometração.

<u>Comentários</u>: Item atendido. Segundo informações da prestadora do serviço de abastecimento de água, o índice de hidrometração é de 100%. Destaca-se, no entanto, que o número de hidrômetros informado é inferior ao número de ligações fornecido.

4 - Substituição de Hidrômetros para renovação do parque de Hidrômetros.

<u>Comentários</u>: Item atendido parcialmente. Ao longo do tempo vem ocorrendo a substituição de hidrômetros. No entanto, verificou-se que o sistema de troca atual é insuficiente para garantir a renovação do parque de hidrômetros e mantê-lo com idade média adequada.

5 - Investimento em ampliação da rede de abastecimento de água.

<u>Comentários</u>: Item atendido. Trata-se de ação contínua e por demanda. A extensão vem sendo realizada conforme demanda.

6 - Investimento em ampliação da capacidade de reservação.

<u>Comentários</u>: Item atendido parcialmente. Após 2011 foi feita a substituição do R2, inativando o reservatório em concreto de 40m³ e substituindo-o por um reservatório em aço inox de 200 m³, e foi implantando o centro de reservação R4, com dois reservatórios em PRFV de 20 m³ cada. Mesmo com essas ampliações, a reservação existente de 300 m³ não é capaz de manter o abastecimento pelo período mínimo de 8 horas.

7 - Investimento em abastecimento de água na área rural.

<u>Comentários</u>: Não há informações disponíveis quanto a realização de investimentos para abastecimento de água na área rural.

8 - Obtenção de licenciamento ambiental da ETA.

<u>Comentários</u>: Em andamento. A solicitação de licença ambiental de operação de correção (LAO corretiva) foi protocolada em 2016. Segundo consulta ao processo no site do IMA, este se encontra em fase de análise técnica pelo instituto.

9 - Estudo hidrogeológico para perfuração de poço 05.

<u>Comentários</u>: Item atendido. Segundo o funcionário que acompanhou a visita, há previsão de instalação de outro poço, cujos estudos do local já haviam sido realizados. No entanto, este estudo não foi informado ou disponibilizado pela CASAN no ofício de resposta entregue ao município.

10 - Cadastro geral (georreferenciado) do abastecimento de água.

<u>Comentários</u>: Item atendido. A CASAN forneceu um cadastro de rede, no entanto, o cadastro disponibilizado não possuí informações quanto ao diâmetro das tubulações e sua última data de atualização.

11 - Programa de conscientização ao controle de poluição de mananciais.

<u>Comentários</u>: Item não atendido. Não há informações sobre a existência de programa que tenha tido essa finalidade.

12 - Pesquisa/Identificação das áreas e horários críticos de intermitência no abastecimento.

<u>Comentários</u>: Não há informações quanto a realização deste estudo por parte da prestadora dos serviços.

13 - Proteção física para prevenir acidentes e vandalismo (poços 02 e 03 e reservatório COHAB).

Comentários: Item parcialmente atendido. As áreas onde se encontram essas unidades foram cercadas e tem acesso restrito através de portão com cadeado. Destaca-se, no entanto, que no dia da visita ao poço P03, verificou-se que umas das laterais da área onde o poço P03 está instalado estava com acesso livre, sem alambrado. Segundo informações da CASAN, o alambrado havia sido danificado recentemente por um evento de enxurrada, mas sua manutenção ocorreria em breve.

14 - Exigência de projetos hidráulicos para alvará de construção (incluindo a reservação mínima de 1 dia).

<u>Comentários</u>: Item atendido. A Lei complementar nº 89, de 24 de abril de 2018, que dispõe sobre as normas relativas às edificações do município de Irani, regulamentou a exigência dos projetos hidrossanitários para emissão do alvará. Quanto a reservação, a Lei estabelece que deverão ser seguidas as orientações da ABNT e do Regulamento de Serviços de Água e Esgoto Sanitário da Concessionária local – CASAN.

15 - Manutenção e melhoria das instalações dos sistemas de captação.

<u>Comentários</u>: Item atendido parcialmente. Trata-se de ação contínua, em visita verificou-se a necessidade de pintura das estruturas de proteção dos painéis de operação dos poços.

16 - Modernização do sistema de abastecimento de água.

<u>Comentários</u>: Item atendido parcialmente. Foram instalados dispositivos como soft starters e inversores de frequência que contribuem para otimização do sistema, além de existir sistema de telemetria que ajuda a verificar a operação dos poços e o nível

dos reservatórios R1 e R2. Ainda assim, verifica-se a necessidade de inclusão das outras unidades do sistema nesse sistema supervisório.

17 - Estruturação de programa de controle de perdas.

<u>Comentários</u>: A prestadora informou monitorar variações nas perdas nos diferentes pontos da distribuição através dos macromedidores instalados na saída dos reservatórios, além de utilizar tecnologia de geofonamento para identificar vazamentos nas redes de distribuição de água.

7.4 PROGNÓSTICO DO SISTEMA DE ABASTECIMENTO

7.4.1 Prognóstico de demandas

7.4.1.1 SAA urbano

Para projeção da população a ser atendida pelo sistema urbano, considerouse que haverá incremento de população apenas na porção urbana, sendo que o índice de atendimento urbano deverá se manter em 100%. Não foi considerada a expansão do serviço na área rural circundante, sendo a população a ser atendida nessa área mantida fixa durante todo o período de planejamento. A população rural circundante adotada foi de 494 pessoas, conforme item 4.2.3.

Tabela 43: Estimativa da população a ser atendida pelo SAA urbano.

Ano	Projeção Abastecida Urbana (hab) ⁷	Projeção Abastecida Rural (hab)	Projeção Abastecida Adotada (hab)
2019	7.979	494	8.473
2020	8.138	494	8.632
2021	8.296	494	8.790
2022	8.453	494	8.947
2023	8.610	494	9.104
2024	8.766	494	9.260
2025	8.921	494	9.415
2026	9.076	494	9.570
2027	9.230	494	9.724
2028	9.383	494	9.877
2029	9.536	494	10.030
2030	9.688	494	10.182
2031	9.839	494	10.333
2032	9.990	494	10.484
2033	10.139	494	10.633
2034	10.289	494	10.783
2035	10.437	494	10.931
2036	10.585	494	11.079
2037	10.732	494	11.226
2038	10.879	494	11.373

⁷ Atendimento de 100% da população urbana, conforme projeção de crescimento populacional apresentada na Tabela 08 do Diagnóstico Social (Produto 01).

Ano	Projeção Abastecida Urbana (hab) ⁷	Projeção Abastecida Rural (hab)	Projeção Abastecida Adotada (hab)
2039	11.025	494	11.519
2040	11.170	494	11.664
2041	11.314	494	11.808

Como critério para projeção das demandas, adotou-se a premissa de que o índice de consumo per capita efetivo crescerá gradualmente, como reflexo da troca de hidrômetros e da mudança dos padrões de consumo (possível demanda reprimida), atingindo 120 l/hab.dia ao final de plano. Além disso, considerou-se que o índice de perdas se reduzirá de maneira linear durante o horizonte de projeto até atingir um índice de perdas na distribuição de 25%.

Nas projeções de demanda também foi usado um fator K1 = 1,2 para garantir o atendimento nos dias de maior consumo de água. Adotou-se, no entanto, este fator apenas sobre o consumo utilizado, considerando que as perdas se manterão constantes, já que em momentos de grande consumo a redução nas pressões diminui as perdas do sistema, não havendo incremento do volume de perdas em função do aumento de consumo. Para a reservação adotou-se uma reservação mínima de 1/3 do volume diário de consumo.

A Tabela 44 demonstra as necessidades a serem atendidas com o passar dos anos na área urbana do município.

Tabela 44: Projeção de Demandas.

Ano	Projeção Abastecida Adotada (hab)	Per capita médio (I/hab/dia)	Perdas (%)	Volume médio demando (m³/dia)	Volume a captar no dia de maior consumo (m³/dia)	Volume de reservação no dia de maior consumo (m³)
2019	8.473	97,74	32,15	1.221	1.387	462
2020	8.632	98,80	31,81	1.251	1.422	474
2021	8.790	99,86	31,47	1.281	1.457	486
2022	8.947	100,92	31,13	1.311	1.493	498
2023	9.104	101,98	30,79	1.342	1.528	509
2024	9.260	103,04	30,45	1.372	1.564	521
2025	9.415	104,10	30,11	1.402	1.599	533
2026	9.570	105,16	29,77	1.433	1.635	545
2027	9.724	106,22	29,43	1.464	1.671	557

Ano	Projeção Abastecida Adotada (hab)	Per capita médio (I/hab/dia)	Perdas (%)	Volume médio demando (m³/dia)	Volume a captar no dia de maior consumo (m³/dia)	Volume de reservação no dia de maior consumo (m³)
2028	9.877	107,28	29,09	1.494	1.707	569
2029	10.030	108,34	28,75	1.525	1.743	581
2030	10.182	109,40	28,41	1.556	1.780	593
2031	10.333	110,46	28,07	1.587	1.816	605
2032	10.484	111,52	27,73	1.618	1.853	618
2033	10.633	112,58	27,38	1.649	1.889	630
2034	10.783	113,64	27,04	1.680	1.926	642
2035	10.931	114,70	26,70	1.711	1.962	654
2036	11.079	115,76	26,36	1.742	1.999	666
2037	11.226	116,82	26,02	1.773	2.036	679
2038	11.373	117,88	25,68	1.804	2.073	691
2039	11.519	118,94	25,34	1.835	2.110	703
2040	11.664	120,00	25,00	1.866	2.147	716
2041	11.808	120,00	25,00	1.889	2.174	725

O SAA urbano possui atualmente volume reservação útil de 300 m³ e volume máximo de captação outorgado de 1.110,68 m³/dia. Como os volumes demandados superam os volumes máximos outorgados, faz-se necessária a reavaliação da capacidade dos poços e uma atualização, se possível, dos limites de captação da outorga. Além disso, verifica-se a necessidade da avaliação de novos mananciais para a continuidade do abastecimento de água à população.

Para projeção da evolução das ligações e economias, considerou-se que a taxa de ocupação domiciliar atual permanecerá constante ao longo de todo o período de planejamento, em relação a proporção de ligações e economias, considerou-se para a categoria residencial uma possível tendência de verticalização.

A Tabela 45 apresenta a projeção de evolução das ligações e economias nas diferentes categorias para o SAA Urbano.

Tabela 45: Projeção de ligações e economias no SAA Urbano.

Ano	Resid so	lencial cial	Resid	encial	Com	ercial	Púl	olica	Indu	strial	Total de	Total de
	Lig.	Econ.	Lig.	Econ.	Lig.	Econ.	Lig.	Econ.	Lig.	Econ.	Ligações	Economias
2019											2.481	2.859

Ano		lencial cial	Resid	encial	Com	ercial	Púl	olica	Indu	strial	Total de	Total de
	Lig.	Econ.	Lig.	Econ.	Lig.	Econ.	Lig.	Econ.	Lig.	Econ.	Ligações	Economias
2020	42	42	2.305	2.598	121	217	53	57	1	2	2.521	2.916
2021	42	42	2.339	2.646	123	221	54	58	1	2	2.560	2.969
2022	43	43	2.373	2.693	125	225	55	59	1	2	2.598	3.022
2023	44	44	2.407	2.740	128	229	56	60	1	2	2.636	3.075
2024	45	45	2.441	2.787	130	233	57	61	1	2	2.673	3.128
2025	45	45	2.474	2.834	132	237	58	62	1	2	2.710	3.180
2026	46	46	2.507	2.880	134	241	59	63	1	2	2.747	3.233
2027	47	47	2.539	2.927	136	244	60	64	1	2	2.783	3.285
2028	48	48	2.571	2.973	138	248	61	65	1	2	2.819	3.336
2029	48	48	2.602	3.019	141	252	61	66	1	2	2.854	3.388
2030	49	49	2.634	3.064	143	256	62	67	1	2	2.889	3.439
2031	50	50	2.664	3.110	145	260	63	68	1	2	2.924	3.490
2032	51	51	2.695	3.155	147	264	64	69	1	3	2.958	3.541
2033	51	51	2.725	3.200	149	267	65	70	2	3	2.992	3.592
2034	52	52	2.755	3.245	151	271	66	71	2	3	3.025	3.642
2035	53	53	2.784	3.290	153	275	67	72	2	3	3.058	3.692
2036	53	53	2.813	3.334	155	279	68	73	2	3	3.091	3.742
2037	54	54	2.841	3.379	157	282	69	74	2	3	3.123	3.792
2038	55	55	2.870	3.423	159	286	70	75	2	3	3.156	3.842
2039	56	56	2.898	3.467	162	290	71	76	2	3	3.187	3.891
2040	56	56	2.925	3.511	164	293	71	77	2	3	3.219	3.940
2041	57	57	2.962	3.554	166	297	72	78	2	3	3.258	3.989

A partir da relação metros de rede por ligação e considerando as projeções do número de ligações apresentadas acima, foram estimadas as extensões de rede água ao longo dos próximos 20 anos (Tabela 46).

Tabela 46: Evolução da extensão de rede de distribuição - SAA Urbano.

Ano	Extensão total da rede de distribuição (m)	Ano	Extensão total da rede de distribuição (m)
2019	52.870	2031	62.305
2020	53.728	2032	63.037
2021	54.551	2033	63.753
2022	55.363	2034	64.471
2023	56.170	2035	65.173
2024	56.967	2036	65.872

Ano	Extensão total da rede de distribuição (m)	Ano	Extensão total da rede de distribuição (m)
2025	57.753	2037	66.561
2026	58.534	2038	67.246
2027	59.305	2039	67.921
2028	60.066	2040	68.588
2029	60.823	2041	69.434
2030	61.569	-	7/0 00

Os dados indicam que a maioria dos hidrômetros possui idade superior a indicada para operação (>5 anos), o que compromete não só o faturamento da prestadora de serviços, como toda a gestão operacional do sistema. Desta forma, considerou-se que em média cerca de 20% dos hidrômetros instalados deverá ser substituído anualmente para garantir erros aceitáveis de micromedição. O cenário de substituição de hidrômetros adotado é apresentado na Tabela 47.

Tabela 47: Substituição de hidrômetros ao longo do plano SAA Urbano.

Ano	Nº hidrômetros	Ano	Nº hidrômetros
2019	496	2031	585
2020	504	2032	592
2021	512	2033	598
2022	520	2034	605
2023	527	2035	612
2024	535	2036	618
2025	542	2037	625
2026	549	2038	631
2027	557	2039	637
2028	564	2040	644
2029	571	2041	652
2030	578	-	-

7.4.1.2 Sistemas alternativos rurais

Em virtude da ausência de informações sobre as condições reais de abastecimento da população rural, tanto em relação a quantidade como a qualidade das águas disponíveis, para a projeção do atendimento de água na área rural, adotouse a premissa de que atualmente apenas a parcela da população rural abastecida

pelo sistema público urbano possui acesso a água em condições de adequadas (19% da população rural). Além disso, foi definido que até 2033 o índice de acesso da população rural à água potável, seja por sistema público ou alternativo, deverá atingir 100%.

Destaca-se ainda que, como as projeções populacionais indicam decréscimo da população rural ao longo do período de planejamento, haverá uma redução da população a ser atendida a partir do momento que o índice de acesso a água potável chegar a 100%.

A Tabela 48 apresenta uma estimativa de volume médio de água efetivo (m³/dia) para abastecimento da população rural. Sabe-se, no entanto, que os índices de consumo na área rural variam bastante em função do tamanho das propriedades, das atividades nelas desenvolvidas etc. Assim, devido à incerteza de um valor representativo para o município, utilizou-se como um valor orientativo o consumo per capita efetivo de final de plano aplicado ao SAA urbano, 120 L/hab x dia. Assumindo que o padrão de consumo para realização das atividades de higiene básica e ingestão serão semelhantes ao observado na área urbana, não sendo considerados outros volumes necessários para atividades desenvolvidas nas propriedades.

Tabela 48: Estimativa da população a ser atendida pelos sistemas alternativos e do volume efetivo demando.

acmanao.				
Ano	Projeção População rural (hab)	Projeção Pop. Abastecida Rural (hab)	Projeção Pop. Abastecida Rural (%)	Volume médio efetivo (m³/dia)
2019	2.600	494	19	59
2020	2.558	634	25	76
2021	2.517	769	31	92
2022	2.476	900	36	108
2023	2.436	1027	42	123
2024	2.397	1149	48	138
2025	2.358	1267	54	152
2026	2.320	1380	60	166
2027	2.282	1490	65	179
2028	2.246	1596	71	192
2029	2.209	1698	77	204
2030	2.173	1796	83	215
2031	2.138	1891	88	227
2032	2.103	1981	94	238
2033	2.070	2.070	100	248

Ano	Projeção População rural (hab)	Projeção Pop. Abastecida Rural (hab)	Projeção Pop. Abastecida Rural (%)	Volume médio efetivo (m³/dia)
2034	2.036	2.036	100	244
2035	2.004	2.004	100	240
2036	1.971	1.971	100	237
2037	1.939	1.939	100	233
2038	1.908	1.908	100	229
2039	1.877	1.877	100	225
2040	1.847	1.847	100	222
2041	1.817	1.817	100	218

7.4.2 Prognóstico do Sistema

7.4.2.1 SAA urbano

Captação

Através do prognóstico de demandas, verifica-se que o SAA Urbano apresenta déficit em seu sistema de produção, já não sendo de capaz de atender as demandas atuais quando consideradas as vazões outorgadas. Como a prestadora não forneceu os testes de bombeamento dos poços, não foi possível avaliar se há a possibilidade de solicitar aumento dos volumes máximos outorgados junto à Secretaria de Estado do Desenvolvimento Sustentável (SDE).

É essencial que seja reavaliada a capacidade dos poços atuais e se possível o aumento dos limites de captação da outorga para regularização do sistema. Além disso, deve-se realizar estudo para a perfuração de novos poços ou exploração de manancial superficial. De acordo com informações repassadas pelo funcionário que acompanhou a visita, um estudo para perfuração de um novo poço e a setorização da área atendida pelo reservatório R4 já está em andamento.

Em relação ao poço P03, deve ser feita a manutenção do alambrado, de modo a impedir o acesso de terceiros ao cavalete e painel do poço.

Tratamento

Quanto as instalações da ETA 01, sugere-se a desativação da calha vertedora, além da substituição do sistema de dosagem com boias por bombas dosadoras,

visando maior controle e precisão na dosagem dos produtos químicos, principalmente para o ácido fluossilícico.

Ainda na ETA 01, o acesso às tinas, que armazenam as soluções químicas, está em desconformidade com o que estabelecem as normas de segurança do trabalho. Recomenda-se que a posição das tinas seja reavaliada e que se possível essas sejam realocadas para dentro da ETA 01. Caso estas permaneçam no mesmo local, que seja instalada escada de acesso em conformidade com o que estabelecem as normas de segurança.

A ETA 01 ainda necessita de nova pintura, adequação em sua ventilação e adequação do armazenamento dos produtos químicos, prevendo bacia de contenção para os produtos em estado líquido, além de armazenamento em posição mais ergonômica.

Em relação a ETA 02, é necessária a instalação de passarinheiras e vedação com argamassa nas laterais para evitar a entrada de pássaros. Deve-se concluir o acabamento interno das paredes e realizar a pintura destas. Além disso, é preciso realizar a adequação da ventilação, e prever bacia ou sistema contenção para as tinas de dosagem.

Distribuição

A reservação do sistema também se mostra insuficiente para atender as demandas atuais e futuras, sendo necessária a implantação de novos centros de reservação, ou a substituição dos existentes, conforme prognóstico de demandas. Além disso, destaca-se a necessidade de pintura e adequação do acesso as tampas de inspeção dos reservatórios R1 (centro) e R3 (COHAB), em conformidade com as normas de segurança.

Conforme informações coletadas por meio de aplicação de pesquisa de satisfação *on-line*, identificou-se reclamações pontuais relacionadas a regularidade no abastecimento de água. Assim, simultaneamente as adequações no sistema de reservação do SAA, recomenda-se que sejam realizadas campanhas para incentivar a população a instalar reservatórios de água em suas edificações, reduzindo assim a possibilidade de desabastecimento em momentos que o serviço seja interrompido ou de grande consumo, quando as pressões costumam diminuir.

Em caso de disponibilidade de recursos pela municipalidade, deve-se avaliar a possibilidade de fornecimento de reservatórios a famílias carentes do município, que não dispõem de recursos financeiros para aquisição destes dispositivos.

Visando a continuidade do fornecimento de água, recomenda-se o posicionamento de geradores de energia no sistema de produção e em pontos estratégicos do sistema de recalque para que a distribuição de água não seja completamente afetada em casos de suspensão do atendimento de energia.

Sugere-se também que na presença de dados mais recentes sejam reavaliadas as curvas de crescimento populacional e de consumo no sistema, fazendo com que os objetivos de redução de perdas e de garantia do abastecimento de água sejam cumpridos com êxito durante os processos de revisão deste plano.

Recomenda-se que seja criada rotina para aferição e substituição dos macromedidores instalados, devendo a troca destes acontecer antes que estes estejam inoperantes, só assim será possível uma gestão adequada das perdas no sistema.

7.4.2.2 Sistemas alternativos rurais

Na área rural, a falta de informações compromete o planejamento do abastecimento de água, assim, faz-se necessário um cadastramento de todos os sistemas alternativos para abastecimento humano, atualizando o levantamento existente e complementando com informações sobre a qualidade da água e as condições de captação e distribuição destas, número de pessoas atendidas etc.

Neste levantamento ainda deverão ser avaliadas algumas particularidades da população rural, tais como: a dispersão geográfica, cotas altimétricas e o distanciamento da sede municipal e de comunidades ou núcleos urbanos.

Em parceria com órgãos de referência como FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA e EPAGRI, a municipalidade deverá buscar alternativas para a universalização do abastecimento de água na área rural, auxiliando na implantação de técnicas de tratamento acessíveis a realidade da população rural. É importante que exista pelo menos um profissional qualificado no município que esteja disponível para auxiliar nas adequações ou melhorias das soluções alternativas de abastecimento da área rural.

Campanhas de orientação à população sobre importância do tratamento da água, sobretudo sobre a necessidade de desinfecção antes do consumo, deverão ser realizadas com o suporte da Vigilância Sanitária.

7.5 CONSIDERAÇÕES FINAIS

Através dos dados fornecidos e das projeções realizadas, conclui-se que o sistema urbano não possui capacidade de produção e reservação para suprir as demandas da população final de plano.

Como conclusões deste item, para o estabelecimento de prioridades de ação e investimentos que serão objeto de detalhamento nos próximos capítulos deste estudo, destacam-se as recomendações que seguem:

- Reavaliar a capacidade dos poços atuais e se possível solicitar a reavaliação dos limites da Outorga de uso da água; avaliar novos mananciais subterrâneos e superficiais, e implantar novas captações;
- 2. Realizar adequação das unidades de tratamento ETA 01 e ETA 02;
- 3. Implantar obras de melhorias no sistema distribuidor (implantação de novos reservatórios, ampliação de redes, substituição/manutenção de redes);
- 4. Adquirir geradores de energia móveis para auxiliar na continuidade do abastecimento nos eventos de falta de energia elétrica nas principais unidades do sistema, prioritariamente para a operação dos poços. Manter registro de preços para locação emergencial de geradores para as demais unidades.
- Manter bombas reservas para as unidades de recalque, principalmente para o Booster 01, que n\u00e3o possui bomba reserva instalada, visando a redu\u00e7\u00e3o de paradas por problemas mec\u00e1nicos;
- Instalar equipamentos de telemetria nas unidades de recalque do SAA, e aumentar número de variáveis monitoradas nas demais unidades;
- Manter cadastro de rede atualizado, capacitando equipe para levantamento de informações durante obras de ampliação e/ou aberturas em campo, para posterior atualização do cadastro;
- Atualizar programa de perdas, definindo como meta mínima o índice de 25% de perdas no horizonte de projeto deste plano;

- 9. Instituir rotina de aferição e troca dos macromedidores, de modo a garantir que estes operem dentro de faixa de erro aceitável;
- 10. Instituir rotina de troca de micromedidores. Fazendo com que os hidrômetros com mais de 5 anos sejam substituídos, priorizando inicialmente os consumidores que se enquadram nas faixas superiores à 10 m³/mês;
- 11. Desenvolver programas de educação ambiental com foco na preservação de mananciais:
- 12. Realizar campanha para a orientação da população sobre a importância de manter reservação de água própria em seus domicílios para a mitigação dos efeitos das interrupções do abastecimento de água, além de orientar sobre a necessidade de limpeza destas unidades;
- 13. Elaboração de Plano de Segurança da Água (PSA), que contemple a identificação de perigos e riscos desde o manancial até o consumidor, estabelecendo medidas de controle para reduzi-los ou eliminá-los e estabelecendo processos para verificação da eficiência da gestão preventiva. (art 6º Decreto Estadual nº 1.846/2018);
- 14. Estimular a coleta e reservação das águas pluviais, com a implantação de cisternas, visando sua utilização para fins não potáveis e também como forma de reduzir os picos de escoamento superficial durante as chuvas. A instalação das cisternas deverá observar os parâmetros previstos na NBR 15527 (ANBT, 2019) e regulamentações específicas do município de Irani;
- 15. Realizar levantamento/cadastramento das soluções alternativas coletivas e individuais para abastecimento de água adotadas na área rural;
- 16. Desenvolver campanha orientativa a população rural, que se utiliza de soluções alternativas para abastecimento, sobre importância do tratamento da água, sobretudo sobre a necessidade de desinfecção antes do consumo;
- 17. Buscar parceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA e EPAGRI para a universalização do abastecimento de água na área rural e implantação de técnicas de tratamento acessíveis;
 - 18. Auxiliar na adequação ou melhoria das soluções alternativas de abastecimento da área rural, disponibilizando apoio contínuo de profissional qualificado.

8 ESGOTAMENTO SANITÁRIO

8.1 APRESENTAÇÃO

Neste capítulo é apresentada a revisão do Diagnóstico e do Prognóstico dos Sistemas e Serviços de Esgotamento Sanitário, contendo: o diagnóstico dos sistemas existentes no município, a verificação da execução das proposições e metas do PMSB 2011, e a proposição de alternativas para solução dos problemas relacionados ao esgotamento sanitário no município.

8.2 DIAGNÓSTICO DOS SERVIÇOS DE ESGOTAMENTO SANITÁRIO

8.2.1 Contextualização

Desde a antiguidade as civilizações têm convivido com a necessidade do afastamento de seus efluentes de suas áreas urbanizadas, tendo se utilizado, em sua maioria, dos cursos d'águas que atravessam essas áreas para essa finalidade.

O lançamento e/ou disposição de efluentes não tratados, ou tratados de forma inadequada, em cursos d'águas ou infiltrados no solo acabaram se tornando um dos principais passivos ambientais originados pelo processo de urbanização, que além de contaminar a água e o solo, ocasionam poluição visual, afetando a beleza cênica do ambiente, e contribuem para o aumento da incidência de doenças de veiculação hídrica, tais como: gastroenterite, febre tifoide e paratifóide, giardíase, hepatite infecciosa, cólera e verminoses.

De acordo com dados do SNIS (2020), em 2019, cerca de 61,9% da população urbana brasileira era atendida por rede coletora de esgoto, no entanto, apenas 78,5% do esgoto coletado recebia algum tipo de tratamento. Não há informações recentes sobre as tecnologias de esgotamento sanitário adotadas pela população não atendida por sistemas coletivos e sobre as condições destas.

Os baixos índices de tratamento dos esgotos sanitários, além de contribuir para a transmissão de doenças, pode inviabilizar o uso dos recursos hídricos, uma vez que à baixa qualidade dos mananciais eleva os custos para captação e tratamento de água. Evidenciando a necessidade de uma gestão integrada de todo o ciclo de abastecimento de água e da coleta e tratamento adequado dos efluentes líquidos.

A NBR 9648 (ABNT, 1986) define esgoto sanitário como "despejo líquido constituído de esgotos domésticos e industrial, águas de infiltração e contribuição pluvial parasitária.", sendo o esgoto doméstico o efluente do uso da água para higiene e necessidades humanas, o industrial o despejo líquido resultante de processos fabris, a água de infiltração a água subterrânea que penetra nas tubulações e a contribuição pluvial parasitária uma parcela das águas de chuva que inevitavelmente são absorvidas pela rede coletora de esgoto sanitário.

A produção per capita de esgoto sofre variações em função de fatores regionais, sociais e econômicos da população. Em função da ausência de micromedição, sua determinação para planejamento e projetos tem, normalmente, como referência o consumo de água efetivo per capita multiplicado por um coeficiente de retorno, este coeficiente considera que uma parcela da água não será encaminhada para o sistema de tratamento ou para a rede coletora de esgoto, sendo destinada a atividades de limpeza de áreas externas e jardinagem, por exemplo.

A composição dos efluentes está diretamente relacionada as finalidades de uso das águas. No uso doméstico as águas são utilizadas para consumo, preparo de alimentos, higiene pessoal, limpeza gerais e irrigação de jardins. Assim, nestes efluentes, por exemplo, é comum a presença de restos de alimentos, óleo e gordura, areia, fezes e urina; substâncias tensoativas (produtos de limpeza, sabão, sabonete, detergente etc.), produtos químicos (medicamentos, desinfetantes, odorizantes, outros restos etc.).

A composição dos esgotos domésticos pode ser descrita, segundo Mara e Silva (1979), conforme apresentado abaixo:



Figura 61: Composição do Esgoto Sanitário

Fonte: Adaptado de Mara e Silva (1979).

O conhecimento sobre as substâncias que compõem os efluentes não é relevante apenas para o tratamento destes, já que a presença de algumas substâncias no efluente podem causar uma série de problemas operacionais ainda na rede coletora, como por exemplo: sedimentação (areia), obstrução (óleo, gordura), corrosão da tubulação e de equipamentos (produtos químicos), entre outros.

Cabe destacar, que uma parcela bastante significativa da vazão do esgoto sanitário que chega às unidades de tratamento centralizadas, através de redes coletoras, é proveniente de infiltrações de águas subterrâneas e águas pluviais parasitárias.

As infiltrações têm como origem: juntas mal executadas ou danificadas; paredes de tubos, caso o material do tubo não seja impermeável, ou os tubos estejam danificados; execução inadequada (rígida) de transposições das paredes dos poços de visita (PVs) por falta do elemento vedante; utilização de material inadequado (permeável) para as paredes dos PVs e/ou execução com espessura insuficiente, falta e/ou execução inadequada do revestimento impermeabilizante externo.

Com o termo contribuição pluvial parasitária são denominadas águas que entram na rede de esgoto sanitário durante períodos chuvosos, basicamente por três caminhos:

- água de chuva que cai diretamente sobre os orifícios de ventilação nas tampas dos PVs;
- água de chuva que entra nos PVs localizados em baixadas, onde durante uma chuva se acumula água sobre as tampas; e

• água de chuva de telhados, pátios etc., que é coletada em terrenos e lançada de forma indevida à rede de esgoto sanitário.

A redução das infiltrações é extremamente importante porque sua vazão, em algumas situações, pode alcançar valores que superam a vazão do esgoto coletado. Uma vazão de infiltração elevada tem como consequência a necessidade de tubulações de maiores dimensões, elevatórias de maior porte, além de estações de tratamento com maior capacidade, onerando não só a implantação como também a operação e manutenção do sistema. Cabe destacar que grande parte das causas para uma elevada vazão de infiltração poderiam ser evitadas com os devidos cuidados durante a elaboração do projeto e na execução das obras.

As contribuições pluviais parasitárias também são indesejadas na rede de esgoto sanitário, porém, em parte são inevitáveis, como nos dois primeiros casos acima citados anteriormente. Embora a utilização de tampas sem orifícios possa prevenir a entrada da água de chuva pelas tampas, merece destacar que esta medida pode comprometer a ventilação das tubulações da rede de esgoto, que é importante para a operação. Todavia a utilização de tampas sem orifícios de ventilação poderia ser cogitada em trechos alagadiços de extensão limitada caso outras medidas (operacionais) não levem à solução do problema.

Entretanto a entrada de águas pluviais na rede de esgotos, provindas de telhados e pátios de terrenos ou pelo lançamento de águas subterrâneas captadas, precisa ser combatida rigorosamente. Da mesma forma que a contribuição de esgoto sanitário nas redes de drenagem pluvial é indesejada, as contribuições de águas pluviais na rede de coleta de esgoto também podem ocasionar problemas, tanto no transporte desses efluentes como no tratamento, em função das variações significativas de vazão e da qualidade no esgoto sanitário. Para correção deste problema, deve-se conscientizar a população e fiscalizar as ligações por meio de campanhas e rotinas específicas que busquem o equacionamento do problema.

Segundo Von Sperling (2005), há basicamente duas variantes dos sistemas de esgotamento sanitário:

- Sistema individual ou sistema estático;
- Sistema coletivo ou sistema dinâmico.

Tsutiya e Alem Sobrinho (2011) apontam que os sistemas de esgotamento sanitário dinâmicos podem ser de três tipos:

- sistema de esgotamento unitário: no qual o esgoto sanitário, as águas de infiltração e as águas pluviais veiculam por um único conjunto de redes.
- sistema separador absoluto: sistema no qual o esgoto sanitário e as águas de infiltração veiculam em um conjunto de redes independente do sistema de águas pluviais; e
- sistema de esgotamento separador parcial: no qual uma parcela das águas pluviais provenientes de telhados e pátios ainda é encaminhada ao sistema de coleta e transporte de esgoto sanitário.

No Brasil, em geral, são adotados os sistemas do tipo separador absoluto. Dentre as principais vantagens destes estão:

- redução no tamanho dos condutos/tubulação e consequentemente nos custos para implantação das redes coletoras;
- a falta de pavimentação das vias não interfere no desempenho do sistema;
- não exige a implantação de galerias em todas as vias urbanas; e
- não sofre grandes variações de volume ou diluição, que podem afetar o desempenho de sistema de tratamento biológicos.

8.2.2 Situação Atual do Esgotamento Sanitário

Não há no município de Irani um sistema público de coleta e tratamento de efluentes que abranja toda a área urbana municipal, existem apenas 4 sistemas alternativos com coleta e tratamento de esgoto sanitário que têm cobertura parcial sobre os bairros Santo Antônio e Alto Irani. No restante da área urbana e na área rural, são empregadas soluções individuais de esgotamento sanitário.

Conforme convênio de cooperação para gestão associada, autorizado pela Lei Municipal nº 1.427 de 20 de maio de 2008, a CASAN é a responsável pelos investimentos, manutenção e operação dos serviços de esgotamento sanitário no município até o ano de 2023. No entanto, a gestão e operação dos sistemas existentes continua sob responsabilidade do município. Em 2018, a CASAN repassou ao município R\$ 104.000,00 para a realização de melhorias nos Sistema de Esgoto Sanitário, nos bairros Santo Antônio e Alto Irani.

Não há informações quanto à existência de estudos de concepção e/ou projetos para implantação de um sistema de esgotamento sanitário coletivo para Irani.

8.2.2.1 Sistemas de esgotamento sanitários (SES) alternativos

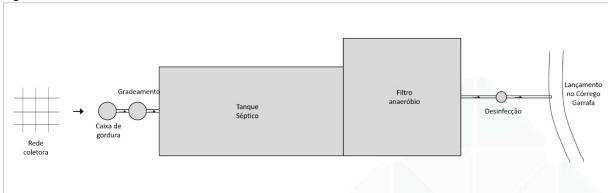
Bairro Santo Antônio

A coleta de efluentes no bairro Santo Antônio se dá por gravidade através de tubos de PVC 100 mm. De acordo com o PMSB (2011), a rede coletora possuía em 2011 aproximadamente 1.284 metros de extensão, não há um cadastro atualizado e nem informações recentes sobre ampliações realizadas nesta rede. A Figura 62 (Anexo 07) ilustra o traçado aproximado das redes coletoras implantados no bairro Santo Antônio.

Com base no traçado fornecido pelo Município, verificou-se que 124 lotes podem estar interligados a rede coletora, considerando uma edificação por lote e adotando a taxa de ocupação 3,29 hab/dom, observada no Censo de 2010 na área urbana (IBGE, 2010), estimasse que 408 pessoas sejam atendidas pelo sistema, o que corresponde a aproximadamente 5% da população urbana do município.



Figura 62: Representação do traçado de redes coletoras do Bairro Santo Antônio.


O tratamento dos efluentes coletados acontece através de sistema anaeróbio composto por caixa de retenção de gordura, gradeamento, tanque séptico, filtro anaeróbio e unidade de desinfecção (Figura 63 e Figura 64). O lançamento do efluente tratado se dá em curso d'água conhecido como Córrego Garrafa.

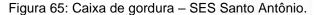

Fonte: Acervo próprio.

Figura 64: Sistema de tratamento - Bairro Santo Antônio.

No início do sistema há uma caixa de gordura, construída em tubo de concreto circular de 1000 mm (Figura 65). Essa unidade não existia na concepção inicial, tendo sido implantada em 2017, conforme projeto apresentado no Anexo 08.

Fonte: Acervo próprio.

A unidade de gradeamento também foi construída no interior de um tubo de concreto com diâmetro de 1000 mm, em seu interior há um sexto metálico em aço inoxidável que retém os resíduos sólidos grosseiros (Figura 66), essa unidade também foi implantada apenas em 2017.

Figura 66: Gradeamento grosso – SES Santo Antônio.

Fonte: Acervo próprio.

Na sequência o efluente é direcionado para o tanque séptico, em concreto com formato retangular (10,35 x 5,00 m), onde ocorre o tratamento primário. Desta unidade segue para o filtro anaeróbio, em concreto com formato retangular (6,60 x 6,60 m), para tratamento complementar.

Figura 67: Vista parcial do tanque séptico - SES Santo Antônio.

Fonte: Acervo próprio.

Figura 68: Vista parcial do tanque séptico seguido de filtro anaeróbio – SES Santo Antônio.

Fonte: Acervo próprio.

No final do processo há uma unidade de desinfecção, que consiste em uma estrutura em concreto pré-moldado, circular, com tampa em ferro fundido, e diâmetro de 600 mm (Figura 69).

Figura 69: Unidade de desinfecção - SES Santo Antônio.

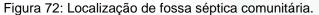
Fonte: Acervo próprio.

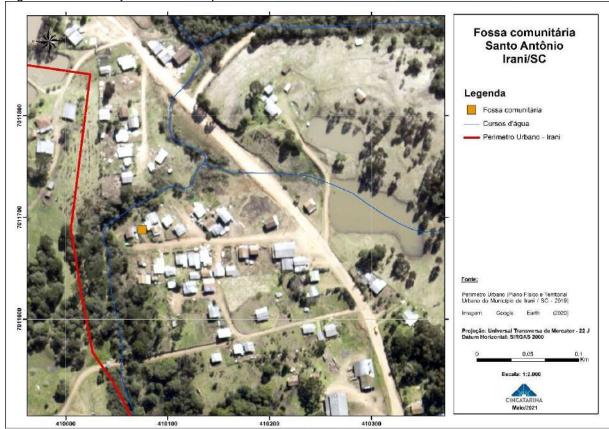
Figura 70: Entorno das unidades de tratamento.

Destaca-se que durante anos esse sistema não recebeu manutenção adequada, a falta de limpeza regular (retirada do lodo) comprometeu o tratamento dos efluentes e passou a gerar transtornos à população, com extravasamentos de efluente e liberação de odores. No final de 2017, esse sistema passou por manutenção, tendo sido feita a retirada do lodo solidificado, o reparo de trincas e fissuras existentes e adequações na estrutura. Atualmente a coleta do lodo excedente do sistema é realizada pela empresa Jacutinga Ambiental, com a qual o Município possui o contrato nº 11/2020, vigente até fevereiro de 2022.

No dia da visita ao sistema, verificou-se a falta de roçada no entorno das unidades de tratamento, conforme Figura 70 e Figura 71. Além disso, não se verificou a presença de agente desinfetante na unidade de desinfecção, em função disso a unidade tem funcionado apenas como uma caixa de passagem.

Não há monitoramento da eficiência de tratamento desses sistemas, nem dos impactos do lançamento do efluente tratado no córrego, não sendo possível avaliar se esse sistema atende os parâmetros vigentes de tratamento e lançamento das legislações federal e estadual.




Figura 71: Entorno das unidades de tratamento.

Fonte: Acervo próprio.

No bairro Santo Antônio há ainda um segundo sistema de esgotamento sanitário, que atende cerca de seis residências, através de uma fossa séptica comunitária e filtro anaeróbio.

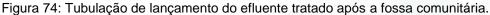

Uma residência foi construída muito próxima do local onde está instalada a fossa comunitária. Segundo uma moradora, esse sistema não recebe manutenção/limpeza há muitos anos. As tampas, aberturas de inspeção, não estão visíveis, também não é possível identificar o tamanho real da fossa séptica.

Figura 73: Tubulação de uma das residências interligada a fossa.

Fonte: Acervo próprio.

Após o tratamento, o efluente é lançado em córrego que passa ao fundo do lote onde o sistema fossa/filtro está instalado. Não há monitoramento desse sistema para avaliar sua eficiência de tratamento e os impactos causados no córrego onde o efluente tratado é lançado.

Bairro Alto Irani

No bairro Alto Irani há dois subsistemas de esgotamento sanitário alternativos que atendem parcialmente o bairro. Conforme diagnóstico do PMSB (2011), as redes coletoras desses dois sistemas totalizavam 1.281 metros de extensão naquele ano, não há um cadastro atualizado e nem informações que permitam estimar o número de domicílios e pessoas atendidas por esses dois subsistemas.

Em visita ao bairro Alto Irani foi identificado um local onde havia esgoto sanitário escoando pela lateral da via e caindo na rede de drenagem pluvial. Segundo moradores, este efluente estava extravasando da rede coletora de esgoto pertencente ao SES Alto Irani 01, que passa naquele ponto.

Figura 76: Ponto de vazamento da rede coletora de esgoto – SES Alto Irani 01.

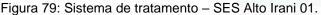

O sistema de tratamento do SES Alto Irani 01 é composto por tanque séptico e filtro anaeróbio, posteriormente ao tratamento o efluente escoa por canal de drenagem (Figura 77 e Figura 79).

Figura 78: Caixa de entrada - SES Alto Irani 01.

Fonte: Acervo próprio.

Fonte: Acervo próprio.

No dia da visita ao sistema (SES Alto Irani 01), observou-se a falta de limpeza e de roçada regular no entorno das unidades de tratamento. Além disso, a unidade de tratamento não possui qualquer tipo de restrição de acesso e de delimitação de área, há uma edificação muito próxima ao sistema.

Já o sistema de tratamento do SES Alto Irani 02 é composto por tanque séptico, filtro anaeróbio e unidade de desinfecção, ocorrendo o lançamento do efluente em curso d'água próximo ao sistema (Figura 80 a Figura 82). Neste sistema também se observou a falta de roçada regular no entorno das unidades de tratamento. Além disso, não foi verificada a presença de agente desinfetante na unidade de

desinfecção, fazendo com que esta funcionasse apenas como uma caixa de passagem.

Figura 80: Sistema de tratamento - SES Alto Irani 02.

Fonte: Acervo próprio.

Figura 81: Tanque séptico seguido de filtro anaeróbio - SES Alto Irani 02.

Figura 82: Unidade de desinfecção – SES Alto Irani 01.

Fonte: Acervo próprio.

Da mesma forma que no sistema do bairro Santo Antônio, as unidades de tratamento de esgoto do bairro Alto Irani ficaram anos sem receber manutenção adequada. Em 2018, as unidades SES Alto Irani 02 passaram por limpeza e reparos estruturais. Atualmente, a remoção do lodo excedente dessas unidades de tratamento também é realizada pela empresa Jacutinga ambiental.

Não há monitoramento da eficiência de tratamento desses sistemas. Não sendo possível avaliar se esse sistema atende os parâmetros vigentes de tratamento e lançamento das legislações federal e estadual.

8.2.2.2 Sistemas individuais de tratamento

O código de edificações de Irani, instituído pela Lei Complementar nº 89 de 2018, define que todas as edificações que não sejam servidas por rede pública de coleta de esgoto sanitário deverão ser dotadas de fossa séptica, seguido de outra forma de tratamento tecnicamente reconhecida, devendo ser considerados durante a implantação do sistema aspectos como a capacidade absorção do solo e o nível do lençol freático. Essa Lei ainda explicita que "é vedada, em qualquer hipótese a utilização das galerias das águas pluviais, bem como o sistema de drenagem pluvial (sarjetas e vias públicas) para o escoamento do esgoto sanitário "in natura" (IRANI, 2018).

Desta forma, para efeito de liberação e regularização de obras, a Prefeitura Municipal exige a ligação a rede coletora ou a apresentação de projeto de sistema de

tratamento individual. Após a aprovação do projeto por equipe técnica, é realizada fiscalização do sistema implantado por agente da vigilância sanitária.

Apesar de exigir a implantação dos sistemas individuais, a legislação municipal não explicita a obrigatoriedade da manutenção dos sistemas implantados, não sendo realizada fiscalização para verificar se estes estão operando adequadamente.

Conforme informações da Prefeitura Municipal, a combinação de tanque séptico e filtro anaeróbio tem sido normalmente utilizada nos locais do município onde não há rede coletora de esgoto. O tanque séptico remove fisicamente por sedimentação os sólidos suspensos. A parte líquida segue ao filtro para complementar a digestão anaeróbia. Em geral, o filtro anaeróbio apresenta fluxo ascendente, trabalhando de forma afogada (sem ar) podendo trabalhar com altas cargas de matéria orgânica (DBO).

A Tabela 49 apresenta as eficiências de remoção dos principais parâmetros para tanque séptico seguido de filtro anaeróbio, para demonstração da melhoria da qualidade do efluente.

Tabela 49: Eficiência de Tratamento para Tanque séptico seguido de Filtro Anaeróbio

Parâmetro	Eficiência
DBO5,20	40 a 75%
DQO	40 a 70%
Sólidos em suspensão	60 a 90%
Sólidos sedimentáveis	≥70%
Nitrogênio amoniacal	/- I \
Nitrato	-
Fosfato	20 a 50%
Coliformes Fecais	

Fonte: ABNT 13969 (1997).

Dados do censo demográfico de 2010 indicam que, naquele ano, 37,02% da população informou utilizar-se de fossa séptica para tratamento dos seus efluentes, 10,36% relataram a destinação para rede coletora de esgoto ou drenagem pluvial, 49,67% utilizavam-se de fossas rudimentares, que são sistemas sem comprovação de eficiência, e outros 2,95% outras formas de tratamento e disposição do esgoto, como: lançamento diretamente em cursos d'água, valas etc.

A Tabela 50 apresenta as formas de esgotamento sanitário adotadas pela população conforme situação urbana ou rural.

Tabela 50: Técnicas de esgotamento sanitário utilizada pela população do município de Irani.

Tipo de esgotamento sanitário	População urbana (%)	População rural (%)
Rede geral de esgoto ou pluvial	15,1	0,1
Fossa séptica	34,3	42,9
Fossa rudimentar	48,3	52,6
Outros	2,3	4,4
Total	100	100

Fonte: IBGE (2010).

Em 2018, o município iniciou, em parceria com o Consórcio Multifinalitário do Alto Uruguai Catarinense - Consórcio Lambari e a Agência Reguladora Intermunicipal de Saneamento – ARIS, a elaboração do "Diagnóstico da situação atual sobre a Gestão do Esgotamento Sanitário". Neste trabalho, que abrangeu o perímetro urbano do município, foram levantadas informações sobre as soluções de esgotamento de sanitário adotadas pela população urbana de Irani, para avaliar as condições da destinação de esgotos sanitários das edificações do perímetro urbano. Este estudo sofreu atrasos em seu cronograma em função da pandemia do COVID-19 e ainda não havia sido concluído até a finalização deste diagnóstico.

Entre julho de 2020 e fevereiro de 2021 esteve disponível uma pesquisa online para a população do município de Irani. A pesquisa tinha como intuito coletar dados mais recentes junto à população para auxiliar no entendimento de como se dava a prestação dos serviços de saneamento do município e permitir que os munícipes avaliassem sua satisfação em relação a esses.

Em relação ao item de esgotamento sanitário da pesquisa, a maior parte dos participantes informou destinar seus efluentes para rede coletora de esgoto ou tratálos através de fossas sépticas.

É possível que parte dos participantes que indicaram o uso de fossa séptica/tanque séptico em suas residências utilizem na verdade sistemas normalmente chamados de fossas rudimentares, que são escavações no solo preenchidas com pedras, onde o efluente lançado e infiltra diretamente no solo, que não possuem eficiência de tratamento.

Outro ponto a se destacar, foi que participantes que residem nos bairros Grisa e Nossa Senhora Aparecida informaram que suas residências eram atendidas por sistema de coleta e tratamento de efluentes públicos. Entretanto, nesses dois bairros não há redes coletoras de esgoto implantadas, isso indica que possivelmente essas residências lançam seus efluentes na rede de drenagem pluvial, mas as pessoas acreditam estar dando destino adequado aos seus efluentes, lançando-os na rede coletora de esgoto.

Ainda em relação a forma de tratamento adotada, uma parcela dos participantes da pesquisa indicou destinar esses efluentes diretamente para rede de drenagem, apesar disso ser vedado pela Lei Municipal nº 89/2018.

O Município atualmente disponibiliza o serviço de limpeza de fossa através de empresa terceirizada, a solicitação deve ser feita ao Setor de Tributação, sendo cobrada para a prestação do serviço uma taxa de 25,30 reais, valor vigente no ano de 2021, conforme Lei nº 856/1997, o tempo médio de atendimento após solicitação é de 5 dias úteis.

Destaca-se que, apesar deste serviço ser disponibilizado no município, cerca de 15% dos participantes que informaram utilizar fossa séptica/tanque séptico como tratamento de seus efluentes indicaram não realizar a limpeza de seus sistemas, pois não sabiam da necessidade de limpeza desses ou que tinham dificuldade para solicitar o serviço de limpeza no município. Observa-se, assim, que há uma necessidade de maior divulgação desse serviço, além da realização de trabalhos voltados a instruir a população sobre as formas corretas de realizar a manutenção dos sistemas individuais implantados.

Cabe ressaltar que a manutenção inadequada prejudica a eficiência do processo de tratamento, fazendo com que o tanque séptico passe a funcionar como uma simples caixa de passagem, produzindo efluentes de má qualidade, que contaminam e degradam o meio ambiente e trazem reflexos negativos na saúde pública da população.

8.2.2.3 Custos x receitas

A Lei Federal nº 11.445, estabelece que os serviços públicos de saneamento básico devem ser prestados em regime de sustentabilidade, ou seja, com taxas que

cubram os custos e garantam os investimentos para a prestação dos serviços adequadamente.

O Município não realiza nenhum tipo de cobrança pela prestação do serviço de coleta e tratamentos de efluentes das edificações atendidas pelos sistemas alternativos nos bairros Santo Antônio e Alto Irani.

Em relação cobrança pelo serviço de limpeza de fossa, essa tem como referência taxa definida pela Lei nº 856/1997, que é reajustada anualmente com base no reajuste aplicado sobre a UFIR (Unidade Fiscal de Referência), cuja cobrança se dá por carga coletada.

Na Tabela 51, são apresentados os valores arrecadados pela Prefeitura Municipal referentes a taxa cobrada pelo serviço de limpa fossa, são também apresentados os custos que o Município teve para realização da limpeza dos sistemas coletivos existentes e individuais.

Tabela 51: Arrecadação através de Taxa de Serviços para limpeza de fossa x Custos totais para

manutenção dos sistemas coletivos e limpeza de fossas no município.

Ano	Arrecadação Valor total(R\$)	Custos Valor total(R\$)	Déficit/ Superávit
2019	10.375,43	372.405,02	-362.029,59
2020	11.498,58	423.598,30	-412.099,72

Fonte: Prefeitura Municipal.

Comparando a arrecadação e os custos dos serviços de limpeza, observa-se que a prestação desses serviços pela administração pública não possui viabilidade financeira, a arrecadação no ano de 2020 foi capaz de cobrir apenas 3% dos custos totais. Destaca-se que, além do custo de limpeza/remoção de lodo apresentados, o município também tem custos com pessoal para manutenção e roçada do entorno dos sistemas, aumentando ainda mais o *déficit* existente.

Portanto, é essencial que seja realizado estudo de revisão das taxas cobradas, que busque uma metodologia de cobrança justa aos munícipes e que não comprometa a saúde financeira do município.

8.3 AVALIAÇÃO DO ATENDIMENTO ÀS PROPOSIÇÕES DO PLANO DE SANEAMENTO BÁSICO DE 2011 E SUAS PROPOSTAS DE INVESTIMENTOS

Em seu volume I, o Plano Municipal de Saneamento Básico de Irani do ano de 2011 faz a apresentação das demandas do sistema de esgotamento sanitário, sendo abaixo feito o comentário sobre as atitudes tomadas até o momento pelos atores envolvidos.

1. Projeto de esgoto sanitário com metas e prazos.

<u>Comentários</u>: Demanda não atendida – Não foi elaborado nenhum projeto de sistema de esgotamento sanitário coletivo para o município.

2. Licenciamento ambiental do sistema de tratamento de esgoto.

<u>Comentários</u>: Não atendido. Não foi elaborado projeto ou estudo de concepção, impossibilitando a abertura de processo de licenciamento.

3. <u>Investimentos em Rede Coletora, Interceptores e Acessórios.</u>

<u>Comentários</u>: Demanda não atendida – Não foi elaborado estudo de concepção e projeto executivo, impossibilitando o início das obras para implantação de redes coletoras e acessórios.

4. Investimento em Ligações de Esgoto.

<u>Comentários</u>: Demanda não atendida. Não foi elaborado estudo de concepção e projeto executivo, impossibilitando o início das obras para implantação das ligações de esgoto.

Investimentos na Estação de Tratamento de Esgotos.

<u>Comentários</u>: Demanda não atendida. Não foi elaborado estudo de concepção e projeto executivo, impossibilitando o início das obras para implantação da estação de tratamento de efluentes.

6. Investimento em esgotamento sanitário na área rural.

<u>Comentários</u>: Demanda não atendida. Não informações sobre investimentos realizados na área rural.

- 7. <u>Programa de conscientização de interferências (qualidade) no esgoto.</u>

 <u>Comentários</u>: Não atendido. Não há programa ou histórico de ações visando esse fim.
- 8. <u>Limpeza das fossas sépticas coletivas existentes no município.</u>

 <u>Comentários</u>: O município possui contrato com empresa para prestação do serviço de limpezas de fossas sépticas no município.
- 9. Programa para adequação à legislação/normas de limpeza e destinação final do lodo dos sistemas individuais de esgoto, com a contratação de profissional habilitado para aprovação de projetos relacionados ao alvará de construção etc.
 Comentários: Demanda parcialmente atendida. Segundo a Prefeitura Municipal, atualmente há profissional habilitado para aprovação dos projetos. No entanto, não foram identificadas na legislação municipal diretrizes ou normas que versem sobre a

foram identificadas na legislação municipal diretrizes ou normas que versem sobre a limpeza e destinação do lodo dos sistemas individuais, há apenas referência a obrigatoriedade de implantação de sistema de fossa séptica nos locais não atendidos por sistema coletivo.

- Cadastro georreferenciado da rede coletora de esgoto (COHAB).
 Comentários: Demanda não atendida.
- 11. <u>Programa de apoio à construção de banheiros para população de baixa renda.</u> <u>Comentários</u>: Demanda não atendida.
- 12. <u>Cadastro de residências que possuem sistema individualizado de tratamento (alternativo).</u>

<u>Comentários</u>: Demanda parcialmente atendida. O município iniciou em 2018 um diagnóstico dos sistemas individuais existentes, no entanto, esse estudo ainda não foi finalizado.

13. <u>Programa para controle tarifário e instrumentalização de setor para atendimento.</u> <u>Comentários</u>: Demanda não atendida. Não há programa para controle tarifário dos serviços de esgotamento sanitário, não havendo cobrança de tarifa nos locais onde

serviço é prestado. O Município dispõe apenas uma taxa relativa ao serviço de limpeza dos sistemas individuais, cabe destacar que o valor arrecadado não é capaz de garantir a viabilidade econômica desse serviço.

8.4 PROGNÓSTICO

8.4.1 Área Urbana

A implantação de sistema de esgotamento sanitário que atenda toda a área urbana do município de Irani é imprescindível tanto no aspecto ambiental como no de saúde pública, além disso, com a aprovação do Novo Marco Legal do Saneamento, Lei nº 14.026/2020, sua implantação passou a ser também uma obrigatoriedade.

Com o intuito de entender a demandas na área urbana do município, foram estimados os volumes totais de efluentes produzidos (Tabela 52) para isso foram consideradas a projeção da população urbana, apresentada no Diagnóstico Social (Produto 01) e a evolução do índice per capita micromedido, apresentada no Prognóstico do Abastecimento de água (Produto 02), sobre o produto desses valores foi aplicado ainda um coeficiente de retorno (C) de 0,80, valor recomendado pela NBR 9649 quando inexistem dados locais.

Tabela 52: Produção total de efluentes na área urbana do município.

Ano	Volumes de água tratada micromedidos ⁸ (m³)	Volumes de efluentes produzidos ⁹ (m³)
2021	302.382	241.905
2022	311.375	249.100
2023	320.489	256.391
2024	329.687	263.750
2025	338.968	271.175
2026	348.369	278.695
2027	357.851	286.281
2028	367.413	293.931
2029	377.094	301.675
2030	386.853	309.482
2031	396.689	317.351
2032	406.642	325.313

⁸ Valores considerando a população urbana total.

⁹ Neste volume não foram consideradas as infiltrações de rede.

Ano	Volumes de água tratada micromedidos ⁸ (m³)	Volumes de efluentes produzidos ⁹ (m³)		
2033	416.629	333.304		
2034	426.774	341.419		
2035	436.951	349.561		
2036	447.242	357.794		
2037	457.605	366.084		
2038	468.082	374.466		
2039	478.630	382.904		
2040	489.246	391.397		
2040	495.553	396.443		

Quanto à implantação do sistema de esgotamento sanitário coletivo na área urbana, propõe-se um cenário no qual essa implantação ocorra de forma gradual, substituindo os sistemas individuais e os sistemas coletivos alternativos existentes, e garantindo que, até dezembro de 2033, 90% da população seja contemplada com coleta e tratamento de esgotos, conforme meta definida na Lei Federal nº 11.445/2007. A partir de 2033 adotou-se um ritmo mais lento, já que os primeiros anos exigirão grandes investimentos, alcançando no final do período de planejamento uma cobertura de 95% através de rede coletora e tratamento de esgoto centralizado.

O índice de cobertura com base nesse cenário é apresentado na Tabela 53.

Tabela 53: Evolução do Índice de Atendimento do SES Sede Urbana.

Ano	Índice de Cobertura do SES (%)) População Atendida SES (hab)
2022	0	0
2023	0	0
2024	0	0
2025	10	892
2026	20	1.815
2027	30	2.769
2028	40	3.753
2029	50	4.768
2030	60	5.813
2031	70	6.887
2032	80	7.992
2033	90	9.125
2034	91	9.363
2035	92	9.602

Ano	Índice de Cobertura do SES (%)	População Atendida SES (hab)
2036	93	9.844
2037	94	10.088
2038	95	10.335
2039	95	10.474
2040	95	10.612
2041	95	10.748

A projeção de atendimento do sistema coletivo não considerou possíveis dificuldades ocasionadas pela configuração do relevo do município, como as soleiras negativas que em alguns casos poderão inviabilizar a ligação à rede coletora, e a existências de moradias isoladas na sede urbana, cuja distância também pode tornar a ligação inviável. Essas situações deverão ser avaliadas durante a elaboração de projeto básico.

A projeção de ligações e economias considerando a evolução do atendimento do sistema de esgotamento sanitário é apresentada na Tabela 54.

Tabela 54: Projeção de ligações e economias ativas do SES.

Ano		lencial cial	Resid	encial	Com	ercial	Púl	olica	Indu	strial	Total de Ligações	Total de Economias
	Lig.	Econ.	Lig.	Econ.	Lig.	Econ.	Lig.	Econ.	Lig.	Econ.		
2022	0	0	0	0	0	0	0	0	0	0	0	0
2023	0	0	0	0	0	0	0	0	0	0	0	0
2024	0	0	0	0	0	0	0	0	0	0	0	0
2025	4	4	235	268	13	22	5	6	0	0	257	300
2026	9	9	476	546	25	46	11	12	0	0	521	613
2027	13	13	724	833	39	70	17	18	0	1	793	935
2028	18	18	978	1.130	53	94	23	25	1	1	1073	1268
2029	23	23	1.239	1.435	67	120	29	32	1	1	1359	1611
2030	28	28	1.506	1.749	82	146	36	38	1	1	1653	1.962
2031	33	33	1.779	2.073	97	173	42	46	1	2	1952	2327
2032	39	39	2.058	2.405	112	201	49	53	1	2	2259	2700
2033	44	44	2.343	2.746	128	229	56	60	1	2	2572	3081
2034	45	45	2.397	2.818	131	235	57	62	1	2	2631	3162
2035	46	46	2.451	2.890	135	241	59	64	1	2	2692	3243
2036	47	47	2.505	2.963	138	247	60	65	1	2	2751	3324
2037	49	49	2.560	3.036	141	254	62	67	2	2	2814	3408

Ano		lencial cial	Resid	encial	Com	ercial	Púł	olica	Indu	strial	Total de Ligações	Total de Economias
	Lig.	Econ.	Lig.	Econ.	Lig.	Econ.	Lig.	Econ.	Lig.	Econ.		
2038	50	50	2.615	3.111	145	260	63	68	2	2	2875	3491
2039	51	51	2.642	3.152	147	263	64	69	2	3	2906	3538
2040	51	51	2.669	3.194	149	267	65	70	2	3	2936	3585
2041	52	52	2.696	3.235	151	270	66	71	2	3	2967	3631

A Tabela 55 apresenta uma estimativa da evolução da extensão das redes coletoras de esgoto ativas do novo sistema urbano, tendo como referência o índice médio de metros de rede para atendimento de uma ligação observado no sistema de abastecimento de água. Destaca-se, no entanto, que esses valores são apenas uma estimativa, já que diferente dos sistemas de distribuição de águas que são pressurizados, o transporte de esgoto, em geral, ocorre por gravidade, assim o traçado dessas redes nem sempre acompanha o traçado das redes de distribuição de água.

Tabela 55: Evolução da extensão de rede coletora ativa – novo SES urbano.

Ano	Extensão total da rede de distribuição (m)	Ano	Extensão total da rede de distribuição (m)
2022	0	2032	48.135
2023	0	2033	54.811
2024	0	2034	56.089
2025	5.477	2035	57.368
2026	11.113	2036	58.657
2027	16.906	2037	59.952
2028	22.852	2038	61.257
2029	28.951	2039	61.915
2030	35.200	2040	62.565
2031	41.593	2041	63.205

Considerando a evolução do índice de tratamento e a extensão das redes coletoras, foram estimados os volumes de efluentes coletados que deverão ser tratados em estação de tratamento de esgoto (ETE) a ser implantada.

Tabela 56: Volume de efluentes a ser tratado em ETE- SES área urbana.

Ano	Volume anual de efluentes produzido nas edificações (m³)	Volume de infiltrações ¹⁰	Volume anual médio a ser tratado ETE (m³)	Vazão Média ETE ¹¹ (I/S)	Vazão Tratada no Dia de Maior Consumo ¹² (I/s)
2022	0,00	0,00	0,00	0,00	0,00
2023	0,00	0,00	0,00	0,00	0,00
2024	0,00	0,00	0,00	0,00	0,00
2025	27.117	17.271	44.389	1,41	1,58
2026	55.739	35.046	90.785	2,88	3,23
2027	85.884	53.314	139.198	4,41	4,96
2028	117.572	72.066	189.638	6,01	6,76
2029	150.837	91.301	242.139	7,68	8,63
2030	185.689	111.006	296.695	9,41	10,59
2031	222.146	131.169	353.315	11,20	12,61
2032	260.251	151.797	412.048	13,07	14,72
2033	299.973	172.853	472.826	14,99	16,90
2034	310.691	176.884	487.575	15,46	17,43
2035	321.596	180.915	502.511	15,93	17,97
2036	332.748	184.981	517.729	16,42	18,53
2037	344.119	189.063	533.182	16,91	19,09
2038	355.743	193.179	548.922	17,41	19,66
2039	363.758	195.256	559.014	17,73	20,03
2040	371.827	197.304	569.131	18,05	20,41
2041	376.620	199.324	575.944	18,26	20,65

É importante ressaltar que a cobertura de 95% apresentada no cenário acima se refere apenas ao novo sistema coletivo de esgotamento sanitário, o que não significa que as áreas não atendidas por esse sistema serão negligenciadas e não possuirão condições adequadas de esgotamento sanitário. Nessas áreas, deverão ser empregados sistemas individuais ou descentralizados, devendo ocorrer fiscalização constante desses sistemas.

Como já foi apresentado, os SES alternativos em operação não são monitorados, não sendo possível avaliar se os efluentes tratados são capazes de atender os limites de lançamento estabelecidos na Resolução CONAMA nº 430/2011

¹⁰ Adotada taxa de contribuição de infiltração = 0,1 l/s.km.

¹¹ Considerando 24 horas de operação.

¹² Considerando um coeficiente de máxima vazão diária (K1)=1,2 sobre os volumes médios produzidos— NBR 9649 (ABNT,1986)

e na Lei Estadual nº 14.675/2009. Recomenda-se que seja implantado plano de monitoramento para estes sistemas, tendo como referência as orientações do Enunciado 01 do Instituto do Meio Ambiente de Santa Catarina (IMA/SC).

Se a partir do monitoramento forem identificadas inconformidades no efluente final, deverão ser tomadas medidas corretivas para reduzir os impactos desses sobre o meio ambiente até que estes sistemas sejam substituídos pelo novo sistema coletivo que será implantado na área urbana municipal.

A Lei nº 11.445/2007, que estabelece as diretrizes nacionais para o Saneamento Básico, dispõe em seu Art. 45 que

"As edificações permanentes urbanas serão conectadas às redes públicas de abastecimento de água e de esgotamento sanitário disponíveis e sujeitas ao pagamento de taxas, tarifas e outros preços públicos decorrentes da disponibilização e da manutenção da infraestrutura e do uso desses serviços. (Redação pela Lei nº 14.026, de 2020)."

"§ 1 Na ausência de redes públicas de saneamento básico, serão admitidas soluções individuais de abastecimento de água e de afastamento e destinação final dos esgotos sanitários, observadas as normas editadas pela entidade reguladora e pelos órgãos responsáveis pelas políticas ambiental, sanitária e de recursos hídricos (grifo nosso)."

Os sistemas de tratamento individuais podem ser soluções satisfatórias para o tratamento dos efluentes, desde que estejam corretamente dimensionados, executados e com a devida manutenção e controle do tratamento. Portanto, é uma alternativa possível para os locais onde o sistema coletivo de coleta e tratamento de esgoto ainda não foi implantado ou mesmo quando a ligação ao sistema público é inviável economicamente ou tecnicamente.

Assim, a implantação de sistemas individuais de tratamento deve continuar a ser fomentada até que o sistema coletivo de esgotamento sanitário seja implantado e esteja operando no município. É importante que, após a conclusão do diagnóstico que está em andamento, seja criado um cadastro de todas as edificações que dispõem de soluções individuais, incluindo características estruturais, tipo de tratamento e frequência de limpeza das unidades, que deverá ser continuamente atualizado.

Recomenda-se que o município regulamente através de lei a obrigatoriedade da manutenção destes sistemas, exigindo a comprovação da limpeza periódica conforme frequência indicada no cadastro.

Considerando que no município existem áreas já consolidadas com necessidade de regularização fundiária, sugere-se assim, não só o cadastramento das soluções existentes, mas a obrigatoriedade de que os sistemas de tratamento individual sejam adequados às normas vigentes, tanto para áreas já consolidadas, quanto para áreas de expansão com baixa expectativa de atendimento pelo sistema coletivo que será implantado.

O município deverá buscar recursos junto a programas do governo estadual e federal para auxiliar a população que se encontra em situação de vulnerabilidade financeira a realizar as regularizações necessárias.

A partir do momento em que o município possuir uma diretriz de execução e expansão do sistema público de esgotamento sanitário, deverá direcionar e exigir dos novos loteadores que seus empreendimentos implantem sistemas de esgotamento sanitário, incluindo ou não sistemas de tratamento próprios, já considerando a possibilidade de interligação destes com o sistema coletivo.

8.4.2 Área Rural

Na área rural, a baixa densidade populacional e distância entre as edificações compromete a implantação de sistemas de esgotamento sanitário compostos por redes coletoras e tratamento centralizado de esgoto, uma vez que os custos envolvidos se tornam bastante elevados. Dessa forma, a universalização do esgotamento sanitário adequado no município deve se dar através do fomento de sistemas individuais ou descentralizados.

Inicialmente, recomenda-se que o diagnóstico que está em andamento na área urbana seja ampliado para contemplar a área rural, que através deste sejam verificados os métodos de esgotamentos sanitário utilizados, sendo cadastradas as soluções adotadas por cada propriedade e levantado o número de sistemas que precisarão ser adequados ou implantados.

Em parceria com órgãos de referência como FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA e EPAGRI, a municipalidade deverá buscar alternativas para auxiliar a população rural na adequação ou implantação de sistemas individuais tecnicamente adequados, que tenham operação e manutenção simplificada. É importante que exista pelo menos um

profissional qualificado no município que esteja disponível para orientar a população quanto à implantação e operação dos sistemas individuais de tratamento de esgoto.

Considerando um cenário no qual, apesar da redução da população prevista nas projeções do Diagnóstico Social (Produto 01), o número de domicílios existentes na área rural em 2010 tenha se mantido constante e que estes domicílios não tenham realizado melhorias em seus sistemas de esgotamento sanitário, haveria atualmente cerca 515 domicílios que precisariam implantar um novo sistema de tratamento para os seus efluentes.

A Tabela 57 apresenta um cenário de implantação/adequação gradual de sistemas individuais na área rural.

Tabela 57: Evolução da porcentagem de domicílios com sistema de tratamento de esgoto individual

adequado e número de sistemas individuais a implantar/adequar.

Ano	Número de domicílios na área rural	Sistemas individuais adequados implantados (%)	Número de sistemas individuais a implantar/adequar
2021	903	43%	0
2022	903	43%	0
2023	903	49%	57
2024	903	56%	57
2025	903	62%	57
2026	903	68%	57
2027	903	75%	57
2028	903	81%	57
2029	903	87%	57
2030	903	94%	58
2031	903	100%	58
2032	903	100%	0
2033	903	100%	0
2034	903	100%	0
2035	903	100%	0
2036	903	100%	0
2037	903	100%	0
2038	903	100%	0
2039	903	100%	0
2040	903	100%	0
2041	903	100%	0

Recomenda-se que o município busque recursos junto a programas do governo estadual e federal para viabilizar a implantação dos sistemas individuais na área rural, sobretudo para contemplar as pessoas que se encontram em situação de vulnerabilidade financeira.

Além disso, a população rural também deverá ser alvo de campanhas contínuas de educação ambiental e sanitária, que destaquem a importância do tratamento dos efluentes gerados e da manutenção dos sistemas individuais, evidenciando os benefícios desses para saúde e para o meio ambiente.

8.5 CONSIDERAÇÕES FINAIS

Como conclusões deste diagnóstico e prognóstico, para o estabelecimento de prioridades de ação e investimentos nos programas e projetos que serão objeto de detalhamento em etapa posterior deste Plano, destacam-se as recomendações que sequem:

- Manter rotina de avaliação, aprovação de projetos, com base nas normativas em vigor para implantação de soluções individuais. Fiscalizando a execução com os projetos aprovados;
- Ampliar o diagnóstico dos sistemas sanitários que está em andamento para a área rural, realizar cadastro de todas as edificações que dispõem de soluções individuais, incluindo características estruturais, tipo de tratamento e frequência de limpeza das unidades;
- Promover ações para a regularização dos sistemas individuais implantados em desconformidade com a normativas vigentes. Além de regulamentar em lei a obrigatoriedade de manutenção dos sistemas implantados, conforme frequência do projeto aprovado na Prefeitura;
- 4. Elaborar um programa de monitoramento dos sistemas alternativos de tratamento de esgoto, sob gestão do Município, que avalie a eficiência de tratamento destes e o possível impacto do lançamento dos efluentes tratados sob os corpos receptores.
- 5. Realizar adequações nos sistemas alternativos coletivos, com a manutenção das redes coletoras nos pontos com vazamento e ajustes, se necessário, no

- tratamento conforme necessidade apontada pelo monitoramento destas unidades.
- Revisão da taxa de serviço de limpeza dos sistemas individuais, buscando metodologia de cobrança justa aos munícipes e que não comprometa a saúde financeira do município;
- 7. Elaborar projetos básico e executivo do Sistema de Esgotamento Sanitário coletivo (SES) da área urbana;
- Elaborar cronograma sequencial necessário às obras decorrentes dos projetos, com implantação conforme disponibilidade de recursos não onerosos;
- Adotar instruções normativas para que novos empreendimentos da sede urbana já possam ser liberados seguindo as diretrizes do projeto básico do SES;
- 10. Apoiar as populações rurais no tratamento e disposição dos esgotos sanitários, buscando parceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA, EPAGRI, Vigilância Sanitária, Secretaria da Agricultura e Meio Ambiente do município;
- 11. Desenvolver campanhas de educação sanitária aos usuários das soluções individuais e alternativas existentes e aos futuros usuários do sistema coletivo, para uma adequada utilização, visando a manutenção da funcionalidade destes sistemas.

9 LIMPEZA URBANA E MANEJO DE RESÍDUOS SÓLIDOS

9.1 APRESENTAÇÃO

Este capítulo traz a revisão do Diagnóstico e Prognóstico dos Sistemas de Limpeza Urbana e Manejo de Resíduos Sólidos (Produto 4), parte integrante da 1ª Revisão do Plano Municipal de Saneamento Básico (PMSB) de Irani, desenvolvido conforme Proposta 132/2020 firmada entre o Município e o Consórcio Interfederativo Santa Catarina – CINCATARINA.

Este relatório contém as características da operação dos atuais sistemas existentes no município, a descrição e avaliação da operação dos serviços, a verificação da execução das proposições e metas do PMSB 2011 e as estimativas de geração de resíduos para o horizonte de planejamento.

9.2 CARACTERÍSTICAS GERAIS

A limpeza urbana e o manejo dos resíduos sólidos são elementos essenciais ao planejamento urbano, à proteção e à conservação do Meio Ambiente e, acima de tudo, à garantia de qualidade de vida satisfatória à população. De acordo com o artigo 30, inciso V, da Constituição Federal (1988), a limpeza pública e o manejo de resíduos sólidos urbanos são serviços de responsabilidade do município.

O setor de manejo dos resíduos sólidos geralmente fica a cargo dos municípios que na maioria das vezes operam esse serviço de maneira não sustentável economicamente. Em 2008, 61,2% das prestadoras dos serviços de manejo dos resíduos sólidos eram entidades vinculadas à administração direta do poder público; 34,5% eram empresas privadas sob o regime de concessão pública ou terceirização; e 4,3% eram entidades organizadas sob a forma de autarquias, empresas públicas, sociedades de economia mista e consórcios (IBGE, 2008).

De acordo com o Panorama dos Resíduos Sólidos 2018/2019, elaborado pela Associação Brasileira das Empresas de Limpeza Pública (Abrelpe), no ano de 2018 foram gerados 79 milhões de toneladas de resíduos no Brasil. Desse total, 92% foram coletados. Dos resíduos coletados em 2018, 59,5% receberam destinação adequada nos aterros sanitários. Em relação aos resíduos encaminhados a aterros sanitários, o panorama da disposição final em Santa Catarina sofreu uma evolução extremamente

positiva, culminando na constatação pela Associação Brasileira de Engenharia Sanitária e Ambiental (ABES/SC), em 2012, que 100% dos municípios catarinenses destinavam seus RSU para aterros sanitários, não existindo mais a destinação de maneira inadequada para aterros controlados ou lixões. Atualmente o estado de Santa Catarina não possui mais lixões em operação em seu território, confirmando a tendência de melhora no setor.

Conforme o Plano Estadual de Resíduos Sólidos de Santa Catarina - PERS SC (2018) existem, atualmente, 34 aterros sanitários no estado que recebem os resíduos sólidos urbanos de todos os 295 municípios catarinenses, sendo que 79,41% dos aterros são operados por empresas privadas; 17,64% diretamente pelos municípios (seja por órgão/secretaria ou autarquia) ou por meio de consórcios intermunicipais; e 2,95% por associações de catadores.

Em Irani, a disposição dos resíduos coletados é realizada por empresa privada, confirmando a tendência apontada no PERS.

9.3 CLASSIFICAÇÃO

A Associação Brasileira de Normas técnicas em sua NBR 10.004/2004 define resíduos sólidos como:

Resíduos nos estados sólido e semi-sólido, que resultam de atividades de origem industrial, doméstica, hospitalar, comercial, agrícola, de serviços e de varrição. Ficam incluídos nesta definição os lodos provenientes de sistemas de tratamento de água, aqueles gerados em equipamentos e instalações de controle de poluição, bem como determinados líquidos cujas particularidades tornem inviável o seu lançamento na rede pública de esgotos ou corpos de água, ou exijam para isso soluções técnica e economicamente inviáveis em face à melhor tecnologia disponível."

A Norma também classifica os resíduos baseados:

a) No risco potencial de contaminação do Meio Ambiente:

Resíduos Classe I – Perigosos

São aqueles que, em função de suas características intrínsecas de inflamabilidade, corrosividade, reatividade, toxicidade ou patogenicidade, apresentam riscos à saúde pública através do aumento da mortalidade ou da morbidade, ou ainda

provocam efeitos adversos ao meio ambiente quando manuseados ou dispostos de forma inadequada.

Resíduos Classe II - Não Perigosos

Dividem-se em duas subclasses: não inertes e inertes.

Resíduos Classe II A - Não Inertes

São os resíduos que podem apresentar características de combustibilidade, biodegradabilidade ou solubilidade, com possibilidade de acarretar riscos à saúde ou ao meio ambiente, não se enquadrando nas classificações de resíduos Classe I – Perigosos – ou Classe II B – Inertes.

Resíduos Classe II B – Inertes

São aqueles que, por suas características intrínsecas, não oferecem riscos à saúde e ao meio ambiente, e que, quando amostrados de forma representativa, segundo a norma NBR 10.007, e submetidos a um contato estático ou dinâmico com água destilada ou deionizada, a temperatura ambiente, conforme teste de solubilização segundo a norma NBR 10.006, não tiverem nenhum de seus constituintes solubilizados a concentrações superiores aos padrões de potabilidade da água, conforme listagem nº 8 (Anexo H da NBR 10.004), excetuando-se os padrões de aspecto, cor, turbidez e sabor.

A Lei Federal nº 12.305/2010 que Instituiu a Política Nacional de Resíduos Sólidos também classifica os resíduos:

I – Quanto à origem:

- a. resíduos domiciliares: os originários de atividades domésticas em residências urbanas:
- b. resíduos de limpeza urbana: os originários da varrição, limpeza de logradouros e vias públicas e outros serviços de limpeza urbana;
 - c. resíduos sólidos urbanos: os resíduos englobados nas alíneas "a" e "b";
- d. resíduos de estabelecimentos comerciais e prestadores de serviços: os gerados nessas atividades, excetuados os referidos nas alíneas "b", "e", "g", "h" e "j";

- e. resíduos dos serviços públicos de saneamento básico: os gerados nessas atividades, excetuados os referidos na alínea "c";
- f. resíduos industriais: os gerados nos processos produtivos e instalações industriais;
- g. resíduos de serviços de saúde: os gerados nos serviços de saúde, conforme definido pelos órgãos do SISNAMA e do SNVS;
- h. resíduos da construção civil: os gerados nas construções, reformas, reparos e demolições de obras de construção civil, incluídos os resultantes da preparação e escavação de terrenos para obras civis;
- i. resíduos agrosilvopastoris: os gerados nas atividades agropecuárias e silviculturais, incluídos os relacionados a insumos utilizados nessas atividades;
- j. resíduos de serviços de transportes: os originários de portos, aeroportos, terminais alfandegários, rodoviários e ferroviários, e passagens de fronteira;
- k. resíduos de mineração: os gerados na atividade de pesquisa, extração ou beneficiamento de minérios.

II - Quanto à periculosidade:

- a. resíduos perigosos: resíduos que, em razão de suas características de inflamabilidade, corrosividade, reatividade, toxicidade, patogenicidade, carcinogenicidade, teratogenicidade e mutagenicidade, apresentam significativo risco à saúde pública ou à qualidade ambiental, de acordo com lei, regulamento ou norma técnica;
 - b. resíduos não perigosos: resíduos não enquadrados na alínea "a".

Parágrafo único. Respeitado o disposto no art. 20, os resíduos referidos na alínea "d" do inciso I do caput, se caracterizados como não perigosos, podem, em razão de sua natureza, composição ou volume, ser equiparados aos resíduos domiciliares pelo Poder Público Municipal.

O Estado de Santa Catarina na sua Lei Estadual nº 14.675, de 13 de abril de 2009 que "Instituiu o Código Estadual do Meio Ambiente", em seu art. 28 definiu:

[&]quot;Art. 28. Para os fins previstos nesta Lei entende-se por:

XIX - coprocessamento de resíduos: técnica de utilização de resíduos sólidos industriais a partir do seu processamento como substituto parcial de matéria-prima ou combustível;

XXIII - disposição final de resíduos sólidos: procedimento de confinamento de resíduos no solo, visando à proteção da saúde pública e a qualidade do meio

ambiente, podendo ser empregada a técnica de engenharia denominada como aterro sanitário, aterro industrial ou aterro de resíduos da construção civil;

XXXIX - minimização de resíduos: redução dos resíduos sólidos, a menor volume, quantidade e periculosidade possíveis, antes do tratamento e/ou disposição final adequada;

XLVII - prevenção da poluição ou redução na fonte: constituísse na utilização de processos, práticas, materiais, produtos ou energia que evitam ou minimizam a geração de resíduos na fonte e reduzam os riscos para a saúde humana e para o meio ambiente;

LI - reciclagem: consiste em prática ou técnica na qual os resíduos podem ser usados como matéria-prima ou insumo dentro da mesma atividade que o gerou ou em outra atividade, incluindo a necessidade de tratamento para alterar suas propriedades físico-químicas;

LIII - resíduos sólidos: resíduos nos estados sólido e semissólido, que resultam de atividades de origem industrial, doméstica, hospitalar, comercial, agrícola, de serviços e de varrição;

LIV - resíduo sólido urbano: são os provenientes de residências ou qualquer outra atividade que gere resíduos com características domiciliares, bem como os resíduos de limpeza pública urbana, ficando excluídos os resíduos perigosos;

LV - reutilização: consiste em prática ou técnica na qual os resíduos podem ser usados repetidamente na forma em que se encontram, sem necessidade de tratamento para alterar as suas características, exceto por atividades de limpeza ou segregação;

LVIII - tratamento de resíduos sólidos: processos e procedimentos que alteram as características físicas, químicas ou biológicas dos resíduos e conduzem à minimização dos riscos à saúde pública e à qualidade do meio ambiente:

LXI - valorização de resíduos: operação que permite a requalificação de resíduos, notadamente por meio de reutilização, reciclagem, valorização energética e tratamento para outras aplicações;

Com relação ao gerenciamento dos resíduos descritos pela Política Nacional de Resíduos Sólidos, as Prefeituras Municipais são as responsáveis pelos resíduos domiciliares, públicos e comerciais, estes últimos quando equiparados aos domiciliares e gerados em pequenas quantidades. Os demais resíduos são de responsabilidade do gerador.

O poder público municipal também é responsável por definir a equiparação dos resíduos e os limites para classificação em pequeno e grande gerador de resíduos através de leis municipais.

9.4 DIAGNÓSTICO

9.4.1 Prestação de Serviços Públicos

Conforme a Constituição Federal, os serviços de limpeza urbana e manejo de resíduos sólidos urbanos são de titularidade do Município. Em Irani as responsabilidades pelos serviços de manejo, coleta, transporte e destino final dos resíduos sólidos estão divididas conforme a Tabela 58, abaixo.

Tabela 58: Responsáveis pela gestão dos serviços de manejo, coleta, transporte e destino final de resíduos sólidos.

Tipo de resíduo	Ente responsável
Resíduos Domiciliares	Secretaria de Administração
Resíduos Recicláveis	Secretaria de Administração
Resíduos dos serviços de Limpeza pública	Secretaria de Obras
Resíduos dos serviços de saúde	Secretaria de Saúde

Fonte: Secretaria de Planejamento e Gestão de Projetos.

Cabe ressaltar que os resíduos comerciais que possuem as características semelhantes à dos domiciliares também são coletados pelo poder público. A Tabela 59 apresenta os atuais executores dos serviços de limpeza e manejo de resíduos sólidos no município.

Tabela 59: Responsáveis pela execução dos serviços de manejo de resíduos sólidos.

Serviço	Executor
Coleta, transporte, triagem e disposição final	CRI – Coleta e Industrialização de Resíduos
Coleta, transporte, triagem e destinação final	CRI – Coleta e Industrialização de Resíduos
Limpeza pública – Varrição e capina	Secretaria de Serviço Social e Habitação
Limpeza pública – Poda e roçada	Secretaria de Planejamento e Gestão de
Coleta e transporte de resíduos da saúde	CRI – Coleta e Industrialização de Resíduos
Destino final dos resíduos da saúde	CETRILIFE Tratamento de Resíduos de

Fonte: Secretaria de Planejamento e Gestão de Projetos.

9.4.1.1 Resíduos Domiciliares – Resíduos Orgânicos e Rejeitos – Não Recicláveis

9.4.1.1.1 Coleta

A coleta dos resíduos domiciliares não recicláveis é realizada por equipe da empresa CRI Ambiental. O serviço é realizado nas áreas urbana e rural de segunda a sexta-feira pelo sistema de coleta porta a porta, conforme apresentado Figura 83.

Figura 83: Mapa e roteiro da coleta de resíduos não recicláveis.

Fonte: Prefeitura municipal.

Para a coleta de orgânicos e rejeitos, a empresa CRI possui equipe formada por 7 funcionários alocados exclusivamente para esse fim, sendo um motorista, dois coletores, um encarregado, um no setor administrativo, um gerente e um responsável técnico. Para a realização dos serviços são utilizados dois caminhões compactadores, com capacidade de carga de no mínimo 15 m³, com no máximo 10 anos de uso.

De acordo com informações levantadas através de pesquisa de satisfação *on-line*, que esteve disponível do dia 14/07/2020 a 05/02/2021 no site da prefeitura e que teve a participação de 171 pessoas, foi possível identificar que 75,44% dos participantes consideram o cumprimento do calendário da coleta como "muito bom ou bom", para os que consideram o serviço "regular", a porcentagem é de 15,79%, e os outros 8,77% consideraram esse serviço como "ruim" ou "muito ruim".

9.4.1.1.2 Transporte, pesagem e triagem

Diariamente os resíduos da coleta de orgânicos e rejeitos, são encaminhados à Central de Triagem, localizada na Rodovia SC 465, Km 14 - Linha Jaguatirica s/n, no município de Ipumirim, que opera com Licença Ambiental de Operação LAO nº 8183/2017, com validade até outubro de 2021.

Após a pesagem (Figura 84), os resíduos são encaminhados ao barração de recepção (Figura 85), da central de triagem.



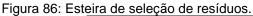


Figura 85: Barração de recepção de resíduos.

Fonte: Acervo próprio.

Os resíduos orgânicos e rejeitos são dispostos no mesmo barracão que os resíduos provenientes da coleta de recicláveis e não há separação física entre esses resíduos, o que pode ocasionar a contaminação de recicláveis pela fração orgânica e rejeitos. Na sequência um funcionário realiza a retirada dos materiais que estão no barracão e os posiciona no início da esteira de seleção (Figura 86).

Após a seleção, os resíduos são acondicionados em bags, Figura 87, para posterior prensagem, Figura 88 e Figura 89.

Fonte: Acervo próprio.

Figura 88: Materiais segregados já prensados e prontos para venda.

Figura 89: Materiais segregados já prensados e prontos para venda.

Fonte: Acervo próprio.

Depois de prensados os resíduos são dispostos em local sem cobertura para aguardar o carregamento, Figura 90.

Os rejeitos do processo de triagem são acondicionados diretamente na caçamba de um caminhão e transportados para o aterro sanitário. O transporte dos rejeitos até o aterro também é realizado pela CRI – Coleta e Industrialização de Resíduos Ltda.

Figura 91: Carregamento do caminhão com rejeitos do processo de triagem.

Fonte: Acervo próprio.

9.4.1.1.3 Caracterização qualitativa e quantitativa

Referente à caracterização qualitativa, Guadagnin et al (2001), citam que a identificação e caracterização dos constituintes de cada localidade são fundamentais na determinação da alternativa tecnológica mais adequada, desde a etapa de coleta, transporte, reaproveitamento, reciclagem até a destinação final dos rejeitos em aterros sanitários.

Essa caracterização pode ser realizada através do processo de caracterização gravimétrica, que se constitui no processo de pesagem e na determinação da porcentagem de cada material que compõe uma amostra de resíduos (MELO; JUCÁ apud MATTEI; ESCOSTEGUY, 2007).

A composição gravimétrica média dos RSU varia em função de diferentes aspectos, sejam eles, sociais, econômicos, geográficos e climáticos, além de estar relacionado aos hábitos e costumes de consumo e descarte da população local.

Schneider et al. (2002) acreditam que a caracterização de resíduos urbanos, se sistemática e continuada, permite avaliar as variações na composição dos resíduos em função de aspectos culturais e climáticos, mas sobretudo possibilita o planejamento do gerenciamento dos resíduos e de estratégias de educação ambiental em relação a eles.

Além disso, caracterizar os diversos componentes dos resíduos sólidos subsidia a elaboração de planos de gestão que abrangem a expansão dos serviços de coleta regular e o aprimoramento dos projetos de coleta seletiva (COMCAP, 2002).

O município de Irani não possui o estudo de caracterização gravimétrica, porém através da gravimetria estimada informada pela empresa responsável pela coleta, transporte, triagem e disposição final de resíduos pode-se admitir que no município a caracterização gravimétrica se encontra assim distribuída:

Tabela 60: Gravimetria estimada de resíduos provenientes da coleta de orgânicos e rejeitos em Irani.

Tipo de resíduo	%
Orgânico	50
Papel	16
Plástico	15
Vidro	9
Metal	3
Outros	7

Fonte: CRI Ltda.

Relacionado a caracterização quantitativa, é apresentado na Tabela 61 as quantidades anuais, em toneladas, de resíduos coletados, conforme informações disponibilizadas pela empresa que gerencia a unidade.

Tabela 61: Coleta de orgânicos e rejeitos – Quantidade anual de resíduos em toneladas de 2017 a 2020.

Ano	Total geral
2017	1.353,81
2018	1.429,08
2019	1.477,55

Ano	Total geral		
2020	1.545,65		
Média	1.451,52		

Fonte: CRI Ltda.

9.4.1.1.4 Produção *per capita* de resíduos orgânicos e rejeitos

A "produção per capita de resíduos orgânicos e rejeitos" relaciona a quantidade de resíduos sólidos urbanos gerada diariamente e o número de habitantes atendidos pela coleta destes resíduos.

Para a determinação da produção per capita de resíduos orgânicos e rejeitos coletados e destinados pelo município de Irani, considerou-se os dados de geração dos anos de 2017 a 2020. Na Tabela 62 é apresentada a evolução da geração *per capita* no município, sendo que o *per capita* de 2020 serve de base para o cálculo da estimativa de produção destes resíduos ao longo dos 20 anos de planejamento.

Tabela 62: Produção per capita de resíduos orgânicos e rejeitos.

Ano	População atendida		Toneladas	Per capita	
	(hab)	Anual	Mensal	Diário	(kg/hab.dia)
2017	10.346	1.353,81	112,82	3,71	0,359
2018	10.463	1.429,08	119,09	3,92	0,374
2019	10.579	1.477,55	123,13	4,05	0,383
2020	10.696	1.545,65	128,80	4,23	0,396
Média		1.452	120,96	3,98	0,378

Fonte: CRI Ltda.

9.4.1.1.5 Destino final dos resíduos domiciliares – rejeitos

Atualmente existem uma série de tecnologias para a destinação de resíduos, cada qual com as suas vantagens e desvantagens. Assim, a seleção da tecnologia de destinação mais adequada deve considerar as características (físicas e químicas) dos resíduos sólidos, as quantidades geradas de cada resíduo, e as áreas disponíveis para implantação.

São tecnologias de destinação final de resíduos:

Compostagem: É o processo biológico através do qual a matéria orgânica constituinte dos resíduos sólidos é transformada, pela ação de microrganismos

existentes na própria massa de resíduos, em material estável e utilizável na preparação de húmus. A compostagem é um processo de oxidação biológica através do qual os microrganismos decompõem os compostos constituintes dos materiais liberando dióxido de carbono e vapor de água.

Aterro Sanitário: Técnica de disposição de resíduos sólidos no solo, sem causar danos ou riscos à saúde pública e à segurança, minimizando os impactos ambientais. Método que utiliza princípios de engenharia para confinar resíduos sólidos à menor área possível e reduzi-los ao menor volume possível, cobrindo-os com uma camada de terra na conclusão da jornada de trabalho ou a intervalos menores. Esta técnica pode apresentar captura e queima de metano (CH4) ou seu uso na geração de energia, isto vai depender da composição dos resíduos que chegam ao aterro.

Incineração: É a oxidação dos materiais combustíveis contidos nos resíduos, deve ocorrer em instalações bem projetadas e corretamente operadas, onde há a transformação de materiais e a destruição dos microrganismos dos resíduos sólidos, visando, essencialmente, a redução do seu volume para 5% e, do seu peso, para 10% a 15% dos valores iniciais. Em geral estas plantas estão acopladas a sistemas produtores de energia térmica e ou elétrica.

<u>Pirólise:</u> Pode ser definida como a degradação térmica de qualquer material orgânico na ausência parcial ou total de um agente oxidante, ou até mesmo, em um ambiente com uma concentração de oxigênio capaz de evitar a gaseificação intensiva do material orgânico. A pirólise geralmente ocorre a uma temperatura que varia desde os 400°C até o início do regime de gaseificação intensiva (700°C). O principal objetivo no processo de pirólise é a obtenção de produtos com densidade energética mais alta e melhores propriedades do que àquelas da biomassa inicial. Este tratamento também pode estar acoplado um sistema para produção de energia.

<u>Biometanização</u>: É um processo de fermentação anaeróbia dos componentes orgânicos dos resíduos sólidos urbanos, onde os resíduos de matéria orgânica se decompõem em várias etapas até chegar ao produto final, o biogás, uma mistura de dióxido de carbono (CO₂) e o metano (CH₄) utilizado na produção de energia. A fermentação é causada por bactérias ou microrganismos que se desenvolvem em

ambientes sem oxigênio. Esta tecnologia também pode através do CH₄ produzir energia.

No município, a disposição final dos rejeitos provenientes da coleta de orgânicos e rejeitos ocorre em aterro sanitário operado pela empresa CRI – Ltda, localizado na Rodovia Municipal Ipumirim, Linha Serrinha, S/N, em Ipumirim (UTM 390358,94E 70031102,85S), a aproximadamente 4,5 km da estação de triagem da empresa CRI. O aterro opera através da licença ambiental de operação (LAO), expedida pelo IMA, de nº 3.079/2018, com validade até abril de 2022.

Atualmente, o aterro (Figura 89) recebe resíduos de 27 municípios e possui capacidade para 107 toneladas/dia.

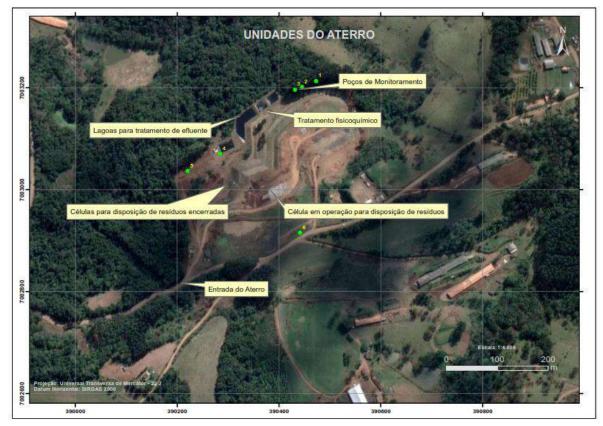


Figura 92: Localização do aterro sanitário.

O aterro é formado pelas áreas de disposição de resíduos, sistema de tratamento dos efluentes líquidos e poços de monitoramento, Figura 93.

Figura 93: Disposição das estruturas no Aterro Sanitário.

Fonte: CINCATARINA (2021).

No dia 04 de março de 2021 foi realizada uma visita técnica ao aterro, com o intuito de observar como estavam sendo executados os serviços operacionais de disposição final dos resíduos sólidos, presença de controles ambientais e de monitoramento das águas superficiais e subterrâneas. Estavam presentes na visita técnica além do CINCATARINA, o engenheiro sanitarista e ambiental Luciano Ravadelli da empresa CRI – Coleta e Industrialização de Resíduos Ltda.

Foi possível observar que o acesso ao aterro é controlado através de portão e visitas sem agendamento não são permitidas. O acesso ao aterro e às células de resíduos se dá através de estrada de chão batido em bom estado de conservação, Figura 94.

Figura 94: Estrada que dá acesso ao interior do Aterro.

Em relação a disposição de rejeitos, foi possível verificar uma frente de trabalho operando com uma máquina para espalhar e compactar o material. O engenheiro da empresa comunicou que a cobertura de resíduos não é feita diariamente, situação que explica a presença de várias aves no interior do aterro, Figura 95.

Figura 95: Frente de trabalho com a presença de muitas aves.

Verificou-se também que a cobertura final da célula apresenta afloramento de resíduos, indicando que o recobrimento não foi realizado de maneira adequada, Figura 96.

De acordo com Mariano (2008), as camadas de cobertura de aterros de resíduos devem cumprir três funções: isolar o resíduo do ambiente (área circunvizinha); controlar a entrada ou saída dos gases (por exemplo, poluição contínua das áreas circunvizinhas, entrada de oxigênio na massa de resíduo.); limitar a entrada de água no aterro, evitando, assim, o aumento da geração de lixiviado.

Figura 96: Cobertura final do aterro permitindo o contato do resíduo com o meio.

Fonte: Acervo próprio.

No que se refere à cobertura vegetal das células e a cobertura vegetal do entorno, foi constatada a presença de gramíneas nas células, Figura 97, e de vegetação nativa e exótica compondo a cortina vegetal, Figura 98.

Figura 97: Cobertura das células encerradas com gramíneas e vegetação nativa e exótica formando a cortina vegetal.

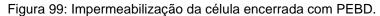


Figura 98: Cobertura vegetal do entorno do aterro.

Quanto as células do aterro já encerradas, estas são impermeabilizadas com lona de polietileno de baixa densidade – PEBD para evitar o arraste de solo do talude das células e servem também para diminuir a infiltração de água da chuva que percola e vai para o sistema de tratamento de efluentes, Figura 99.

Fonte: Acervo próprio.

Foi observado também, que os sistemas de drenagem provisória e permanente existentes são insuficientes, pois não estão dispostos por toda a área do aterro, Figura 100 a Figura 103.

Figura 100: Ausência de sistema de drenagem.

Figura 101: Ausência de sistema de drenagem.

Figura 102: Ausência de sistema de drenagem.

Fonte: Acervo próprio.

Figura 103: Ausência de sistema de drenagem.

Em relação ao sistema de drenagem de biogás (Figura 104, Figura 105), foi possível observar a presença de drenos verticais, no entanto eles estão dispostos a uma distância superior ao que NBR 15.849/2010 recomenda, que é de 30 metros.

Figura 104: Presença de dreno de biogás.

Fonte: Acervo próprio.

Figura 105: Ausência de dreno de biogás na célula em operação.

Relacionado ao líquido percolado do aterro sanitário, este é drenado e direcionado através de tubulação de PEAD para o sistema de tratamento, que é composto por: lagoa anaeróbia, lagoa facultativa, lagoa de maturação seguidas de tratamento fisicoquímico e lagoa de polimento, Figura 103. Após o tratamento, o efluente final é recirculado até as células já encerradas do aterro, Figura 106. De acordo com o técnico da empresa, o volume excedente é infiltrado no solo.

Figura 106: Visão geral do sistema de tratamento do líquido percolado.

Fonte: Acervo próprio.

A empresa CRI forneceu três relatórios de monitoramento da estação de tratamento do líquido percolado, correspondentes aos meses de março, julho e dezembro de 2020. Após conferência dos relatórios fornecidos, pode-se verificar que os parâmetros definidos na LAO estão sendo monitorados, e que o efluente final da estação atende os limites da Resolução Conama nº430/2011. No entanto, relacionado ao cumprimento do estabelecido na LAO 3079/2018, pode-se afirmar que não está sendo cumprida a periodicidade requerida na LAO.

Figura 107: Sistema de recirculação de efluentes no aterro.

Foram fornecidos também, os relatórios referentes ao monitoramento dos poços de monitoramento (Figura 108) do mês de dezembro de 2020, sendo possível aferir o cumprimento da LAO no que diz respeito aos parâmetros analisados e atendimento da Resolução Conama nº 420/2009, porém não foi possível constatar o cumprimento da LAO no que diz respeito a periodicidade.

Figura 108: Poços de monitoramento instalados na área do aterro.

Mesmo assim, o aterro possui infraestrutura adequada, contudo algumas melhorias podem ser providenciadas, como é o caso da adequação da frequência do recobrimento intermediário e final das células, adequação da cobertura do aterro pelos sistemas de drenagem provisória e permanente, reavaliação do distanciamento entre os drenos de biogás, adequação da frequência de monitoramento do sistema de tratamento de percolado e adequação da regularidade das análises de água subterrânea.

9.4.1.1.6 Custos

Os custos da coleta, transporte e disposição final dos rejeitos no aterro sanitário são regidos pelo 3º Termo Aditivo do Contrato nº 073/2019 e são pagos atualmente o valor de R\$ 43.558,37 mensais.

Os valores referentes a estes serviços, no ano de 2019 correspondem a R\$ 428.968,85 e no ano de 2020 correspondem a R\$ 448.078,06, Tabela 63.

Tabela 63: Custos com coleta, transporte e disposição final de resíduos orgânicos e rejeitos.

Custos							
2019	2020	2021					
428.968,85	448.078,06	521.183,70					

Fonte: Secretaria de Planejamento e Gestão de Projetos.

Considerando os custos e a coleta, transporte e destinação final de resíduos destinados ao aterro, em 2019, o município teve um custo unitário de R\$ 290,32 por tonelada de resíduo, em 2020, o custo foi de R\$ 289,90 por tonelada.

9.4.1.2 Resíduos Domiciliares – Recicláveis

9.4.1.2.1 Coleta

Os serviços de coleta, transporte e triagem dos resíduos sólidos urbanos recicláveis são prestados desde novembro de 2019, na área rural, a coleta de recicláveis ocorre desde maio de 2014. A empresa responsável pela coleta nas áreas urbana e rural é a CRI Ltda.

A coleta no perímetro urbano e área rural do município é realizada uma vez por mês em cada setor, na quarta-feira, no período da tarde, conforme apresentado na Figura 109 e Figura 110.

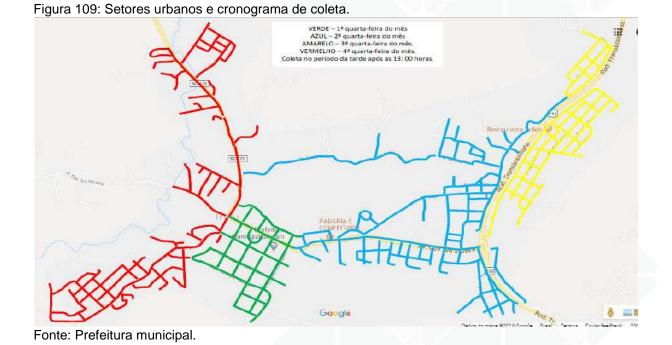


Figura 110: Roteiro para coleta rural.

Setor 01 (1ª quarta-feira do mês)

Moinho Velho Linha Antoniolli Serro Agudo Vista Alegre

Pingador Setor 02 (2ª quarta-feira do mês)

Caroveira
Linha Aparecida
Linha União
Lajeado Casa Grande
Lajeado do Meio
Linha Guarani

Setor 03 (3ª quarta-feira do mês)

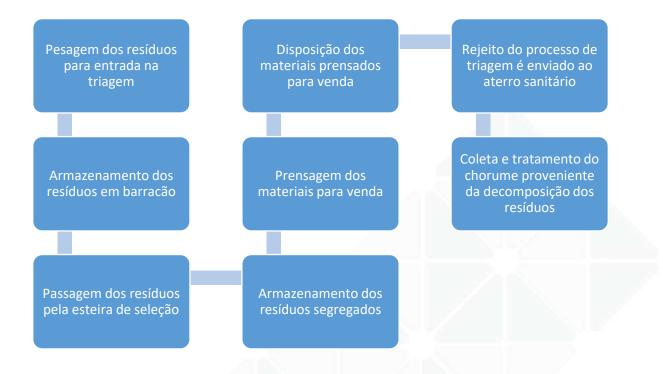
São Vicente Procópio Alto Cascalho Linha Gorete São Vicente (retorno)

Setor 04 (4ª quarta-feira do mês)

Linha Cordeiro Alto Engano Linha Oro Lajeado da Anta

Fonte: Prefeitura municipal.

Para a coleta, é utilizado um caminhão sem compactador com capacidade mínima de 15 m³. Existe também um caminhão reserva para o caso de impossibilidade de utilizar o caminhão principal. A equipe de coleta é composta por um motorista e três coletores.


Relacionado a pesquisa de satisfação *on-line*, foi possível identificar que 46,20% dos participantes consideram o cumprimento do calendário da coleta como "muito bom ou bom", para os que consideram o serviço "regular", a porcentagem é de 37,43%, e os outros 16,37% consideram esse serviço como "ruim" ou "muito ruim".

9.4.1.2.2 Triagem

Os resíduos provenientes da coleta de recicláveis são encaminhados à mesma Central de Triagem que recebe os resíduos orgânicos e rejeitos.

O processo de triagem é exatamente o mesmo já mencionado no item 9.4.1.1.2 e segue o seguinte fluxograma:

9.4.1.2.3 Caracterização qualitativa e quantitativa

O município de Irani não possui estudos e dados específicos que caracterizem qualitativamente os resíduos recicláveis, porém os materiais mais comumente encontrados no processo de triagem são papel, papelão, plástico, vidro, metal, embalagens longa vida e isopor. São encontrados também, muitos outros materiais como resíduos orgânicos, roupas, sapatos e as sacolinhas plásticas que de acordo com a engenheira responsável pela usina de triagem, não possuem comprador no momento.

Os valores de resíduos coletados através da coleta seletiva de recicláveis, foram informados pela empresa responsável pela coleta e são apresentados na Tabela 64.

Tabela 64: Quantidades de recicláveis coletadas entre 2018 e 2020.

Ana	Quantidade coletada em tonelada												
Ano	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Total
2018	6,50	4,54	3,25	6,29	2,74	3,03	3,06	2,20	2,89	1,96	3,90	4,43	44,79
2019	4,36	2,74	2,73	8,35	2,60	3,49	3,03	3,24	3,05	3,22	9,21 ¹³	13,43	56,37
2020	7,06	9,12	13,68	10,41	7,64	7,64	5,75	8,76	9,58	8,75	6,95	8,89	104,85

Fonte: CRI Ltda.

De acordo com a responsável pela central de triagem, ainda existe uma fração muito grande de material orgânico sendo coletado juntamente com os materiais recicláveis em Irani.

Cabe destacar que para a coleta seletiva ser efetiva é primordial a participação dos geradores, por ser o agente gerador aquele que determinará o bom ou mau funcionamento da separação dos resíduos e, consequentemente, da coleta seletiva. Segundo Barbieri e Silva (2011), é importante e fundamental, para que os programas de coleta seletiva, reciclagem e reutilização funcionem, que haja a educação ambiental, de forma que os indivíduos possam entender o porquê de proteger o meio ambiente e assim, tais programas possam funcionar com mais efetividade.

Sendo assim é imprescindível a implementação de um programa de educação ambiental voltado para a segregação de resíduos e importância de realizar a separação.

¹³ Início da coleta na área urbana.

Nota-se que a frequência na qual a coleta está sendo realizada pode ser um agravante, pois de acordo com o SNIS (2019), a coleta considerada regular deve ocorrer com frequência mínima de uma vez por semana e atualmente ocorre apenas uma vez por mês. Revisar a frequência de coleta é também muito importante para atingir uma maior eficiência no programa de coleta seletiva.

9.4.1.2.4 Produção per capita de resíduos recicláveis

Nos anos de 2017 a 2019, são apresentados os dados de geração provenientes da coleta rural, já no ano de 2020 os dados correspondem a geração da população rural e urbana, pois foi nesse ano teve início a coleta de recicláveis no perímetro urbano do município, Tabela 65.

A produção per capita do ano de 2020 serve de base para o cálculo da estimativa de geração de resíduos no horizonte do Plano que é apresentada no item 9.7.2.

Tabela 65: Produção per capita de resíduos recicláveis.

Ano	População atendida		Quantidade (Kg)					
(hab)		Anual	Mensal	Diário	(kg/hab.dia)			
2017	2.686	70.210	5.850,83	192,35	0,072			
2018	2.643	44.790	3.732,50	122,71	0,046			
2019	2.600	49.120	4.093,33	134,57	0,052			
2020	10.696	104.850	8.737,5	287,26	0,027			

Fonte: CRI Ltda.

9.4.1.2.5 Custos

Os custos da coleta, transporte e destinação final dos resíduos sólidos recicláveis no perímetro urbano e rural do município no ano de 2021 são regidos pelo 3º Termo Aditivo do Contrato nº 073/2019, sendo pago nos primeiros dois meses do ano o valor de R\$ 13.000,00 e posteriormente o valor de R\$ 6.214,40 por mês, totalizando 75.144,00.

Os valores referentes a estes serviços, no ano de 2020, correspondem a R\$ 78.000,00.

9.4.1.3 Coleta Informal

Não existem informações sobre a existência de catadores informais no Município, também não há controle se há outro tipo de atividade de separação dos resíduos recicláveis por parte de empresas ou associações.

9.4.1.4 Serviços de Limpeza Pública

Os serviços que compõem a limpeza pública são varrição, capina e poda de árvores em vias e logradouros públicos e outros eventuais serviços pertinentes à limpeza pública urbana.

9.4.1.4.1 Varrição e Capina

O serviço de varrição é de responsabilidade da Secretaria de Serviço Social e Habitação. Atualmente fazem parte da equipe cerca de 15 funcionários.

No município, a varrição é realizada de forma manual, e os resíduos provenientes tanto da varrição como da capina são coletados pela Secretaria de Obras e encaminhados até terrenos da Prefeitura a depender da proximidade do local que foi realizada a coleta. Sugere-se que esta prática seja revisada, no sentido de garantir que resíduos recicláveis não estejam sendo depositados juntamente com os resíduos de varrição.

Não se tem registro da quilometragem varrida e capinada por mês, pois o serviço é feito de acordo com a demanda, que é indicada pela Secretaria de Assistência Social e pela Diretoria de Cultura.

9.4.1.4.1.1 Custos

Os custos referentes a estes serviços estão previstos na dotação orçamentária do Fundo Municipal de Assistência Social. Os valores gastos com pessoal oscilam de R\$ 1.000,00 a R\$ 7.000,00, a depender de quantas pessoas trabalharam no mês.

Os valores referentes a estes serviços, no ano de 2020, correspondem a R\$ 64.950,00.

9.4.1.4.2 Serviços de Poda e Roçada

Os serviços de poda e roçada são realizados pela empresa Amaral Serviços de Roçadas – Eireli, que realiza os serviços de poda, corte de grama, roçada de vegetação leve: capim, grama alta e arbustos até 1 metro de altura e remoção do material resultante do corte. A fiscalização do serviço é realizada pela Secretaria de Planejamento e Gestão de Projetos.

Não existe mapeamento das ruas que receberão os serviços, porém o controle é realizado pela Secretaria de Planejamento, que através de planilha indica quais locais devem ser atendidos.

Os resíduos com volume pequeno, são coletados juntamente com a coleta de orgânicos e rejeitos. Os resíduos de maior volume, a prefeitura realiza a coleta e encaminha o material para algum terreno da prefeitura que fica nas proximidades de onde o material foi coletado.

9.4.1.4.2.1 Custos

Atualmente, os custos com estes serviços são regidos pela Ata de Registro de Preços no 001/2021 e é pago o valor de R\$ 0,05/m². Os valores referentes a estes serviços, no ano de 2020, correspondem a R\$ 97.899,80.

Para o ano de 2021 está prevista a roçada em 2.199.53,00 m², totalizando R\$ 109.976,50.

9.4.1.5 Resíduos de Serviços de Saúde (RSS)

Há uma grande quantidade de materiais que compõem os resíduos sólidos urbanos considerados perigosos, entre os quais estão os resíduos dos serviços de saúde (RSS), que podem causar, se não forem tratados corretamente, muitos problemas de ordem socioambiental.

Os resíduos de serviços de saúde são parte importante do total de resíduos sólidos urbanos, não necessariamente pela quantidade gerada, mas pelo potencial de risco que representam à saúde e ao meio ambiente.

Os RSS são classificados em função de suas características e consequentes riscos que podem acarretar ao meio ambiente e à saúde. A classificação dos RSS

vem sofrendo um processo contínuo de evolução, na medida em que são introduzidos novos tipos de resíduos nas unidades de saúde e com o resultado do conhecimento do comportamento destes perante o meio ambiente e a saúde, como forma de estabelecer uma gestão segura com base nos princípios da avaliação e gerenciamento dos riscos envolvidos na sua manipulação.

De acordo com a RDC ANVISA no 222/2018 e Resolução CONAMA no 358/05, os RSS são classificados em cinco grupos: A, B, C, D e E.

Grupo A - engloba os componentes com possível presença de agentes biológicos que, por suas características de maior virulência ou concentração, podem apresentar risco de infecção. Exemplos: placas e lâminas de laboratório, carcaças, peças anatômicas (membros), tecidos, bolsas transfusionais contendo sangue, gaze com saliva dentre outras.

Grupo B - contém substâncias químicas que podem apresentar risco à saúde pública ou ao meio ambiente, dependendo de suas características de inflamabilidade, corrosividade, reatividade e toxicidade. Ex: medicamentos apreendidos, reagentes de laboratório, resíduos contendo metais pesados, dentre outros.

Grupo C - quaisquer materiais resultantes de atividades humanas que contenham radionuclídeos em quantidades superiores aos limites de eliminação especificados nas normas da Comissão Nacional de Energia Nuclear - CNEN, como, por exemplo, serviços de medicina nuclear e radioterapia etc.

Grupo D - não apresentam risco biológico, químico ou radiológico à saúde ou ao meio ambiente, podendo ser equiparados aos resíduos domiciliares. Ex: sobras de alimentos e do preparo de alimentos, resíduos das áreas administrativas etc.

Grupo E - materiais perfurocortantes ou escarificantes, tais como lâminas de barbear, agulhas, ampolas de vidro, pontas diamantadas, lâminas de bisturi, lancetas, espátulas e outros similares.

A Secretaria Municipal de Saúde é responsável pelo Gerenciamento dos Resíduos de Serviços de Saúde dos estabelecimentos públicos de Irani.

A Resolução CONAMA n° 358/2005, que dispõe sobre o tratamento e a disposição final dos resíduos dos serviços de saúde e dá outras providências, em seu art 4° define que: os geradores de resíduos de saúde, em operação ou a serem implantados, devem elaborar e implantar o seu Plano de Gerenciamento de Resíduos dos Serviços de Saúde (PGRSS).

Em seu art 1°, define os geradores:

"Art. 1° Esta Resolução aplica-se a todos os serviços relacionados com o atendimento à saúde humana ou animal, inclusive os serviços de assistência domiciliar e de trabalhos de campo; laboratórios analíticos de produtos para saúde; necrotérios, funerárias e serviços onde se realizem atividades de embalsamamento (tanatopraxia e somatoconservação); serviços de medicina legal; drogarias e farmácias inclusive as de manipulação; estabelecimentos de ensino e pesquisa na área de saúde; centros de controle de zoonoses; distribuidores de produtos farmacêuticos; importadores, distribuidores e produtores de materiais e controles para diagnóstico in vitro; unidades móveis de atendimento à saúde; serviços de acupuntura; serviços de tatuagem, entre outros similares.)."

O Plano de Gerenciamento de Resíduos dos Serviços de Saúde (PGRSS) é o documento integrante do processo de licenciamento ambiental, e é baseado nos princípios da não geração de resíduos e na minimização da geração de resíduos. Este aponta e descreve as ações relativas ao seu manejo, contemplando os aspectos referentes à geração, segregação, acondicionamento, coleta, armazenamento, transporte, reciclagem, tratamento e disposição final, bem como a proteção à saúde pública e ao meio ambiente.

Segundo informações da Vigilância Sanitária Municipal, todas as Unidades de Saúde possuem o PGRSS, porém é importante salientar que o PGRSS deve ser monitorado e mantido atualizado para que fiquem à disposição para consulta na própria unidade, cumprindo assim o artigo 9º da Resolução – RDC nº 222, de 28 de março de 2018 que diz que "O serviço gerador de RSS deve manter cópia do PGRSS disponível para consulta dos órgãos de vigilância sanitária ou ambientais, dos funcionários, dos pacientes ou do público em geral". Há ainda a exigência, por parte da Vigilância Sanitária, dos PGRSS das empresas privadas que possam produzir esse tipo de resíduo.

9.4.1.5.1 Geração de RSS nos Estabelecimentos Públicos

São apresentados a seguir, os tipos de resíduos gerados em cada unidade de saúde (Tabela 66).

Tabela 66: Tipos de RSS produzidos nas unidades de saúde.

Tipos de resíduos produzidos								
Unidade de Saúde	Grupo A	Grupo B14	Grupo C	Grupo D	Grupo E			
Marlei Alves Batista	Х	х		X	х			
João Gilberto Medeiros dos Santos - Centro	х	х		х	х			
Noeli Terezinha Marcon	Х	Х		Х	Х			
Sede	Х	х		х	Х			
Pronto Atendimento	Х	Х		х	Х			

Fonte: Secretaria de Saúde.

Em relação às quantidades de RSS coletadas no município, são apresentadas na Tabela 67 as quantidades totais, pois não há controle de geração por Unidade de Saúde.

Tabela 67: Quantidade de RSS coletada no município em 2019.

	Quantidade de RSS coletada em 2019 - Kg										
Jan Fev Mar Abr Mai Jun Jul Ago Set Out Nov Dez							Dez				
120	130	145	120	145	120	120	175	115	150	120	130

Fonte: CRI Ltda.

No sentido de avaliar alguns aspectos da gestão dos RSS, principalmente o acondicionamento de resíduos nas unidades de saúde pública do Município, foi realizada uma visita técnica a todas as unidades de saúde no dia 29 de setembro de 2020. Os registros da visita técnica são apresentados nos itens a seguir.

9.4.1.5.2 Segregação e Acondicionamento dos RSS nos Estabelecimentos Públicos

Nesta etapa da gestão de resíduos deve ocorrer a separação dos resíduos de acordo com suas características físicas, químicas, biológicas e radiológicas, respeitando o Anexo I da RDC 222/2018 que dispõe sobre a classificação dos resíduos de serviços de saúde. Após a segregação, os resíduos devem ser acondicionados em sacos devidamente identificados e acondicionados em coletores

¹⁴ São gerados neste grupo: medicamentos, revelador e fixador para revelação de radiografias odontológicas.

com tampa. Os RSS líquidos devem ser acondicionados em recipientes constituídos de material compatível com o líquido armazenado, resistentes, rígidos e estanques, com tampa que garanta a contenção do RSS e identificação conforme o Anexo II da resolução supracitada.

Em relação a segregação e acondicionamento, foi possível observar que as Unidades de saúde utilizam o saco branco leitoso para resíduos do grupo A, saco preto para resíduos do grupo D e recipientes identificados, rígidos, providos com tampa, resistentes à punctura, ruptura e vazamento para os resíduos do grupo E, os resíduos do grupo B não possuem padronização de recipientes para descarte e no dia da visita nenhuma das unidades gerava resíduos do grupo C. Apenas uma unidade utilizava saco vermelho para descarte de máscaras e luvas, Figura 111.

Figura 111: Tipos de lixeiras e sacos utilizados para a segregação de RSS e resíduos comuns nas Unidades de Saúde de Irani.

Conforme pode-se observar, não existe padronização de lixeiras nas unidades, nem todos os recipientes estão identificados o que pode facilitar o engano na hora de segregar o resíduo.

9.4.1.5.3 Armazenamento dos RSS nos Estabelecimentos Públicos

O armazenamento pode ser realizado em um abrigo temporário ou externo, independentemente de qual abrigo é utilizado, o espaço deve ser destinado exclusivamente para resíduos de saúde que são compatíveis, evitando assim acidentes e contaminação de uma quantidade maior de resíduos.

No abrigo temporário, ocorre o armazenamento temporário dos coletores de resíduos, que tem como objetivo agilizar a coleta no interior da unidade e posteriormente encaminhar os coletores ao abrigo externo, que é o local onde ocorre o armazenamento dos coletores para a coleta dos RSS.

9.4.1.5.3.1 Unidade de Saúde Marlei Alves Batista

Nesta Unidade, não há abrigo externo de resíduos, o armazenamento ocorre em um abrigo temporário (Figura 112) que também é utilizado como depósito de materiais e equipamentos. Não foi observada a presença de coletores com tampa fechada para acondicionar os resíduos nem tela de proteção contra roedores e vetores na janela. O local não permite o isolamento dos resíduos, uma vez que qualquer

pessoa que necessitar de algo que se encontra no depósito terá acesso ao local de armazenamento dos resíduos, Figura 113.

Os resíduos do grupo B – medicamentos, são acondicionados no interior da Unidade e posteriormente encaminhados para a Unidade Centro, para posterior coleta. Já, os resíduos de fixador e revelador odontológicos, são descartados na pia. Porém esses resíduos são constituídos de químicos altamente tóxicos e devem ser acondicionados e identificados em frascos de até dois litros compatíveis com o líquido armazenado, resistentes, rígidos e estanques, com tampa rosqueada e vedante. Esses recipientes devem ser identificados com o símbolo de risco associado conforme a NBR 7.500 e encaminhados para tratamento.

Sugere-se que seja dimensionado um abrigo externo de resíduos de acordo com a RDC 222/2018.

Figura 112: Sala de armazenamento de RSS.

Figura 113: Armazenamento de RSS com outros materiais.

9.4.1.5.3.2 Unidade de Saúde João Gilberto Medeiros dos Santos – Centro e Unidade de Saúde Pronto Atendimento

Estas duas Unidades realizam o armazenamento de RSS no mesmo abrigo externo, que possui fácil acesso aos veículos de coleta, porém não possui identificação, iluminação, piso, paredes e teto de material resistente, lavável e de fácil higienização, com aberturas para ventilação e com tela de proteção contra acesso de vetores. Do mesmo modo, que não foi observada a presença de qualquer recipiente, como bombonas ou containers, para acondicionar os resíduos, além disso o dimensionamento deste abrigo está visivelmente inadequado ao volume de resíduos gerado pelas Unidades de Saúde, Figura 114.

Sugere-se reavaliar o dimensionamento do abrigo externo de resíduos e realizar as adequações de acordo com a RDC 222/2018.

Figura 114: Abrigo externo de RSS das Unidades Centro e Pronto Atendimento.

Fonte: Acervo próprio.

9.4.1.5.3.3 Noeli Terezinha Marcon

O armazenamento de RSS desta Unidade é realizado em abrigo externo que possui identificação, no entanto esta identificação não apresenta as características indicadas pela RDC 222/2018 (Figura 115). Não foi observada a presença de coletores para acondicionar os resíduos, nem abertura para ventilação, ralo ou ponto de água para facilitar a higienização.

Os resíduos do grupo B – medicamentos, são armazenados na própria Unidade e encaminhados para a Unidade Centro que os libera para a coleta externa. Já, os resíduos de fixador e revelador odontológicos, são descartados na pia, prática muito prejudicial ao meio ambiente, pois como já foi mencionado, esses resíduos são altamente tóxicos e devem ser acondicionados e identificados conforme as normas vigentes.

Figura 115: Depósito para armazenamento externo de resíduos da Unidade Noeli Terezinha Marcon.

Figura 116: Parte interna do depósito de RSS.

9.4.1.5.3.4 Unidade de Saúde Sede

O abrigo externo (Figura 117) desta Unidade não possui identificação nem iluminação, porém permite fácil acesso à coleta externa. O abrigo também é utilizado para armazenar equipamentos, o que não garante acesso restrito às pessoas envolvidas no manejo de RSS (Figura 118)

Quanto a presença de recipientes para acondicionar os resíduos, foi observada a utilização de um coletor para o armazenamento, no entanto o recipiente não é apropriado pois é de metal, áspero e não possui tampa, Figura 119.

Do mesmo modo que ocorre nas demais Unidades já mencionadas, os resíduos do grupo B – medicamentos, são acondicionados no interior da Unidade e posteriormente encaminhados para a Unidade Centro e os resíduos de fixador e revelador odontológicos, são descartados na pia.

Figura 118: Acondicionamento de outros materiais além dos RSS no mesmo depósito.

Fonte: Acervo próprio.

Figura 119: Coletor utilizado na Unidade para acondicionamento dos RSS.

9.4.1.5.4 Coleta, Transporte e Destino Final dos RSS de Estabelecimento Públicos

A coleta dos resíduos de serviços de saúde é realizada semanalmente nos estabelecimentos públicos pela empresa CRI - Coleta e Industrialização de Resíduos Ltda, conforme contrato nº 073/2019. É responsabilidade da empresa os serviços de coleta, transporte e destinação final dos resíduos sólidos dos serviços de saúde.

Segundo informações da secretaria de saúde, as unidades de saúde não emitem o Manifesto de Transporte de Resíduos e de Rejeitos (MTR) através do Sistema de Controle de Movimentação de Resíduos e de Rejeitos como exige o Instituto do Meio Ambiente - IMA.

A prestação dos serviços no município se dá através de um motorista, um auxiliar, um operador de autoclave, um responsável técnico e dois veículos com capacidade de 20 m³.

O transporte de resíduos de serviços de saúde é realizado pela CRI através da LAO nº 2240/2018 com validade até março de 2022.

O tratamento dos RSS é feito em Chapecó através de uma autoclave que realiza a redução microbiana dos resíduos, posteriormente é realizada a disposição final dos resíduos em aterro. Esses serviços são terceirizados pela CRI, sendo realizados pela empresa CETRILIFE Tratamento de Resíduos de Serviços de Saúde Ltda.

9.4.1.5.5 Coleta, Transporte e Destino Final dos RSS de Estabelecimentos Privados

O plano de gerenciamento de resíduos sólidos de serviços de saúde é exigido pela Vigilância Sanitária Municipal a todos os empreendimentos que produzam este tipo de resíduo. Além do PGRSS, os empreendimentos também devem apresentar os certificados de destinação emitidos pelas empresas contratadas. Não há informações sobre as quantidades geradas destes resíduos pelas instituições privadas.

9.4.1.5.6 Produção per capita de resíduos dos serviços de saúde – RSS

Para a determinação da produção per capita de resíduos dos serviços de saúde, considerou-se os dados de produção dos anos de 2017 a 2019, fornecidos pela empresa CRI Ltda, Tabela 68.

T-1-1- CO.	D	!		مماني سمماما	المامك ماماما
Tabela bo.	Produção per	Cabita (ie residuos	de servicos	de Saude.

Ano	População atendida		Quantidade (Kg)						
(hab)		Anual	Mensal	Diário	(kg/hab.dia)				
2017	10.721	1.440	120,000	3,945	0,00036797				
2018	10.891	1.500	125,000	4,110	0,00037733				
2019	11.061	1.590	132,500	4,356	0,00039384				
Média		1.510	125,833	4,137	0,00037972				

9.4.1.5.7 Custos

Os custos da coleta, transporte e destinação final dos resíduos de serviços de saúde são regidos pelo 3º Termo Aditivo do Contrato nº 073/2019 e são pagos atualmente o valor de R\$ 417,90 mensais.

Os valores referentes a estes serviços, no ano de 2020 correspondem a R\$ 6.000,00.

9.4.1.6 Resíduos Domiciliares Especiais

São considerados resíduos domiciliares especiais: óleo vegetal usado, pneus, pilhas e baterias, lâmpadas fluorescentes, volumosos e resíduos eletroeletrônicos. Não existem iniciativas municipais para coleta de óleo vegetal usado. Quanto aos demais, estes se enquadram no sistema de logística reversa.

Resíduos/Logística Reversa

Em 2010, a Lei nº 12.305/2010 instituiu a Política Nacional de Resíduos Sólidos, que em seu art. 33 estabelece:

"Art. 33. São obrigados a estruturar e implementar sistemas de logística reversa, mediante retorno dos produtos após o uso pelo consumidor, de forma independente do serviço público de limpeza urbana e de manejo dos resíduos sólidos, os fabricantes, importadores, distribuidores e comerciantes de:

I - agrotóxicos, seus resíduos e embalagens, assim como outros produtos cuja embalagem, após o uso, constitua resíduo perigoso, observadas as regras de gerenciamento de resíduos perigosos previstas em lei ou regulamento, em normas estabelecidas pelos órgãos do Sisnama, do SNVS e do Suasa, ou em normas técnicas;

II - pilhas e baterias;

III - pneus;

IV - óleos lubrificantes, seus resíduos e embalagens;

V - lâmpadas fluorescentes, de vapor de sódio e mercúrio e de luz mista;

VI - produtos eletroeletrônicos e seus componentes.

....

§ 3o Sem prejuízo de exigências específicas fixadas em lei ou regulamento, em normas estabelecidas pelos órgãos do Sisnama e do SNVS, ou em acordos setoriais e termos de compromisso firmados entre o poder público e o setor empresarial, cabe aos fabricantes, importadores, distribuidores e comerciantes dos produtos a que se referem os incisos II, III, V e VI ou dos produtos e embalagens a que se referem os incisos I e IV do caput e o § 1o tomar todas as medidas necessárias para assegurar a implementação e operacionalização do sistema de logística reversa sob seu encargo, consoante o estabelecido neste artigo, podendo, entre outras medidas:

I - implantar procedimentos de compra de produtos ou embalagens usados;

II - disponibilizar postos de entrega de resíduos reutilizáveis e recicláveis;

III - atuar em parceria com cooperativas ou outras formas de associação de catadores de materiais reutilizáveis e recicláveis, nos casos de que trata o § 10.

§ 40 Os consumidores deverão efetuar a devolução após o uso, aos comerciantes ou distribuidores, dos produtos e das embalagens a que se referem os incisos I a VI do caput, e de outros produtos ou embalagens objeto de logística reversa, na forma do § 10. § 50 Os comerciantes e distribuidores deverão efetuar a devolução aos fabricantes ou aos importadores dos produtos e embalagens reunidos ou devolvidos na forma dos §§ 30 e 40.

§ 60 Os fabricantes e os importadores darão destinação ambientalmente adequada aos produtos e às embalagens reunidos ou devolvidos, sendo o rejeito encaminhado para a disposição final ambientalmente adequada, na forma estabelecida pelo órgão competente do Sisnama e, se houver, pelo plano municipal de gestão integrada de resíduos sólidos.

§ 70 Se o titular do serviço público de limpeza urbana e de manejo de resíduos sólidos, por acordo setorial ou termo de compromisso firmado com o setor empresarial, encarregar-se de *atividades de responsabilidade dos* fabricantes, importadores, distribuidores e comerciantes nos sistemas de logística reversa dos produtos e embalagens a que se refere este artigo, as ações do poder público serão devidamente remuneradas, na forma previamente acordada entre as partes.

§ 80 Com exceção dos consumidores, todos os participantes dos sistemas de logística reversa manterão atualizadas e disponíveis ao órgão municipal competente e a outras autoridades informações completas sobre a realização das ações sob sua responsabilidade."

Dessa forma, a Lei estabelece que os responsáveis pela coleta e pelo destino final dos resíduos eletroeletrônicos, pneus, pilhas e baterias, óleos lubrificantes, lâmpadas fluorescentes são os fabricantes, importadores, distribuidores e comerciantes destes produtos, podendo o poder público participar do sistema desde que remunerado para tal função.

Relacionado aos pneus e lâmpadas fluorescentes, não existem iniciativas municipais para coleta destes resíduos.

Em relação às pilhas, a CDL disponibiliza um ponto de coleta fixo nas suas instalações para coletas destes materiais. Porém, o município não realiza nenhuma iniciativa de coleta destes resíduos.

A Associação dos Municípios do Alto Uruguai Catarinense – AMAUC juntamente com a CDL realizam campanhas anuais para coleta de eletroeletrônicos. A coleta é realizada através de pontos pré-determinados ou realizada na casa dos interessados, a depender da quantidade de material a ser descartado.

Resíduos Volumosos

Os resíduos sólidos volumosos (RSV) consistem basicamente por material volumoso não removido pela coleta de resíduos regular, como móveis e equipamentos domésticos inutilizados (mesa, sofá, cadeira, geladeira etc.), grandes embalagens, peças de madeira, resíduos de podas, entre outros. Os RSV são em função de suas características, normalmente considerados de baixa periculosidade, sendo o principal impacto ambiental destes referentes aos grandes volumes gerados e ocupados nos aterros para onde são destinados (ITO & COLOMBO, 2019).

O município não dispõe atualmente de um sistema de coleta programado para estes resíduos (fogões, sofás, camas, armários, guarda-roupas...). Sugere-se que o município avalie a criação de um sistema de coleta para os resíduos volumosos, com frequência adequada a realidade do município, também disponibilize a coleta por demanda (paga) e ofereça pontos para entrega voluntária.

A Associação dos Municípios do Alto Uruguai Catarinense – AMAUC juntamente com a CDL realizam campanhas anuais para coleta de resíduos volumosos. A coleta é realizada através de pontos pré-determinados ou realizada na casa dos interessados, depende da quantidade de material a ser descartado.

Para os resíduos de poda, o município disponibiliza a coleta de pequenos volumes através da coleta de orgânicos e rejeitos e para grandes volumes, disponibiliza a coleta mensal porta a porta, sendo o material recolhido, encaminhado a algum terreno da prefeitura que fica nas proximidades de onde o material foi coletado.

9.4.1.7 Resíduos de Estabelecimentos Comerciais Prestadores de Serviços

O art.13 da Lei nº 12.305/2010 estabelece que:

Art. 13. Para os efeitos desta Lei, os resíduos sólidos têm a seguinte classificação:

I - Quanto à origem:

d) resíduos de estabelecimentos comerciais e prestadores de serviços: os gerados nessas atividades, excetuados os referidos nas alíneas "b", "e", "g", "h" e "j";

Parágrafo único. Respeitado o disposto no art. 20, os resíduos referidos na alínea "d" do inciso I do **caput**, se caracterizados como não perigosos, podem, em razão de sua natureza, composição ou volume, ser equiparados aos resíduos domiciliares pelo poder público municipal.

A legislação municipal de Irani não dispõe de Lei específica que defina critérios e limites que permitam a avaliação da equiparabilidade destes resíduos aos resíduos domiciliares, o que impede de identificar os estabelecimentos que devem efetuar os seus planos de gerenciamento de resíduos sólidos, para que sejam cobrados destes as suas responsabilidades de destinação, conforme estabelece a Lei Federal no 12.305/2010.

Sugere-se que o município elabore legislação que defina os critérios e valores para distinção entre pequenos e grandes geradores de resíduos equiparáveis aos domiciliares.

9.4.1.8 Resíduos da Construção Civil

Resíduos da construção civil são os resíduos provenientes de construções, reformas, reparos e demolições de obras de construção civil, e os resultantes da preparação e da escavação de terrenos, tais como: tijolos, blocos cerâmicos, concreto em geral, solos, rochas, metais, resinas, colas, tintas, madeiras e compensados, forros, argamassa, gesso, telhas, pavimento asfáltico, vidros, plásticos, tubulações, fiação elétrica etc., comumente chamados de entulhos de obras, caliça ou metralha.

As resoluções do Conselho Nacional do Meio Ambiente (CONAMA nº 307/2002, CONAMA nº 431/2011 e CONAMA nº 448/2012) são os instrumentos legais determinantes no quesito dos resíduos da construção civil. Estas resoluções definem quem são os geradores, quais são os tipos de resíduos e as ações a serem tomadas quanto à geração e destinação destes resíduos.

Os resíduos, conforme as referidas resoluções, são classificados em:

Classe A: são os resíduos reutilizáveis ou recicláveis como agregados, tais como:

- a) de construção, demolição, reformas e reparos de pavimentação e de outras obras de infraestrutura, inclusive solos provenientes de terraplanagem;
- b) de construção, demolição, reformas e reparos de edificações: componentes cerâmicos (tijolos, blocos, telhas, placas de revestimento etc.), argamassa e concreto;
- c) de processo de fabricação e/ou demolição de peças pré-moldadas em concreto (blocos, tubos, meios-fios etc.) produzidas nos canteiros de obras;

Classe B - são os resíduos recicláveis para outras destinações, tais como: plásticos, papel, papelão, metais, vidros, madeiras e gesso;

Classe C - são os resíduos para os quais não foram desenvolvidas tecnologias ou aplicações economicamente viáveis que permitam a sua reciclagem ou recuperação;

Classe D: são os resíduos perigosos oriundos do processo de construção, tais como: tintas, solventes, óleos e outros, ou aqueles contaminados oriundos de demolições, reformas e reparos de clínicas radiológicas, instalações industriais e outros.

Geradores são pessoas, físicas ou jurídicas, públicas ou privadas, responsáveis por atividades ou empreendimentos que gerem os resíduos; os transportadores são as pessoas, físicas ou jurídicas, encarregadas da coleta e do transporte dos resíduos entre as fontes geradoras e as áreas de destinação.

É pressuposto destas resoluções que a responsabilidade pela adequada destinação dos resíduos é do gerador, cabendo aos demais participantes da cadeia de manejo e destinação final, responsabilidade solidária no âmbito de sua participação e, ao poder público, o papel de disciplinar e fiscalizar as atividades dos agentes privados.

Um modo dos geradores assumirem responsabilidade é a cobrança de elaboração de Projetos de Gerenciamento dos Resíduos gerados no canteiro de obras, que passariam a ser obrigatórios e deveriam ser apresentados ao poder público no processo de aprovação do projeto de qualquer empreendimento que envolvesse atividade de construção civil. Ao final do empreendimento, na concessão de habitese, deve o empreendedor comprovar que realizou a destinação conforme apresentado no projeto de gerenciamento de resíduos. Atualmente não existe regulamentação para

a realização desta cobrança no município. Sugere-se que o município avalie a possibilidade de regulamentar a exigência de Plano de gerenciamento de resíduos da construção civil – PGRCC na aprovação de projetos e emissão de alvará de construção.

Devido à necessidade de implementar diretrizes para a efetiva redução dos impactos ambientais gerados pelos resíduos oriundos da construção civil e considerando que a disposição de resíduos da construção civil (RCC) em locais inadequados contribui para a degradação da qualidade ambiental, o poder público municipal no cumprimento do papel de disciplinar o gerenciamento deve elaborar um Plano Integrado de Gerenciamento de Resíduos da Construção Civil conforme preveem estas Resoluções.

Neste plano devem ser estabelecidos os procedimentos para o exercício das responsabilidades dos geradores, transportadores e receptores de Resíduos de Construção Civil, em conformidade com a legislação ambiental específica (CONAMA nº 307/2002 como segue:

Art 6º Deverão constar do Plano Integrado de Gerenciamento de Resíduos da Construção Civil:

- I as diretrizes técnicas e procedimentos para o exercício das responsabilidades dos pequenos geradores, em conformidade com os critérios técnicos do sistema de limpeza urbana local e para os Planos de Gerenciamento de Resíduos da Construção Civil a serem elaborados pelos grandes geradores, possibilitando o exercício das responsabilidades de todos os geradores;
- II o cadastramento de áreas, públicas ou privadas, aptas para recebimento, triagem e armazenamento temporário de pequenos volumes, em conformidade com o porte da área urbana municipal, possibilitando a destinação posterior dos resíduos oriundos de pequenos geradores às áreas de beneficiamento;
- III o estabelecimento de processos de licenciamento para as áreas de beneficiamento e reservação de resíduos e de disposição final de rejeitos;"
- IV a proibição da disposição dos resíduos de construção em áreas não licenciadas;
- V o incentivo à reinserção dos resíduos reutilizáveis ou reciclados no ciclo produtivo;
- VI a definição de critérios para o cadastramento de transportadores;
- VII as ações de orientação, de fiscalização e de controle dos agentes envolvidos;
- VIII as ações educativas visando reduzir a geração de resíduos e possibilitar a sua segregação.
- Art. 11. Fica estabelecido o prazo máximo de doze meses, a partir da publicação desta Resolução, para que os municípios e o Distrito Federal elaborem seus Planos Municipais de Gestão de Resíduos de Construção Civil, que deverão ser implementados em até seis meses após a sua publicação.

Sendo assim o município de Irani deve elaborar seu Plano de Gerenciamento de Resíduos da Construção Civil e junto com este indicar áreas possíveis para o recebimento, triagem e destino final desses materiais, no entanto não é de sua responsabilidade o licenciamento e operação destes locais.

Segundo informações da Secretaria de Planejamento e Gestão de Projetos, os pequenos volumes de resíduos da construção civil em Irani são coletados pela prefeitura de acordo com a demanda e encaminhados para um terreno próprio que não possui licenciamento. Não existe cobrança pelo serviço de coleta e destinação do material. Para a coleta de grandes volumes, existem empresas licenciadas que realizam este serviço.

9.4.1.9 Programas e Ações de Sensibilização Ambiental

O município desenvolve algumas ações de educação ambiental, sem frequência pré-determinada, nas escolas municipais, com o intuito de instruir os estudantes e seus pais quanto a importância da segregação e destinação correta dos resíduos sólidos.

Na pesquisa de satisfação já mencionada neste relatório, foi questionada qual a satisfação quanto as orientações de disposição dos resíduos orgânicos e rejeitos para coleta, 57,89% dos participantes consideraram esse serviço como muito bom ou bom, 34,50% avaliaram como regular, e os outros 7,60% consideraram esse serviço como ruim ou muito ruim.

Relacionado as orientações de disposição de resíduos recicláveis, 38,01% dos participantes consideraram esse serviço como muito bom ou bom, 43,27% avaliaram como regular, e os outros 18,71% consideraram esse serviço como ruim ou muito ruim.

Esses resultados indicam que possibilidades de melhorias no processo de educação ambiental já desenvolvido pelo município devem ser exploradas, permitindo que a população passe a agir com consciência crítica acerca das questões ambientais.

9.4.2 Receitas x Custos

A Lei Federal nº 11.445/2007, estabelece que os serviços públicos de saneamento básico devem ser prestados em regime de sustentabilidade, ou seja, com taxas que cubram os custos e garantam os investimentos para a prestação dos serviços adequadamente.

A cobrança pelo serviço de limpeza pública e sistema de manejo de resíduos sólidos é realizada com base no Código tributário – Lei nº 917, de 23 de dezembro de 1997, que através do artigo nº 97 determina que: "A base de cálculo da taxa é o custo dos serviços utilizados pelo contribuinte, ou colocados à sua disposição e dimensionados, para cada caso da seguinte forma:

I - em relação aos serviços de limpeza pública e conservação de vias e logradouros públicos, por metro linear de testada e por serviço prestado, mediante aplicação de 20 % sobre a UFIR;

II - em relação ao serviço de coleta de lixo, por m² de área edificada e por tipo de utilização do imóvel, conforme tabela abaixo:

Residência	10,0 %
Comércio	15,0 %
Serviços	15,0 %
Indústria	5,0 %
Hospitais e Congêneres	5,0 %
Agropecuária	5,0 %
Outros	10,0 %

E o Parágrafo 4º da mesma Lei específica que a coleta de lixo será calculada até o limite de 5 (cinco) UFIR, sendo que de acordo com o setor de tributação do município, o valor da UFIR no ano de 2020 era de R\$ 4,85 e o valor em 2021, R\$ 5,06.

No município, a taxa de coleta de resíduos é cobrada através do boleto do IPTU e a taxa referente aos serviços de limpeza pública e conservação de vias e logradouros públicos não é cobrada da população.

Considerando estas prerrogativas, foi realizado o levantamento dos valores arrecadados com a Taxa de coleta de lixo pela Prefeitura Municipal. Vale ressaltar que no município, a cobrança pelo serviço é realizada somente na área urbana.

Os valores arrecadados pela Prefeitura Municipal, nos anos de 2019 e 2020, referentes a taxa de coleta de lixo são apresentados na Tabela 69.

Tabela 69: Arrecadação – Taxa de Serviço Público de coleta de lixo.

Ano	Arrecadação Valor total(R\$)
2019	323.784,40
2020	338.518,06

Fonte: Secretaria de Planejamento e Gestão de Projetos.

A Tabela 70 apresenta os custos totais do município com limpeza pública e o manejo de resíduos sólidos no ano de 2020.

Tabela 70: Relação de custos com limpeza pública e manejo de resíduos sólidos no município.

Custos		
Serviço	2020	
Coleta, transporte e disposição de resíduos domiciliares e recicláveis	526.078,06	
Coleta, transporte e disposição de RSS	6.000,00	
Limpeza pública	2020	
Roçada e poda	97.899,80	
Varrição e capina	64.950,00	
Total	772.927,86	

Fonte: Secretaria de Planejamento e Gestão de Projetos.

Realizando a comparação entre os custos e a receita relacionados a coleta, transporte e disposição final de resíduos domiciliares e recicláveis tem-se o seguinte:

Tabela 71: Comparativo entre o custo com manejo de resíduos sólidos e a arrecadação nos anos de 2019 e 2020.

2013 6 2020.		
	Valor anual (R\$)	Valor anual (R\$)
	2019	2020
Arrecadação	323.784,40	338.518,06
Custos	428.968,85 ¹⁵	526.078,06
Déficit	-105.184,45	-187.560,00

A arrecadação total do município com a taxa de coleta de resíduos no ano de 2019 corresponde a 75,48% do valor dos custos e em 2020 representa 64,35%.

Desta forma, é importante a realização de um estudo para revisão das taxas, que busque uma metodologia de cobrança justa ao contribuinte e que não

¹⁵ Neste ano, foi implantada a coleta de recicláveis na área urbana no mês de novembro.

comprometa a saúde financeira do município. Sugere-se que esse estudo também avalie a melhor forma de realizar a cobrança deste serviço na área rural, que atualmente não paga pelo serviço prestado.

O Ministério do Desenvolvimento Regional produziu a cartilha "Roteiro para a Sustentabilidade do Serviço Público de Manejo de RSU, 2021", onde é disponibilizado um passo a passo para a definição do modelo tarifário a ser implementado pelo município.

Também se encontram disponíveis uma planilha para o cálculo de taxa ou tarifa de serviços de manejo de resíduos sólidos urbanos e um manual para a utilização da planilha. Por fim, são oferecidas minutas de instrumentos legais (decretos e leis) para a implementação da cobrança pelos serviços.

O material pode ser acessado através do site https://www.gov.br/mdr/pt-br/assuntos/saneamento/webinar/manuais-com-orientacoes-aos-gestores.

9.5 OUVIDORIA

O exercício da ouvidoria em relação ao serviço de coleta é realizado pela CRI – Coleta e Industrialização de Resíduos Ltda, todavia, o Município é o titular dos serviços, dessa forma, cabe a ele o exercício da ouvidoria, que deve ser centralizada em um setor específico, para assim, avaliar, acompanhar e fiscalizar os serviços públicos prestados pela municipalidade.

9.6 AVALIAÇÃO DO ATENDIMENTO ÀS PROPOSIÇÕES DO PLANO DE SANEAMENTO BÁSICO DE 2011 E SUAS PROPOSTAS DE INVESTIMENTOS

O Plano Municipal de Saneamento Básico de Irani do ano de 2011 faz a apresentação dos "Objetivos e Metas para o sistema de limpeza urbana e gestão integrada de resíduos sólidos", sendo relacionadas abaixo cada meta e atribuído um comentário sobre as atitudes tomadas pelos responsáveis até o momento.

1 - Serviços de Coleta e Transporte de Resíduos Domiciliares.

Comentários: Demanda atendida.

2 - Serviços de Coleta Seletiva e Valorização

<u>Comentários</u>: Demanda atendida parcialmente. Não foi implementado o Programa de Educação Sanitária e Ambiental, nem tomadas as iniciativas relacionadas às potencialidades referentes a compostagem.

3 - Destinação Final de Resíduos

Comentários: Demanda atendida.

4 - Valorização de Materiais

<u>Comentários</u>: Demanda atendida parcialmente. A coleta seletiva foi implantada na área urbana, porém não foi implementado o Programa de Educação Sanitária e Ambiental, nem tomadas as iniciativas relacionadas às potencialidades referentes a compostagem.

5 - Investimento em manejo de resíduos na área rural - Soluções Alternativas Comentários: Demanda não atingida.

6 - Implantação de pontos de coleta de resíduos eletrônicos e especiais

<u>Comentários:</u> Demanda não atingida, porém a CDL implantou ponto de coleta deste tipo de resíduo.

7 - Programa de conscientização da coleta seletiva

Comentários: Demanda não atingida.

8 - Revisão da sistemática de cobrança dos serviços

<u>Comentários:</u> Demanda atingida parcialmente. Foram realizadas as revisões previstas em lei, porém o sistema não apresenta sustentabilidade econômica.

<u>9 - Criação de lei municipal para restrição do armazenamento de materiais em vias e passeios públicos (Implementação de central de resíduos nas residências).</u>

<u>Comentários:</u> Demanda atendida. Foi promulgada a Lei Complementar 89, de 24 de abril de 2018 que dispõe sobre normas relativas às edificações do município de Irani – Código de Edificações e dá outras providências.

10 - Implantação de sistema de compostagem (orgânicos).

<u>Comentários:</u> Demanda não atendida. Não foram implementadas soluções baseadas em compostagem.

9.7 PROGNÓSTICO

9.7.1 Estimativa de Geração de Resíduos Orgânicos e Rejeitos

Com base no per capita de 2020, que corresponde a 0,396 Kg/hab.dia apresentado na Tabela 72, e o estudo populacional presente no Quadro 10 do Produto 1 da atual revisão, foram estimadas as quantidades de rejeitos que serão geradas durante os próximos 20 anos.

Tabela 72: Estimativa da quantidade de orgânicos e rejeitos gerados durante o horizonte de projeto.

Ano	População total atendida	Quantidade total (toneladas)	
2022	10.929	1.579,37	
2023	11.046	1.596,23	
2024	11.163	1.613,09	
2025	11.279	1.629,94	
2026	11.396	1.646,78	
2027	11.512	1.663,61	
2028	11.629	1.680,43	
2029	11.745	1.697,24	
2030	11.861	1.714,04	
2031	11.977	1.730,82	
2032	12.093	1.747,59	
2033	12.209	1.764,34	
2034	12.325	1.781,07	
2035	12.441	1.797,78	
2036	12.556	1.814,48	
2037	12.671	1.831,14	
2038	12.787	1.847,79	
2039	12.902	1.864,41	
2040	13.017	1.881,01	
2041	13.131	1.897,57	

9.7.2 Estimativa de Geração de Resíduos Recicláveis

Para a estimativa das quantidades de resíduos a serem coletadas pela coleta de recicláveis, foi utilizada a produção per capita do ano de 2020, que corresponde a 0,027 Kg/hab.dia, visto que foi o primeiro ano que o município teve coleta de recicláveis tanto na área rural como na urbana.

A projeção da quantidade de resíduos recicláveis para o período de planejamento, considerando a projeção populacional do Produto 1 desta Revisão, é apresentada na Tabela 73.

Tabela 73: Projeção da quantidade de resíduos recicláveis produzida.

Ano	População total atendida	Quantidade total (toneladas)	
2022	10.929	107,14	
2023	11.046	108,28	
2024	11.163	109,42	
2025	11.279	110,57	
2026	11.396	111,71	
2027	11.512	112,85	
2028	11.629	113,99	
2029	11.745	115,13	
2030	11.861	116,27	
2031	11.977	117,41	
2032	12.093	118,55	
2033	12.209	119,68	
2034	12.325	120,82	
2035	12.441	121,95	
2036	12.556	123,09	
2037	12.671	124,22	
2038	12.787	125,35	
2039	12.902	126,47	
2040	13.017	127,60	
2041	13.131	128,72	

9.7.3 Estimativa de Geração de Resíduos dos Serviços de Saúde – RSS

Para a projeção da produção de RSS, utilizou-se a população total projetada, definida no Produto 1 desta Revisão e a geração per capita média (0,00039 Kg/hab.dia) dos anos de 2017 a 2019 apresentada no item 9.4.1.5.6.

Tabela 74: Estimativa da quantidade de RSS gerados durante o horizonte de projeto.

Ano	População total atendida	Quantidade total (Kg)	
2022	10.929	1.576,91	
2023	11.046	1.593,74	
2024	11.163	1.610,57	
2025	11.279	1.627,39	
2026	11.396	1.644,21	
2027	11.512	1.661,01	
2028	11.629	1.677,81	
2029	11.745	1.694,59	
2030	11.861	1.711,36	
2031	11.977	1.728,12	
2032	12.093	1.744,86	
2033	12.209	1.761,59	
2034	12.325	1.778,29	
2035	12.441	1.794,98	
2036	12.556	1.811,64	
2037	12.671	1.828,29	
2038	12.787	1.844,91	
2039	12.902	1.861,50	
2040	13.017	1.878,07	
2041	13.131	1.894,61	

9.8 CONSIDERAÇÕES FINAIS

O atual modelo de gestão de resíduos praticado no município apresenta inviabilidade econômica, indicando que os procedimentos e processos relacionados ao manejo de resíduos devem ser revistos. A busca pela sustentabilidade econômica deve ser constante, tanto para o cumprimento da legislação quanto para a saúde financeira do município.

É importante destacar que o ente municipal responsável pela gestão dos serviços exerça toda a autoridade que os dispositivos legais lhe permitem para a implementação ou ajuste da cobrança tanto da taxa de coleta de resíduos quanto a aplicação de medidas corretivas, no sentido de desenvolver ações que caracterizem a sua não omissão legal diante de possíveis não conformidades detectadas no sistema.

Assim, esta atualização serve de base para orientar as futuras ações da gestão pública, e para compatibilizar a estratégia de aplicação dos investimentos das ações vinculadas ao planejamento municipal.

Considerando estas premissas, recomendam-se os seguintes procedimentos:

- 1) Implementar programa de educação ambiental de âmbito rural e urbano, desenvolvendo ações que promovam a formação de sujeitos capazes de compreender a sua realidade e formas de agir perante o meio, de modo consciente e equilibrado. Devem ser elaboradas adequadamente as soluções tecnológicas para infraestrutura física e de gestão considerando todas as variáveis socioculturais e ambientais presentes no município.
- 2) Criação de um canal de comunicação direta entre o cidadão e o Poder Público, oferecendo à população a oportunidade de solicitar melhorias nos serviços, realizar reclamações e indicar sugestões. Essa ouvidoria possibilita avaliar, acompanhar e fiscalizar os serviços públicos prestados pela municipalidade.
- Realizar a revisão da taxa de coleta de resíduos, garantindo a sustentabilidade econômico-financeira do sistema de Limpeza Urbana e Manejo de Resíduos Sólidos.
- 4) Reavaliar a Lei nº 917/1997 no que diz respeito a cobrança pelos serviços de limpeza pública e conservação de vias e logradouros públicos, uma vez que a cobrança está prevista, mas não é realizada ou implementar a cobrança prevista na legislação.
- 5) Revisar a frequência na qual a coleta de resíduos recicláveis está sendo realizada, implementando incialmente a coleta quinzenal e em alguns locais coleta semanal, pois o aumento da frequência de coleta é muito importante para atingir uma maior eficiência no programa de coleta seletiva.

- 6) Realizar estudo gravimétrico dos resíduos produzidos no município com o intuito de subsidiar a elaboração do Plano Municipal de Gestão Integrada de Resíduos Sólidos ou atualização do Projeto do Plano Intermunicipal de Gestão Integrada de Resíduos Sólidos.
- 7) Realizar a revisão do Projeto do Plano Intermunicipal de Gestão Integrada de Resíduos Sólidos elaborado em 2015 pelo Consórcio Lambari e Secretaria Municipal de Agricultura e Meio Ambiente e instituí-lo de acordo com a Lei nº 12.305/2010.
- 8) Monitorar e manter atualizados os Planos de Gerenciamento de Resíduos dos Serviços de Saúde para todas as unidades de saúde do município.
- 9) Construir novos abrigos para o armazenamento de RSS nas Unidades Centro/Pronto atendimento e Marlei Alves Batista de acordo com a RDC 222/2018.
- 10) Elaborar legislação que defina de forma clara parâmetros para avaliação de pequenos e grandes geradores.
- 11) Implantar locais licenciados para entrega voluntária de pequenos volumes de resíduos da construção civil e para recebimento de resíduos de limpeza urbana (poda) e resíduos volumosos;
- 12) Realizar o controle da pesagem de resíduos, arquivando esses dados para que possam servir como fonte de consulta para as futuras revisões do PMSB.
- 13) Desenvolver procedimento de controle para todas as empresas e unidades integradas ao sistema público de manejo e destino final de resíduos sólidos, exigindo não só as Licenças Ambientais pertinentes, como também a comprovação do cumprimento das condicionantes de validade destas. Sugere-se que seja previsto nos novos contratos penalidades e caducidade pelo não cumprimento das condicionantes ambientais.
- 14) Estabelecer manual de procedimentos operacionais para os serviços desenvolvidos pela administração municipal (como realizar determinadas operações, por exemplo, a condução das coletas, a condução da varrição e da poda, a atuação em equipe etc.) e a especificação mínima de equipamentos e pessoal envolvidos nas operações (quantidade, idade de frota, materiais de segurança etc.).
- 15) Designar um responsável pela gestão operacional do sistema, que fará o acompanhamento permanente dos serviços e será o canal de comunicação entre a administração pública e as empresas terceirizadas.

- 16) Estabelecer rotina de vistorias nas unidades de triagem e disposição final de resíduos sólidos para verificação das condições de operação.
- 17) Avaliar a possibilidade de disponibilizar a coleta de resíduos volumosos por demanda (paga) e oferecer pontos para entrega voluntária.
- 18) Realizar estudo de viabilidade para a implantação de sistema de compostagem.
- 19) Fomentar a implantação de pontos de coleta de resíduos eletrônicos e especiais pela iniciativa privada.
- 20) Estudar a possibilidade de soluções compartilhadas com os outros municípios da região para a disposição final dos resíduos.
 - 21) Estabelecer legalmente como procedimento para aprovação de projetos e emissão de alvará de construção a apresentação do Plano de gerenciamento de resíduos da construção civil PGRCC de todas as empresas de construção civil (Lei Federal n° 12.305/2010) e por grandes geradores desse tipo de resíduo (Resolução CONAMA N° 307/2002).
 - 22) Realizar treinamento anual para capacitação dos servidores envolvidos na gestão e operação dos serviços de manejo de resíduos sólidos.

10 DRENAGEM E MANEJO DAS ÁGUAS PLUVIAIS URBANAS

10.1 APRESENTAÇÃO

Este capítulo apresenta a Revisão do Diagnóstico e Prognóstico do Sistema de Drenagem Urbana e Manejo de Águas Pluviais (Produto 05), parte integrante da 1ª Revisão do Plano Municipal de Saneamento Básico (PMSB) de Irani, desenvolvido conforme Proposta nº 132/2020 firmada entre o Município de Irani e o Consórcio Interfederativo Santa Catarina - CINCATARINA.

Este documento contém a apresentação da atual situação do Município no que diz respeito à drenagem urbana e apresenta propostas de ações para a solução das deficiências encontradas.

10.2 CONTEXTUALIZAÇÃO

10.2.1 Impactos da urbanização

Conforme o censo demográfico 2010, realizado pelo Instituto Brasileiro de Geografia e Estatística (IBGE), cerca de 84,36% da população total do Brasil vivia em áreas urbanas naquele ano.

O desenvolvimento das cidades, frequentemente, está relacionado à substituição de ambientes naturais ou seminaturais por ambientes construídos, com o direcionamento das águas pluviais e dos esgotos para os corpos d'água adjacentes aos canais de drenagem (HAUGHTON; HUNTER, 1994 apud BENINI; MEDIONDO, 2015). Como consequência, o balanço hídrico é afetado, as superfícies, que antes eram superfícies naturais, tornam-se impermeáveis e impedem a infiltração de água no solo, gerando o aumento do fluxo de águas superficiais e a redução da recarga dos aquíferos. A urbanização de forma desordenada, sem planejamento de ocupação, impacta gravemente no ciclo hidrológico, por ocasionar alterações na drenagem, aumentando a possibilidade de ocorrência de enchentes e deslizamentos, conferindo riscos à saúde e à vida humana (BENINI; MEDIONDO, 2015).

O planejamento urbano, embora envolva fundamentos interdisciplinares, na prática é realizado dentro de um âmbito mais restrito do conhecimento. O planejamento da ocupação do espaço urbano no Brasil, através do Plano Diretor

Urbano, não tem considerado aspectos de drenagem urbana e de qualidade da água, os quais podem trazer grandes transtornos e custos para a sociedade e para o ambiente (PARANÁ, 2002).

Segundo Tucci e Collischonn (1998), conforme as cidades se urbanizam, é comum a ocorrência dos seguintes impactos:

- Aumento das vazões máximas (em até 7 vezes, conforme Leopold,1968)
 devido ao aumento da capacidade de escoamento através de condutos e canais e impermeabilização das superfícies;
- Aumento da produção de sedimentos devido à desproteção das superfícies e à produção de resíduos sólidos (lixo);
- Deterioração da qualidade da água superficial e subterrânea, devido à lavagem das ruas, ao transporte de material sólido e às ligações clandestinas de esgoto sanitário;
 - Contaminação de aquíferos.
- Além disso, outros impactos ocorrem devido à forma desorganizada como a infraestrutura urbana é implantada, tais como:
 - Pontes e taludes de estradas que obstruem o escoamento;
 - Redução de seção do escoamento por aterros;
 - Obstrução de rios, canais e condutos por deposição de lixo e sedimentos;
 - Projetos e obras de drenagem inadeguadas.

Dependendo do uso e do tipo de ocupação do solo é possível que vários poluentes indesejados se misturem às águas pluviais conforme elas escoam. Isso inclui sais e óleos de áreas pavimentadas, fertilizantes e pesticidas de áreas cultivadas, partículas de silte de áreas de vegetação removida, sedimentos carreados de ruas não pavimentadas, resíduos sólidos dispostos inadequadamente, e lançamento irregular de esgotos domésticos. Seguramente, um dos maiores problemas ambientais de contaminação no sistema de drenagem urbana é o lançamento dos efluentes domésticos, tratados em soluções individuais de baixa eficiência, ou até mesmo sem tratamento, nas redes de drenagem.

Áreas hidromórficas, como várzeas e bacias naturais de acomodação, adquiriram proeminência no aspecto ambiental, pois retêm água durante boa parte do ano, e sua supressão altera as condições de escoamento das águas pluviais. São benéficas ao ecossistema e particularmente sensíveis a rupturas por causa dos efeitos

da urbanização. Um cuidado extra deve ser tomado para identificar, delinear e proteger essas áreas quando estão inseridas ou adjacentes a uma área a ser utilizada para algum tipo de atividade antrópica. Observa-se que a ausência destes cuidados na ocupação do espaço urbano gera muitos dos problemas atualmente enfrentados pelos sistemas de drenagem urbana e os agravarão tanto em intensidade como em extensão se os modelos de urbanização não forem alterados.

10.2.2 O Novo e Atual Conceito de Drenagem

Baptista et al. (2005) argumentam que as soluções higienistas de drenagem urbana (também denominadas de tradicionais ou clássicas) eram voltadas para obras estruturais (redes de drenagem, galerias, valas e retificações) que buscavam facilitar o escoamento das águas e liberar espaços, transferindo para jusante os problemas com inundação através da construção de novas obras, em geral mais onerosas. Além disso, normalmente as soluções higienistas não contemplam os problemas de qualidade e acarretam situações praticamente irreversíveis de uso do solo urbano e de outros usos dos recursos hídricos, tais como recreação e paisagismo, ao canalizar os córregos, arroios ou rios.

A partir da década de 70 outra abordagem para tratar o problema foi sendo desenvolvida. Trata-se da adoção de técnicas corretivas de drenagem, que procuraram utilizar dispositivos com o objetivo principal de atuar na consequência do problema, priorizando o controle do escoamento por meio de detenções (USEPA, 1999). Esta forma de planejamento da drenagem urbana se baseou nas técnicas de Best Management Practices (BMPs), que ganharam grande repercussão e foram muito difundidas e adotadas em todo o mundo para a gestão do escoamento pluvial.

Segundo Marsalek (2005), nas últimas décadas, abordagens mais próximas à sustentabilidade têm sido estudadas, sob as denominações: *Low Impact Development* (LID), nos EUA e Canadá; *Sustainable Urban Drainage Systems* (SUDS), no Reino Unido; *Water Sensitive Urban Design* (WSUD), na Austrália; e *Low Impact Urban Design and Development* (LIUDD), na Nova Zelândia. No Brasil, a técnica de LID recebeu a tradução de Desenvolvimento Urbano de Baixo Impacto (SOUZA, 2005), sendo mencionada no manual de apresentação de propostas para ampliação de sistemas municipais de drenagem, elaborado pelo Ministério das Cidades.

Tabela 75: Estágios do desenvolvimento sustentável da drenagem urbana nos países desenvolvidos.

Anos	Período	Características
Até 1970	Higienista Transferência para jusante do esco	
(Canais)		por canalização.
		Amortecimento quantitativo da drenagem e controle
1970 -	Corretivo	do impacto existente da qualidade da água pluvial.
1990	(Compensatória)	Envolve principalmente a atuação sobre os
		impactos.
		Planejamento da ocupação do espaço urbano,
		obedecendo aos mecanismos naturais do
1990 -	1990 - Atual Sustentável (LID)	escoamento; controle dos micropoluentes, da
Atual		poluição difusa e o desenvolvimento sustentável do
		escoamento pluvial, por meio da recuperação da
		infiltração.

Fonte: Adaptado de Forgiarini et al. (2007).

O atual conceito de drenagem vai além da prática tradicional de escoar rapidamente as águas da chuva de uma determinara área, transferindo vazões e problemas para jusante das bacias. O conceito está voltado à sustentabilidade, e agrega uma série de medidas de controle de vazões, estimulando a retenção, a infiltração e o armazenamento de águas pluviais. A drenagem sustentável envolve medidas aplicadas às sub-bacias, na origem das vazões, aumentando a infiltração da água no solo nas áreas públicas (pavimentos, sarjetas, passeios, jardins, praças, parques e outros equipamentos públicos) e nas unidades imobiliárias, bem como a detenção e a retenção de águas nestes mesmos espaços. Outra medida é a preservação das áreas verdes, mantendo-as livres da urbanização, pois a supressão de áreas como várzeas e bacias naturais de acomodação das águas alteram as vazões naturais e ampliam as vazões máximas, gerando inundações. Os novos parcelamentos do solo, nos municípios onde a legislação está atualizada aos conceitos de drenagem sustentável, têm como condicionante de aprovação a manutenção das condições de escoamento das águas pluviais na situação existente pré-urbanização, evitando vazões adicionais ao sistema.

Portanto, pela ótica da sustentabilidade, além dos sistemas estruturais necessários, a drenagem urbana agrega um novo conceito de padrão de urbanização que mantém o espaço natural das águas e prioriza medidas que evitam as causas na sua origem.

O termo gestão de águas pluviais refere-se às práticas de engenharia e às políticas regulatórias aplicadas para mitigar os efeitos adversos do escoamento de águas pluviais resultantes de vários tipos de uso e ocupação do solo. Ao longo deste diagnóstico está demonstrada a necessidade de que as soluções aos problemas encontrados em Irani estejam apoiadas em bons projetos técnicos, e em novos conceitos de drenagem sustentável e de urbanização, abandonando todas as decisões e soluções não fundamentadas nas boas práticas dos recursos de engenharia disponível.

10.2.3 Componentes do Sistema de Drenagem

A drenagem é definida pelo escoamento de águas que ocorre em lotes, condomínios e empreendimento individualizados, estacionamentos, áreas comerciais, parques e passeios, por meio de mecanismos ou de aparelhos apropriados instalados na superfície ou nas camadas subterrâneas.

Os sistemas de drenagem urbana englobam dois subsistemas principais: a microdrenagem e a macrodrenagem.

A *microdrenagem* é definida pelo sistema de condutos pluviais oriundos de loteamentos, ruas, praças ou na rede primária urbana. Os componentes clássicos da microdrenagem são os meios-fios, as sarjetas, as bocas de lobo, os poços de visita, os tubos e conexões, as galerias, os condutores forçados, as estações elevatórias e os sarjetões.

A drenagem sustentável incorpora outros componentes para o controle na fonte e em pequenas áreas, tais como: sistemas de retenção e detenções (cisternas, telhados verdes, escadas d'água) e sistemas de infiltração (pavimentos permeáveis, valos de infiltração, canteiros pluviais, jardins de chuva).

A macrodrenagem é definida como sistema de escoamento natural, localizado nos talvegues e nos fundos de vale e é responsável pelos recebimentos e condução das águas pluviais da microdrenagem, contando também com estruturas de detenção das águas, estações elevatórias e dissipadores de energia. Para as obras de macrodrenagem sustentável são incorporadas as bacias de retenção e detenção naturais, a revegetação das margens dos rios, riachos e córregos e a renaturalização dos rios.

10.3 DIAGNÓSTICO

O sistema de drenagem compõe um conjunto de equipamentos públicos existentes na área urbana e é coerente que este seja planejado de forma integrada com os demais equipamentos públicos existentes, como as redes de água, de esgotos sanitários, de cabos elétricos e telefônicos, pavimentação de ruas, guias e passeios, parques, áreas de recreação e lazer, entre outros.

Apesar da extrema importância que a gestão das águas pluviais apresenta para a saúde, segurança e bem-estar das comunidades urbanas, este segmento tem sido deixado de lado por muitas administrações municipais e de forma geral é tratada de modo superficial, com falhas no planejamento, execução e fiscalização das obras. As redes de drenagem são deficientes em dimensão, extensão e número de bocas de lobo porque as administrações aplicam o conceito antigo de drenagem "escoar rapidamente as águas da chuva de uma determinada área, transferindo vazões e problemas para jusante das bacias", desconsiderando parcial ou completamente os parâmetros técnicos. Esse comportamento tem se convertido em ônus econômico cada vez maior e representa muitos riscos para a população urbana.

10.3.1 Coleta de Dados

A coleta de dados baseou-se na metodologia descrita a seguir:

- Pesquisa de satisfação em relação aos serviços de saneamento que esteve disponível à população de 14/07/2020 a 05/02/2021;
- Visitas in loco às áreas-problema em companhia de servidores da prefeitura com prévio conhecimento sobre as áreas-problema;
 - Realização de reunião comunitária no dia 26/05/2021;

Informações repassadas pela Secretaria de Planejamento e Setor de Tributação, que estiveram em contato direto com a equipe responsável por esta Revisão.

10.3.2 Hidrografia Municipal

No estado de Santa Catarina a Lei nº 10.949 de 1998 institui, para efeito de planejamento, gestão e gerenciamento dos recursos hídricos catarinenses, dez regiões hidrográficas.

O município de Irani está inserido na Região Hidrográfica do Meio Oeste Catarinense (RH2), que abrange a área de duas bacias hidrográficas do Estado de Santa Catarina, a Bacia Hidrográfica do Rio Chapecó e a Bacia Hidrográfica do Rio do Peixe, e na Região Hidrográfica do Vale do Rio do Peixe (RH3) que abrange a área de duas bacias hidrográficas do Estado de Santa Catarina: a Bacia Hidrográfica do Rio Jacutinga e a Bacia Hidrográfica do Rio do Peixe, além de bacias contíguas com sistemas de drenagem independentes, Figura 120.

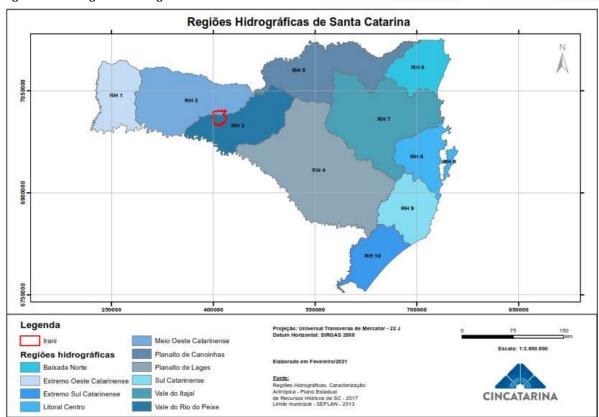


Figura 120: Regiões Hidrográficas de Irani.

Segundo o levantamento aerofotogramétrico do Estado de Santa Catarina (SDS, 2010), o principal rio que corta o município é o Rio do Engano, que possui uma extensão total de 106,23 Km, até desaguar no Rio Uvá em Itá. De toda a sua extensão, 18,62 Km estão inseridos nos limites municipais de Irani.

Ainda segundo SDS (2010), Irani apresenta outros recursos hídricos importantes, como o Rio Irani, Rio Jacutinga e vários córregos, lajeados, ribeirões e rios que são responsáveis pela drenagem das sub-bacias ilustradas na Figura 121.

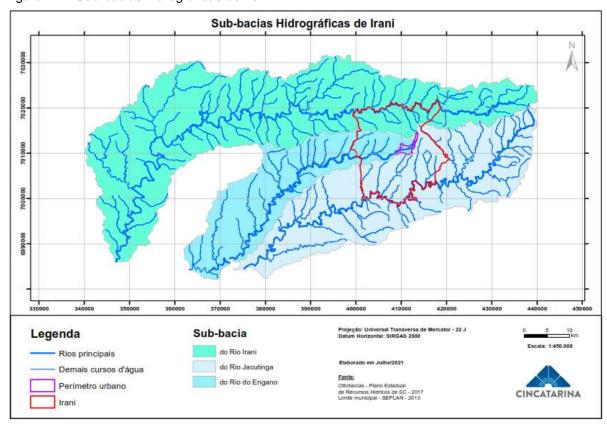


Figura 121: Sub-bacias hidrográficas de Irani.

A Tabela 76 permite observar a área total e a área inserida de cada sub-bacia hidrográfica no município.

Tabela 76: Áreas das sub-bacias inseridas no município de Irani.

Sub-bacia hidrográfica	Área total da sub- bacia	Área no município	
	(km²)	(km²)	(%)
Do Rio Irani	1.597,36	87,65	5,48
Do Rio do Engano	559,80	74,67	13,33
Do Rio Jacutinga	1.006,75	166,98	16,59

Fonte: Elaboração própria, a partir de SDS (2010).

O Comitê de Gerenciamento das Bacias Hidrográficas dos Rios Chapecó e Irani e Bacias Hidrográficas Contíguas (Comitê Chapecó/Irani) é o responsável pela promoção do gerenciamento descentralizado, participativo e integrado da Bacia Hidrográfica do Rio Chapecó/Irani e seus contíguos.

10.3.3 Relevo

O relevo tem grande influência sobre os fatores meteorológicos e hidrológicos dado que a velocidade de escoamento superficial é determinada pela declividade do terreno, enquanto a temperatura, a precipitação e a evaporação são funções da altitude da bacia hidrográfica (GALVÍNCIO, SOUSA E SHIRINIVASAN, 2006).

O escoamento superficial consiste na fração que supera a capacidade de absorção e retenção do solo, dirigindo-se, deste modo, aos fundos de vale. Assim, para o desenvolvimento de bons projetos de engenharia é essencial o domínio do relevo, de forma a permitir tratamento técnico seguro.

A Figura 122 apresenta o relevo (elevação) do município de Irani, e a Figura 123 o relevo do perímetro urbano.

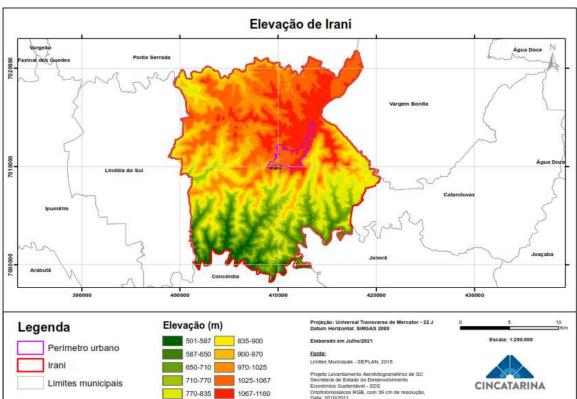


Figura 122: Elevação do município de Irani.

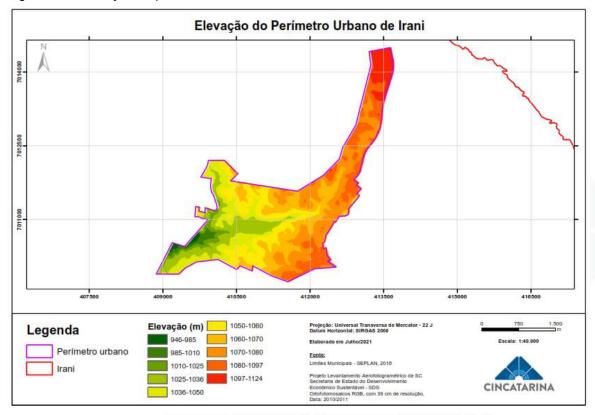


Figura 123: Elevação do perímetro urbano de Irani.

10.3.4 Áreas de Risco de Inundação e Movimentos de Massa Associados à Falta de Infraestrutura de Drenagem

As inundações ou enchentes em áreas urbanas são consequência de dois processos, que ocorrem isoladamente ou de forma conjunta:

Enchentes em áreas ribeirinhas: os rios geralmente possuem o leito menor, onde a água escoa na maior parte do tempo, e o leito maior, o qual inunda-se em média a cada 2 anos. O impacto devido à inundação ocorre quando a população ocupa o leito maior do rio, ficando sujeita à inundação.

<u>Enchentes devido à urbanização</u>: as enchentes aumentam a sua frequência e magnitude devido à ocupação do solo com superfícies impermeáveis e à existência de redes de condutos de escoamentos. O desenvolvimento urbano pode também produzir obstruções ao escoamento, como aterros e pontes, drenagens inadequadas, obstruções ao escoamento junto a condutos e assoreamento (PARANÁ, 2002).

Além de inundação e enchente, existem também os conceitos de alagamento e enxurrada, usualmente empregados em áreas urbanas. De acordo com Ministério das Cidades/IPT (2007), o alagamento pode ser definido como o acúmulo

momentâneo de água em uma dada área por problemas no sistema de drenagem, podendo ter ou não relação com processos de natureza fluvial.

Já a enxurrada é definida como o escoamento superficial concentrado e com alta energia de transporte, que pode ou não estar associado a áreas de domínio dos processos fluviais. É comum a ocorrência de enxurradas ao longo de vias implantadas sobre antigos cursos d'água com alto gradiente hidráulico e em terrenos com alta declividade natural (AMARAL & RIBEIRO, 2009).

A Figura 124 ilustra a diferença entre uma situação normal do volume de água no canal de um curso d'água e nos eventos de enchente e inundação, além de mostrar uma situação de alagamento.

INUNDAÇÃO

ENCHENTE

SITUAÇÃO

NORMAL

Figura 124: Representação de situação de enchente, inundação e alagamento.

Fonte: DCSBC, 2011.

Os esforços devem estar concentrados em não permitir a ocupação de regiões críticas, que sejam de risco ou cuja ocupação gere ou maximize problemas em outras áreas. Estes espaços relevantes são as áreas de várzeas e as bacias naturais de acomodação das águas, as quais, quando ocupadas, alteram as vazões naturais, ampliando as vazões máximas e gerando inundações. Por outro lado, se preservadas, desempenham funções ambientais indispensáveis e de interesse à comunidade urbana.

A realocação de ocupações em áreas de risco de inundações onera o município. Entretanto, este processo não deve ser descartado, pois existem locais em que as estruturas de drenagem urbana não conseguem amenizar estes riscos.

O levantamento realizado pelo Serviço Geológico do Brasil (CPRM) no ano de 2018, que visou a identificação de áreas de risco sujeitas a inundações causadas pelas cheias dos cursos d'água existentes no Município ou movimentos de massa

agravados pela ausência de infraestruturas de drenagem, delimitou um total de 5 áreas, sendo 4 delas com risco de inundação e 1 delas com risco de deslizamento.

10.3.4.1 Área 1 com risco de inundação

Esta área é caracterizada pela presença de edificação de baixo padrão construtivo, localizada às margens da planície de inundação do Rio Lajeado Casa Grande. O fluxo d'água avança pelo interior da propriedade e atinge cerca de 1 metro de altura. Devido ao isolamento, esses moradores estão mais propensos a danos à integridade física, perdas materiais e patrimoniais. O grau de risco dessa área é alto, existem 3 edificações na área de risco e 4 pessoas podem ser afetadas pelas inundações. CPRM (2018), Figura 125.

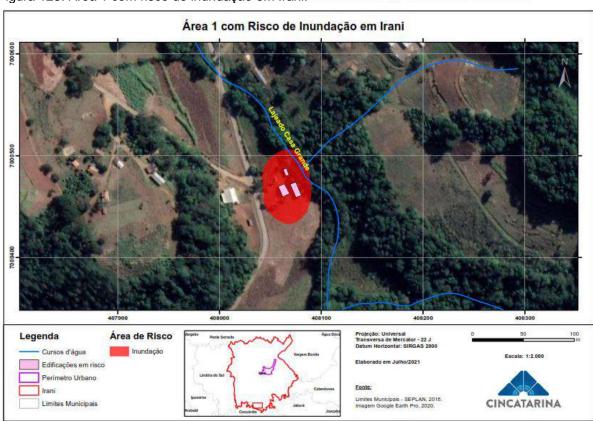


Figura 125: Área 1 com risco de inundação em Irani.

10.3.4.2 Área 2 com risco de inundação

Esta região está localizada em área de planície de inundação de um afluente do Rio do Engano. De acordo com relatos, o tempo de recorrência desses eventos é de aproximadamente 18 meses. Segundo CPRM (2018), existiam 7 residências dentro da área de risco classificada como "alto", porém atualmente, 10 edificações se encontram na mancha de risco. A falta de infraestruturas de microdrenagem e de sistema de coleta e tratamento de esgoto contribuem para os eventos de inundação.

A Figura 126 demonstra a Área 2, localizada na Rua Luiz Guareski.



Figura 126: Área 2 com risco de inundação na sede urbana de Irani.

10.3.4.3 Área 3 com risco de inundação

De acordo com CPRM (2018), esta área é classificada como de risco alto e está relacionada ao Rio do Engano, que devido ao subdimensionamento das tubulações extravasa. Atualmente são 5 edificações que se encontram na área de risco, sendo que 20 pessoas podem ser afetadas pelas inundações.

A Figura 127 demonstra a área 3, localizada na Avenida Governador Ivo Silveira com a Rua Vicente Lemos das Neves.

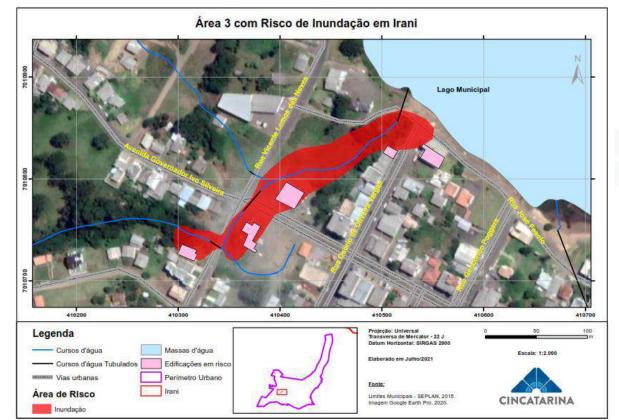


Figura 127: Área 3 com risco de inundação na sede urbana de Irani.

10.3.4.4 Área 4 com risco de inundação

A área de risco, marginal à Rodovia SC-473, é cortada pela drenagem, e é sujeita a inundações recorrentes que impedem o tráfego. A falta de infraestrutura de microdrenagem e redes de coleta, tratamento de esgoto e ausência de pavimentação agravam os processos de inundação. De acordo com CPRM (2018), naquele ano existiam 4 edificações que ocupavam a planície de inundação do córrego. A área foi classificada como de risco alto e 16 pessoas podem ser atingidas pelas inundações.

A Figura 128 demonstra a área 4, localizada Rodovia SC 473.

Ârea 4 com Risco de Inundação em Irani

ago Municipal

ago Municip

Figura 128: Área 4 com risco de inundação na sede urbana de Irani.

10.3.4.5 Área 1 com risco de deslizamento

Esta região se localiza numa área de loteamento clandestino, assim, as vias de circulação ainda não foram regularizadas e não possuem pavimentação, nem sistema de microdrenagem instalado. A área é caracterizada pela aglomeração de edificações de baixo padrão construtivo, edificadas muito próximas umas das outras e a um talude de corte. O talude verticalizado é suscetível a deslizamentos e a queda de blocos, pois apresenta uma rocha bastante fraturada, alterada, de baixa competência geotécnica. O lançamento de águas servidas na encosta acelera os movimentos de massa. O grau de risco dessa área é muito alto, sendo que 9 edificações se encontram em risco. CPRM (2018).

A Figura 129 demonstra a área 1 com risco de movimentação de massa devido à ausência de infraestrutura de drenagem.

Área com Risco de Deslizamento em Irani

Area com Risco de Deslizamento

Area com Risco de Deslizamento em Irani

Area com Risco de Mercator - 22 J Dato Risco Risco de Mercator - 22 J Dato Risco Risc

Figura 129: Área sujeita à movimento de massa em Irani.

10.3.5 Estrutura, Operação e Manutenção do Sistema de Drenagem

A responsabilidade pela execução das obras e manutenção da drenagem urbana no Município é da Secretaria de Transporte e Obras, que não possui equipe específica, porém de acordo com a demanda, o pessoal da pavimentação e obras auxiliam nesse serviço. Normalmente são liberados um pedreiro, 3 serventes e motoristas de retroescavadeira ou retroescavadeira hidráulica para realizar os serviços relacionados ao sistema de drenagem. Para obras de maior porte, normalmente realizadas através de recursos captados, o município contrata através de processo licitatório empresas de engenharia para a realização do serviço.

Não existe cadastro técnico das redes de drenagem, bem como não há rotina com frequência estabelecida para manutenção de redes, galerias e outros componentes do sistema de drenagem. Os trabalhos são realizados conforme as necessidades se apresentam.

Os pequenos córregos são componentes fundamentais do sistema de macrodrenagem de Irani, e requerem atenção especial de manutenção. Esses cursos

d'água não devem ser tubulados e as travessias de vias urbanas devem preferencialmente ser realizadas com galerias ou bueiros celulares dimensionados para o adequado escoamento das águas, para manutenção e também para que não sejam facilmente obstruídos por qualquer tipo de resíduo que possa limitar sua capacidade de vazão.

10.3.5.1 Sustentabilidade econômico-financeira

No inciso III do art. 29 e da Lei Federal nº 11.445/2007 (Diretrizes Nacionais para o Saneamento Básico – DNSB) consta que:

Art. 29. Os serviços públicos de saneamento básico terão a sustentabilidade econômico-financeira assegurada por meio de remuneração pela cobrança dos serviços, e, quando necessário, por outras formas adicionais, como subsídios ou subvenções, vedada a cobrança em duplicidade de custos administrativos ou gerenciais a serem pagos pelo usuário, nos seguintes servicos:

III – de drenagem e manejo de águas pluviais urbanas, na forma de tributos, inclusive taxas, ou tarifas e outros preços públicos, em conformidade com o regime de prestação do serviço ou das suas atividades. (Redação pela Lei nº 14.026, de 2020).

O art. 7º, em seu inciso VII, da Lei Municipal nº 68/2011 (Política Municipal de Saneamento Básico) dispõe que:

Art. 7º A Política Municipal de Saneamento Básico tem por objetivo a preservação, melhoria e recuperação da qualidade ambiental propícia à vida, com base nos seguintes princípios:

"(...)" VII - eficiência e sustentabilidade econômica;

Já, o art. 8º da mesma Lei descreve que a Política Municipal de Saneamento Básico visará:

"(...) VII - promover alternativas de gestão que viabilizem a autosustentação econômica e financeira dos serviços de saneamento básico, com ênfase na cooperação federativa;

Do mesmo modo, o art. 28 descreve que "Os serviços públicos de saneamento básico terão a sustentabilidade econômico-financeira assegurada, sempre que possível, mediante remuneração pela cobrança dos serviços:

I - de abastecimento de água e esgotamento sanitário: preferencialmente na forma de tarifas e outros preços públicos, que poderão ser estabelecidos para cada um dos serviços ou para ambos conjuntamente;

 II - de limpeza urbana e manejo de resíduos sólidos urbanos:
 taxas ou tarifas e outros preços públicos, em conformidade com o regime de prestação do serviço ou de suas atividades;

III - de manejo de águas pluviais urbanas: na forma de tributos, inclusive taxas, em conformidade com o regime de prestação do serviço ou de suas atividades.

No entanto, conforme informações da prefeitura municipal, não é realizado nenhum tipo de cobrança pelos serviços de drenagem urbana, inviabilizando o princípio fundamental da sustentabilidade econômica definido no inciso VII do art. 2º da DNSB.

A Lei Municipal nº 68/2011, no seu art. 32º, deixa claro que

"A cobrança pela prestação do serviço público de drenagem e manejo de águas pluviais urbanas deve levar em conta, em cada lote urbano, os percentuais de impermeabilização e a existência de dispositivos de amortecimento ou de retenção de água de chuva, bem como poderá considerar: I - o nível de renda da população da área atendida; II - as características dos lotes urbanos e as áreas que podem ser neles edificadas."

Apesar da previsão legal estar vigente, a cobrança pelo serviço de drenagem não foi implementada.

10.3.6 Funcionalidade do Sistema de Drenagem

A funcionalidade do sistema de drenagem pode ser afetada por fatores de natureza climatológica, ambiental, tecnológica e institucional (SANTOS JÚNIOR, 2013), destacando-se os seguintes: subdimensionamento de redes e componentes do sistema; deposição de sedimentos e resíduos nas unidades componentes do sistema; falta de manutenção preventiva e corretiva periódicas; adoção de soluções pontuais sem o devido tratamento técnico balizado por plano diretor de drenagem ou projeto básico integrado, que orientem as intervenções de ampliação e manutenção

Silva et al. (2004) desenvolveram uma metodologia apoiada em Indicadores de Fragilidade do Sistema – IFS, onde o sistema de drenagem urbana é tratado como um conjunto de elementos de drenagem possuindo uma série de fatores que alteram

o desempenho dos dispositivos. Já os fatores são afetados pelo desempenho, o que provoca uma reação em cadeia nos sistemas de drenagem, Tabela 77.

Tabela 77: Fatores que afetam o sistema de drenagem pluvial.

Natureza Natureza	es que afetam o sistema de drena Fatores	Abordagem
	Dogimo do objevo intendos	Representatividade da equação;
Climatológico	Regime de chuvas intensas	Intensidade x Duração e Frequência.
	Arrania da tracada urbana	Interação com a topografia;
	Arranjo do traçado urbano	Respeito ao sistema natural de drenagem.
		Nível de impermeabilização dos terrenos;
	Uso do solo	Erodibilidade dos terrenos;
		Ocupação marginal dos corpos receptores.
		De pedestres;
		De grande fluxo de veículos e de pedestres;
Ambiental	Padrões de conforto das vias	De grande fluxo de veículos e baixo fluxo de
	Fauroes de comorto das vias	pedestres;
		De médio movimento;
		De acesso local.
	Intercaño com demois	Lançamento de efluentes domésticos na rede;
	Interação com demais equipamentos de saneamento urbano	Lançamento de outros efluentes na rede;
		Deposição de lixo nas galerias e canais;
	urbano	Dispersão de sedimentos nas vias.
		Dimensão dos dispositivos hidráulicos;
	Estrutura de microdrenagem	Padrão construtivo;
	Estrutura de microdrenagem	Adequação do conjunto de dispositivos;
T 1 / !		Manutenção e conservação dos dispositivos.
Tecnológico	/	Dimensão dos dispositivos hidráulicos;
	Estrutura de macrodrenagem	Padrão construtivo;
	Estrutura de macrodrenagem	Adequação do conjunto de dispositivos;
		Manutenção e conservação dos dispositivos.
		Interatividade dos componentes;
	Aspectos gerenciais	Aporte financeiro no orçamento;
Imptiture: emel	A Control gold Holding	Recursos humanos;
Institucional	nal	Planejamento das ações e estudos existentes.
	/	Existência de normas e outros instrumentos;
	Aspectos legais	

Fonte: Silva et al. (2004).

10.3.7 Redes Existentes e Índice de Cobertura

De acordo com a Secretaria de Planejamento e Gestão de Projetos, não existem registros cadastrais da rede de drenagem.

Para estimar qual a porcentagem de vias atendidas pela rede de drenagem, considerou-se que todas as vias pavimentadas possuem infraestrutura de drenagem implantada. Assim, primeiramente, através de fotointerpretação e aferição do município, foi realizado o levantamento das vias pavimentadas e não pavimentadas do perímetro urbano.

A extensão de vias pavimentadas é de aproximadamente 22 Km que correspondem a cerca de 41% das vias urbanas e a extensão de vias não pavimentadas é em torno de 30 Km que correspondem a aproximadamente 58% das vias do perímetro urbano, Figura 130.

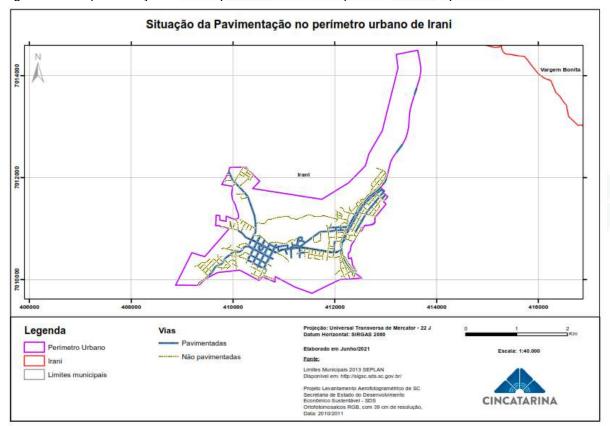


Figura 130: Representação das vias pavimentadas e não pavimentadas do perímetro urbano.

Conforme levantado em campo, as ruas pavimentadas do Município contam com sistema de microdrenagem composto por meio-fio, sistema de captação (bocas de lobo), e condução das águas pluviais por tubulação subterrânea.

De acordo com o levantamento de campo, pode-se observar que as grelhas utilizadas nas bocas de lobo não possuem um padrão construtivo (Figura 131 a Figura 134), o que dificulta a manutenção e substituição desses dispositivos.

Fonte: Acervo próprio.

Figura 132: Modelo de grelha de boca de lobo existente no município.

Fonte: Acervo próprio.

Figura 134: Modelo de grelha de boca de lobo existente no município.

Fonte: Acervo próprio.

É fundamental que seja elaborado o cadastro digitalizado e georreferenciado das redes de drenagem, com indicação de todos os dispositivos do sistema. Inicialmente, recomenda-se que o município utilize informações e o conhecimento de quem trabalha e opera o sistema, por isso é importante que o cadastramento inicie antes que estes servidores deixem suas atividades no município. Importante salientar que um cadastro requer manutenção e aprimoramento contínuo, devendo ser atualizado a cada intervenção de manutenção ou ampliação do sistema.

O município dispõe de um levantamento aerofotogramétrico realizado pelo Estado, possibilitando, na ausência de levantamento mais preciso, a elaboração do cadastro de redes de forma mais acessível.

10.3.8 Projetos

O sistema de drenagem integra o conjunto de equipamentos públicos existentes na área urbana e é pertinente que seja planejado de forma integrada com os demais equipamentos e infraestruturas urbanas, abrangendo as redes de água, de esgotamento sanitário, de cabos elétricos e telefônicos, pavimentação de ruas, guias

e passeios, parques, áreas de recreação e lazer, entre outros. Em relação às outras infraestruturas urbanas, o sistema de drenagem tem uma particularidade: o escoamento de águas pluviais sempre ocorrerá, independente de existir ou não um sistema de drenagem adequado. A qualidade da concepção e do dimensionamento desse sistema é que determinará se os benefícios ou prejuízos à população serão maiores ou menores.

As precipitações pluviométricas escoam seguindo a declividade natural das bacias hidrográficas, e o perfeito conhecimento topográfico destas bacias é essencial ao sucesso de um projeto de drenagem. Assim, é recomendado que o município se utilize. na ausência de levantamento mais preciso. do levantamento aerofotogramétrico realizado pelo Estado, para viabilizar o desenvolvimento de projeto básico de toda a drenagem urbana, peça fundamental que orientará todas as intervenções pontuais futuras no sistema, que deverão ser embasadas por levantamentos mais preciso.

A Lei nº 91/2018 institui a lei de uso, ocupação e parcelamento do solo do município e disciplina as exigências relacionadas a aprovação de novos loteamentos, dentre elas devem constar o projeto completo do sistema de drenagem, detalhado e dimensionado, do sistema de captação e escoamento de águas pluviais e seus equipamentos.

Segundo a Secretaria de Planejamento e Gestão de projetos, o único projeto de macrodrenagem que irá ser realizado e atualmente se encontra em fase de estudos para elaboração de processo licitatório de contratação se refere ao plano de segurança de barragem do Lago.

Normalmente, quando surge a necessidade de execução desse tipo de projeto, a responsável pelo seu dimensionamento é a Associação dos Municípios do Alto Uruguai Catarinense – AMAUC.

10.3.9 Intensidade, Duração e Frequência - IDF

O dimensionamento dos projetos de drenagem é baseado na intensidade máxima de chuva associada a um risco de ser atingida ou superada, em função do período de retorno definido. O período de retorno, também conhecido como período de recorrência ou tempo de recorrência, é o intervalo de tempo estimado de ocorrência de um determinado volume de precipitação pluviométrica, sendo que a probabilidade

de sua ocorrência é representada matematicamente pelo inverso do período de retorno. O município é o responsável por decidir o risco aceitável, ou seja, a proteção que será conferida às obras através da definição do período de retorno que os projetistas devem utilizar nos cálculos. Quanto maior o período de retorno adotado, menor a probabilidade da ocorrência do volume de precipitação pluviométrica de projeto e, portanto, maior a proteção conferida à população. No entanto, maiores serão os custos dos investimentos e o porte das intervenções.

Salvo aplicação de critérios técnicos específicos do período de retorno, podem ser utilizados os valores da Tabela 78, sugeridos pelo DAEE/CETESB (1980).

Tabela 78: Períodos de retorno em função da ocupação da área.

Tipo de obra	Tipo de ocupação	Período de retorno (anos)	
	Residencial	2	
Microdrenagem	Comercial	5	
	Edifícios de serviços ao	5	
	Aeroportos	2 a 5	
	Áreas comerciais e artérias de tráfego	5 a 10	
Macrodrenagem	Áreas comerciais e	50 a 100	
	Áreas de importância	500	
Grandes centros urbanos	Sem Dique	25	
Grandes Centros dibanos	Com Dique	100	
Paguanas contras urbanas	Sem Dique	10	
Pequenos centros urbanos	Com Dique	50	
Pequenos canais para drenagem urbana		5 a 10	
Bocas de lobo	////	1 a 2	

Fonte: DAEE/CETESB (1980).

A dificuldade na obtenção de equações de intensidade, duração e frequência das chuvas (IDF) estão na falta de registros pluviométricos nos pequenos períodos de duração. Algumas metodologias foram desenvolvidas para obtenção de chuvas de menor duração e maior intensidade, a partir dos dados pluviométricos da precipitação de 1 (um) dia.

O "Atlas Pluviométrico do Brasil – Equações de Intensidade-Duração-Frequência", publicado em 2018 pelo CPRM, da autoria de Adriana Burin Weschenfelder, Karine Pickbrenner e Eber José de Andrade Pinto, reúne, consolida e organiza as informações sobre chuvas obtidas na operação da Rede Hidrometeorológica Nacional e neste caso especificamente para o município de Irani.

Para tanto, foram utilizados os dados da estação Irani, que se encontra em operação desde 1981 e o período utilizado na elaboração da IDF foi de 1996 a 2016. A estação Irani, código 02751011, está localizada na Latitude 27°03'04"S e Longitude 51°54'44"O; na sub-bacia 73, sub-bacia dos rios Uruguai, Chapecó e outros. Os dados para definição da equação IDF foram obtidos a partir dos registros contínuos de precipitação coletados de um pluviógrafo modelo IH até março de 2012. No período de abril de 2012 a dezembro de 2017 foram utilizados os dados contínuos de precipitação de uma estação automática, Hidromec, modelo OTT, instalada no mesmo local da estação pluviográfica, ambas operadas pelo CPRM — Serviço Geológico do Brasil. A equação adotada que relaciona os três aspectos da chuva, intensidadeduração-frequência é expressa pela fórmula:

$$i = \frac{a \times T^b}{(t+c)^d}$$

Onde:

i é a intensidade da chuva (mm/h);

T é o tempo de retorno (anos);

t é a duração da precipitação (minutos);

a, b, c, d, são parâmetros da equação.

No caso de Irani, para durações de 5 minutos a 24 horas, os parâmetros da equação são os seguintes (Tabela 79):

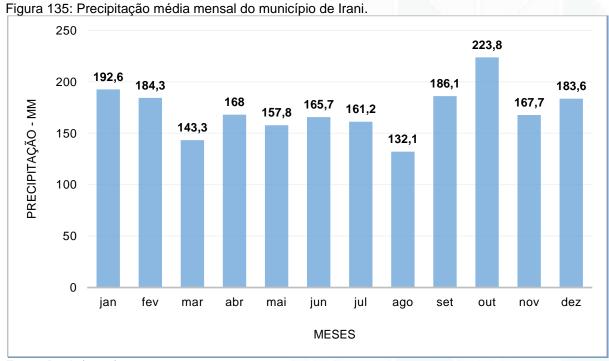
Tabela 79: Parâmetros para o município de Irani.

Parâmetros	5 min ≤ t ≤ 24 horas	
а	730,6	
b	0,1387	
С	6,4	
d	0,7065	

Fonte: Weschenfelder, Pickbrenner e Pinto (2018).

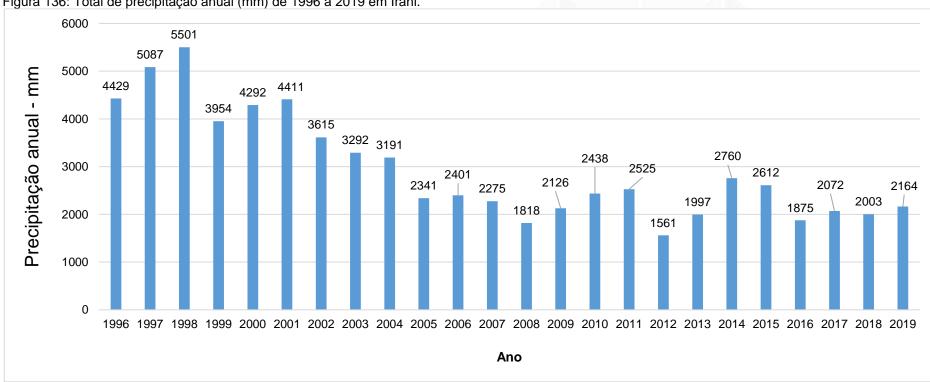
Abaixo está apresentada a Tabela 80 construída a partir da fórmula ajustada para Irani, com intensidade das chuvas em mm/h para diferentes tempos de retorno e de duração.

Tabela 80: Intensidade da chuva, em mm/h, para o município de Irani.


Intensidade das chuvas em mm/h							
Duração (min)	Período de Retorno (anos)						
Duração (min)	2	5	10	20	25	50	100
5	144,1	163,7	180,2	198,3	204,6	225,2	248,0
10	111,5	126,6	139,3	153,4	158,2	174,2	191,8
15	92,4	104,9	115,5	127,1	131,1	144,3	158,9
20	79,6	90,4	99,5	109,6	113,0	124,4	137,0
25	70,4	80,0	88,1	97,0	100,0	110,1	121,2
30	63,5	72,1	79,3	87,3	90,1	99,2	109,2
35	57,9	65,8	72,4	79,7	82,3	90,6	99,7
40	53,5	60,7	66,8	73,6	75,9	83,5	92,0
45	49,7	56,5	62,2	68,4	70,6	77,7	85,6
50	46,6	52,9	58,2	64,1	66,1	72,8	80,1
55	43,9	49,8	54,8	60,4	62,3	68,5	75,5
60	41,5	47,1	51,9	57,1	58,9	64,9	71,4
75	35,9	40,8	44,9	49,5	51,0	56,2	61,8
90	31,9	36,2	39,9	43,9	45,3	49,8	54,9
105	28,8	32,7	36,0	39,6	40,9	45,0	49,5
120	26,3	29,9	32,9	36,2	37,4	41,2	45,3
150	22,7	25,7	28,3	31,2	32,2	35,4	39,0
180	20,0	22,7	25,0	27,5	28,4	31,3	34,4
240	16,4	18,7	20,5	22,6	23,3	25,7	28,3
300	14,1	16,0	17,6	19,4	20,0	22,0	24,2
360	12,4	14,1	15,5	17,1	17,6	19,4	21,4
420	11,2	12,7	13,9	15,4	15,8	17,4	19,2
480	10,2	11,5	12,7	14,0	14,4	15,9	17,5
600	8,7	9,9	10,9	12,0	12,3	13,6	15,0
720	7,7	8,7	9,6	10,5	10,9	12,0	13,2
840	6,9	7,8	8,6	9,5	9,8	10,7	11,8
960	6,3	7,1	7,8	8,6	8,9	9,8	10,8
1.080	5,8	6,5	7,2	7,9	8,2	9,0	9,9
1.200	5,4	6,1	6,7	7,4	7,6	8,4	9,2
1.320	5,0	5,7	6,3	6,9	7,1	7,8	8,6
1.440	4,7	5,3	5,9	6,5	6,7	7,4	8,1

Fonte: Calculado a partir de Weschenfelder, Pickbrenner e Pinto (2018).

10.3.10 Precipitação Pluviométrica


Para a determinação da precipitação pluviométrica média mensal foram utilizados os dados de Back (2020), disponíveis através do programa para calcular e divulgar informações climáticas e hidrológicas do Estado de Santa Catarina – HidroClima, Figura 135. Foram utilizados os dados da estação pluviométrica 02751011 no período de 1977 a 2011.

Fonte: Back (2020).

Historicamente o mês mais chuvoso é o de outubro, com média de mais de 223 mm, enquanto o mês mais seco é agosto, com média de 132,1 mm.

Para a determinação da precipitação anual foram utilizados dados das estações pluviométricas '02751011-*Irani*', '02751021-Jaborá' e '02651001-Campina da Alegria', obtidos do Sistema de Informações Hidrológicas (SNIRH) da Agência Nacional de Águas (ANA), no período de 1996 a 2019, Figura 136.

Fonte: Elaborado a partir de SNIRH (2020).

Na Tabela 81 são apresentados os 10 (dez) maiores eventos de precipitação diária ocorridos no município, levando em consideração o período entre 1996 e 2020. Essas informações ajudam a caracterizar os principais eventos hidrológicos ocorridos no município.

Tabela 81: Máxima precipitação diária entre 1996 e 2020 em Irani.

Ordem	Data	Máxima precipitação diária
10	05/2014	174,7
2 º	06/2014	158,9
30	06/2011	139,6
4 º	07/1999	120
5º	10/2005	116,7
6º	04/1998	110
70	12/1996	109,5
80	04/2005	104,7
90	02/2019 104,2	
10°	06/1997 102,2	

Fonte: SNIRH (2020).

10.3.11 Áreas-Problema - AP

10.3.11.1 Metodologia para identificação das áreas-problema

Em visitas técnicas ao município foram registradas as regiões que sofrem com transtornos de alagamento, enchente/inundação quando da ocorrência de eventos pluviais. Foram visitados tanto os locais apontados pela equipe técnica do Município, quanto pela pesquisa de satisfação *on-line* que esteve disponível do dia 14/07/2020 a 05/02/2021 no site da prefeitura e contou com a participação de 171 pessoas.

Através dessas indicações foram identificadas 11 áreas-problema, onde proprietários de residências e/ou dos comércios locais foram consultados sobre a existência e frequência dos eventos.

De acordo com Silva et al (2004), baseando-se na realização de vistorias técnicas às áreas-problema é possível ampliar a compreensão do processo evolutivo dos alagamentos, bem como identificar os pontos mais vulneráveis do sistema de microdrenagem e do seu corpo receptor e avaliar a manifestação dos Indicadores de Fragilidade do Sistema (IFS) de natureza ambiental, tecnológica e institucional.

Após a visita técnica para identificar as áreas-problema e coletar informações sobre elas, estas regiões foram localizadas e analisadas em um Sistema de Informação Geográfica – SIG e posteriormente foram delimitadas, aferidas e aprovadas pela Secretaria de Planejamento e Gestão de Projetos.

Na sequência cada AP recebeu um indicador que caracteriza o somatório das relevâncias dos Indicadores de Fragilidade do Sistema, designado por **Índice de Fragilidade do Sistema – IFS**. O sistema de pontuação permite estabelecer a hierarquização dos principais problemas a serem atacados. Na obtenção do IFS, Tabela 82, foram atribuídos pesos aos problemas de natureza institucional, tecnológica e ambiental nos valores de 1, 2, e 3, respectivamente.

Esta metodologia foi utilizada por Silva et al. (2004), e aperfeiçoada por Silva Junior et al. (2018) na Avaliação dos indicadores de fragilidade do sistema de drenagem urbana de um bairro em Olinda-PE.

A definição de valores do IFS para cada AP serve também como referência para a partida de um processo permanente de planejamento do sistema estudado. O Prognóstico é montado a partir da definição de diretrizes, objetivos e metas estabelecidas, partindo-se então para a identificação dos diversos tipos de serviços e ações a serem propostas com vistas a resolver os problemas identificados.

Tabela 82: Indicadores de Fragilidade do Sistema (IFS).

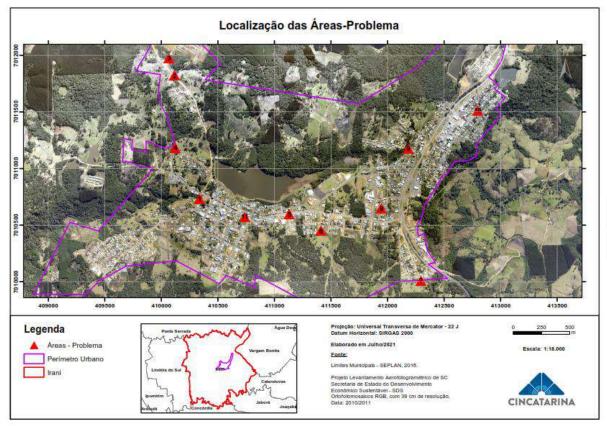
Natureza	Indicadores
	Inexistência de pavimentação
	Deterioração física dos equipamentos de drenagem:
	Ineficiência do escoamento nos eixos viários
	Inexistência de diretrizes para a execução das estruturas de drenagem urbana
	Ineficiência dos dispositivos de coleta
Tecnológico	Ineficiência da capacidade de transporte pelos condutos
	Redução da vida útil das estruturas de drenagem
	Redução da vida útil dos pavimentos
	Incompatibilização das curvas verticais nos cruzamentos viários:
	Passeios e/ou calçadas totalmente impermeabilizadas
	Interferência no escoamento das águas pluviais no corpo receptor
	Ocorrência de alagamentos
	Ausência de dispositivos de armazenamento e de áreas para a infiltração da água
	pluvial nos lotes
	Favorecimento da produção de sedimentos;
Ambiental	Possível erosão da pavimentação das vias de acesso ocasionada pelo
	escoamento superficial;
	Disposição de resíduos sólidos e deposição de sedimentos em vias públicas;
	Interação inadequada com esgoto nos equipamentos de drenagem;
	Interferência no trânsito de veículos na ocorrência de alagamentos;

Natureza	Indicadores			
	Interferência no movimento de pedestres na ocorrência de alagamentos;			
	Ocupações ribeirinhas na calha do corpo receptor			
Assoreamento, presença de vegetação, resíduos sólidos e esgotos no				
	receptor			
	Canalização e revestimento da seção hidráulica do corpo receptor			
	Restrição à implantação de áreas de inundação:			
	Elevação dos gastos com manutenção e conservação:			
Institucional	Encarecimento das soluções técnicas;			
	Perda de credibilidade da administração pública;			
	Ausência de manutenção regular do sistema de drenagem urbana;			

Fonte: Silva et al. (2004), Silva Junior (2018), adaptado por CINCATARINA.

10.3.11.2 Identificação das áreas-problema atuais

A identificação de áreas-problema apontou 11 locais onde ocorrem eventos de alagamento e inundação, Tabela 83 – Figura 137.


Tabela 83: Áreas-problema identificadas.

Área-problema	Localização	Número de edificações afetadas
AP-01	Rua Vicente Lemos das Neves, Avenida Governador Ivo Silveira, Rua José Fasolo e Rua Osório de Oliveira Vargas	05
AP-02	SC 473 próximo à Rua Santa Catarina	01
AP-03	Avenida Santo Antônio	04
AP-04	Rua João Galeazzi, Rua Luiz Guareski e Avenida Governador Ivo Silveira	10
AP-05	Avenida Governador Ivo Silveira com a Marli de Gregori	04
AP-06	Rua Lindo Tebaldi	04
AP-07	Rua Santo Antônio	10
AP-08	Rua Neri Guareski	08
AP-09	Rua da Paz	01
AP-10	Rua Menino Deus esquina com a Rua Santa Maria	02
AP-11	Rua Rosalino Rodrigues e Avenida Governador Ivo Silveira	08

Fonte: Elaboração própria.

Figura 137: Localização das Áreas-Problema.

10.3.11.3 Descrição das áreas-problema identificadas

10.3.11.3.1 AP-01 – Rua Vicente Lemos das Neves, Avenida Governador Ivo Silveira, Rua José Fasolo e Rua Osório de Oliveira Vargas

Essas ruas recebem as contribuições das águas do Rio do Engano e seus afluentes. Na Figura 138 são apresentados os pontos de subdimensionamento das tubulações de saída do Lago, na Rua José Fasolo, e nas Ruas Vicente Lemos das Neves e Avenida Governador Ivo Silveira, onde ocorrem eventos de inundação que atingem 5 edificações.

Há cerca de dois anos foram realizadas obras neste local (Figura 139), porém, os problemas persistem e atualmente está em fase de licitação um plano de segurança de barragem para o Lago. Esta é uma recomendação expedida pela 4ª Promotoria de Justiça de Concórdia, com apoio técnico do Centro de Apoio Operacional do Meio Ambiente do MPSC (CME), que determina que duas barragens, uma de responsabilidade do Município e outra em área particular, realizem os reparos

indispensáveis para a manutenção da estabilidade das barragens, bem como apresentem Plano de Segurança e Plano de Ação Emergencial.

O levantamento foi realizado pela Agência Nacional de Águas – ANA por intermédio do Relatório Anual de 2018 de Segurança de Barragens, bem como do Relatório Final de Cadastramento e de Classificação de Barragens, elaborado por empresa contratada pela Secretaria de Estado do Desenvolvimento Econômico Sustentável (SDE), que classificaram como alto o risco da estrutura e o dano potencial associado à barragem do Lago municipal.

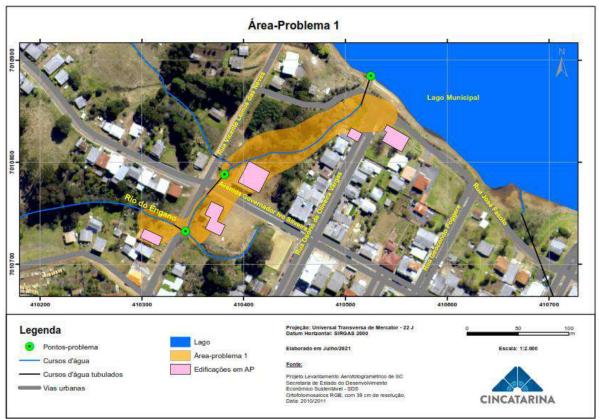


Figura 139: Tubulações de saída do Lago.

Fonte: Acervo próprio.

A região das Ruas José Fasolo e Osório de Oliveira Vargas, não possui infraestrutura de pavimentação e microdrenagem, o que compromete o adequado escoamento das águas pluviais e contribui para o assoreamento do curso d'água, Figura 140.

Fonte: Imagem Google Earth (2019).

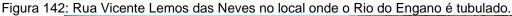

A Avenida Governador Ivo Silveira conta com sistema de microdrenagem, porém o número de bocas de lobo instaladas é insuficiente para drenar a vazão que chega até esta região, Figura 141.

Figura 141: Travessia do Rio do Engano na Avenida Governador Ivo Silveira.

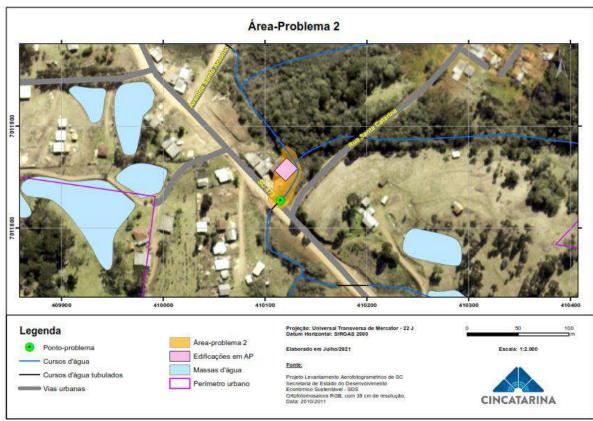
Fonte: Imagem Google Earth (2019).

A Rua Vicente Lemos das Neves possui infraestrutura de pavimentação em mau estado de conservação e ausência de sistema de microdrenagem, o que não proporciona a devida condução das águas pluviais e contribui para a deterioração da camada asfáltica do local, Figura 142.

Essa área problema foi mapeada como área de risco de inundação pelo CPRM (2018) e é apresentada no item 10.3.4 - Áreas de risco de inundação e movimentos de massa associados à falta de infraestrutura de drenagem.

10.3.11.3.2 AP-02 - SC 473 próximo à Rua Santa Catarina

Nesta área os eventos de inundação são frequentes e atingem uma edificação que se encontra nas margens de um córrego. Como a edificação está muito próxima ao Rio, ela está suscetível as elevações deste curso d'água. Há cerca de dois anos foram realizadas obras neste local para substituição das galerias por galerias celulares com maior capacidade de escoamento, porém, os problemas com inundação persistem. Foi observado in loco, que o córrego se encontra assoreado, fator que agrava ainda mais os episódios de inundação, Figura 143 a Figura 145.



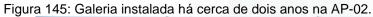

Figura 143: Localização da AP-02.

Figura 144: Edificação na APP do córrego na AP-02.

Fonte: Acervo próprio.

10.3.11.3.3 AP-03 – Avenida Santo Antônio

Nesta localidade ocorre a tubulação de um córrego sob a Avenida Santo Antônio. Em eventos de precipitação intensa, o fluxo de água chega a atingir o nível da rua, causando inundação, o que indica provável subdimensionamento dessa tubulação, Figura 146.

Na entrada da tubulação do córrego é possível observar sinais de erosão, que contribuem com o assoreamento do curso d'água e podem intensificar os processos de enchente/inundação, Figura 147.

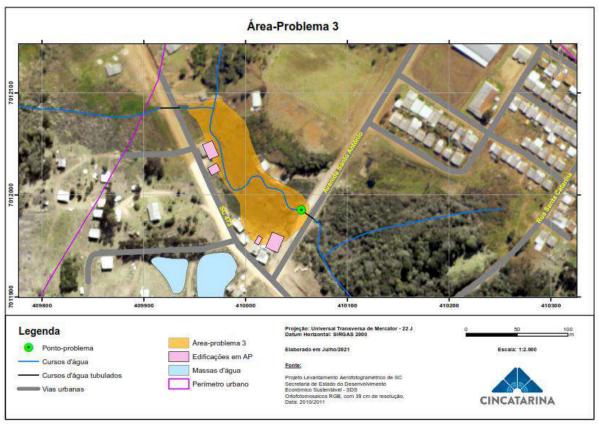
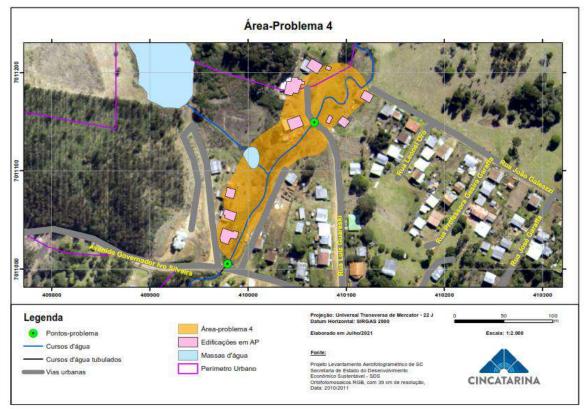


Figura 146: Localização da AP-03.

Figura 147: Ponto-problema na AP-03.



Fonte: Acervo próprio.

10.3.11.3.4 AP-04 – Rua João Galeazzi, Rua Luiz Guareski e Avenida Governador Ivo Silveira

Esta área possui dois pontos-problema, um na Rua Luiz Guareski e outro na Avenida Governador Ivo Silveira, Figura 148. Nos dois locais ocorre inundação devido ao subdimensionamento da tubulação do córrego.

Figura 148: Localização da AP-04.

O final da Rua João Galeazzi é atingido pela inundação e é afetado pela água que escoa pela via, que não possui pavimentação, nem sistema de microdrenagem implantado, Figura 149.

Figura 149: Edificação localizada em APP do córrego na Rua João Galeazzi.

A Rua Luiz Guareski, não é pavimentada e não possui infraestrutura de microdrenagem, o que contribui para o transporte de sedimentos até o curso d'água, Figura 150. Outra situação observada é que existe ocupação na APP do córrego, próximo ao ponto-problema, alterando o uso do solo local e contribuindo para o assoreamento do curso d'água, Figura 151.

Figura 150: Rua Luiz Guareski.

Fonte: Google Earth (2019).

Figura 151: Ponto-problema na Rua Luiz Guareski.

Na Avenida Governador Ivo Silveira, também ocorre a presença de edificação em APP, localizada próxima ao ponto-problema, Figura 152 e Figura 153.

Neste trecho da Avenida não foram observadas infraestruturas de microdrenagem, que direcionem a água pluvial até o corpo receptor.

Fonte: Acervo próprio.

Figura 153: Muro de pneus construído próximo a margem córrego na Avenida Governador Ivo Silveira.

Essa região já foi mapeada como área de risco de inundação pelo CPRM (2018) e é apresentada no item 10.3.4 - Áreas de Risco de Inundação e Movimentos de Massa Associados à Falta de Infraestrutura de Drenagem.

10.3.11.3.5 AP-05 – Avenida Governador Ivo Silveira com a Marli de Gregori

Na área-problema indicada na Figura 154 e Figura 155, a rua é pavimentada, possui meio-fio, bocas de lobo e tubulação subterrânea, mas ocorrem inundações em eventos com altas precipitações. A tubulação de microdrenagem instalada não possui capacidade de escoamento para o volume de água superficial advindo de um córrego associado ao volume precipitado, assim ocorre a saída de água através da boca de lobo.

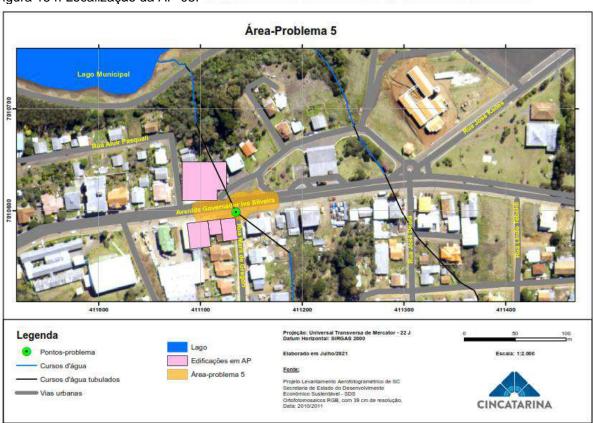
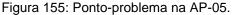



Figura 154: Localização da AP-05.

Fonte: Acervo próprio.

10.3.11.3.6 AP-06 - Rua Lindo Tebaldi

No ponto-problema indicado na Figura 156 inicia a tubulação de um córrego que provavelmente está subdimensionada, pois ocorrem inundações nesta área. De acordo com relato dos moradores, os problemas iniciaram após a tubulação do curso d'água.

Além disso, esta via não possui sistema de microdrenagem instalado o que contribui para o assoreamento do corpo receptor, o que intensifica ainda mais os processos de inundação, Figura 156 a Figura 159.

Figura 156: Localização da AP-6.

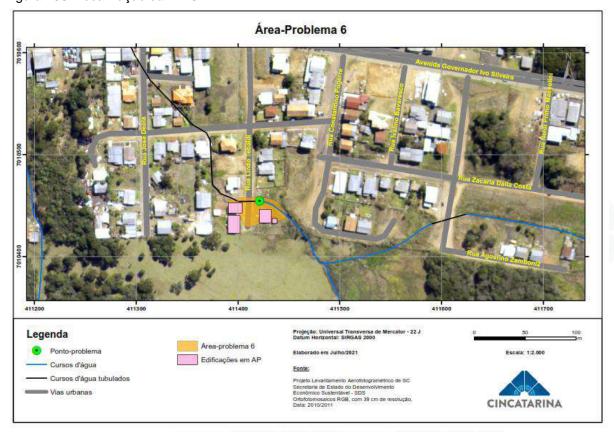


Figura 157: Visão geral da AP-6.

Fonte: Google Earth (2019).

Figura 158: Edificação na APP do córrego.

Fonte: Acervo próprio.

Figura 159: Edificação sobre a tubulação do córrego na AP-6.

10.3.11.3.7 AP-07 - Rua Santo Antônio

Nessa área ocorrem eventos de inundação, ocasionados pelo extravasamento de um córrego que passa próximo a essa área, que dependendo do volume precipitado transborda e atinge as edificações próximas, Figura 160 a Figura 162. Na visita in loco foi possível observar que o córrego se encontra assoreado, o que pode ser uma das causas das inundações.

As vias do entorno desta região não possuem infraestrutura de pavimentação, situação que contribui com o processo de assoreamento do curso d'água.

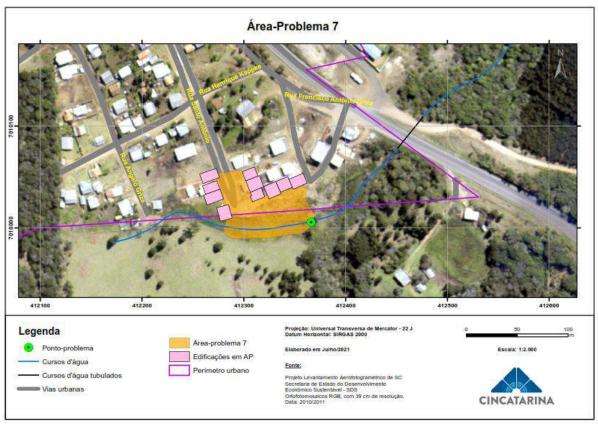


Figura 160: Localização da AP-07.

Figura 161: Área de alagamento na AP-07.

Fonte: Acervo próprio.

Figura 162: Córrego existente na AP-07.

10.3.11.3.8 AP-08 – Rua Neri Guareski

No ponto-problema ao sul, indicado na Figura 163 e Figura 164, se inicia a tubulação de um córrego, que em eventos de precipitação intensa, não consegue escoar toda a água e provoca eventos de inundação. Esta situação indica possível subdimensionamento da tubulação.

A Rua Neri Guareski não é pavimentada e existe apenas uma boca de lobo na parte baixa da via, que em momentos de precipitação mais elevada, não consegue captar todo o volume de água escoado.

À jusante desta região, na continuação da tubulação do córrego, existem as Ruas Amarilce Fontana e Progresso, que possuem pavimentação e sistema de microdrenagem que foi implantado recentemente, Figura 165. Nesta região, foram relatados problemas com alagamentos e inundação, porém após as intervenções em ambas as ruas não ocorreram precipitações em volume suficiente para constatar se houve ou não melhoria nas condições do local.

Area-Problema 8

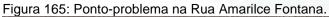
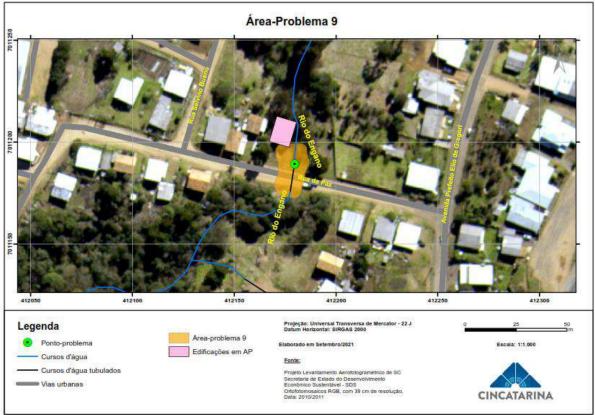

Legenda
Profice-Problema
Area-Problema
Area-Problema
Area-Problema
Area-Problema
Profice-Britished At 1200
Area-Problema
Cursos d'água tubulados
Perimetro urbano
Perimetro urbano
Perimetro urbano
Cursos d'água tubulados
Perimetro urbano
Cursos d'água tubulados

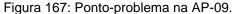
Figura 163: Localização da AP-08.

Figura 164: Ponto-problema na AP-08.

Fonte: Acervo próprio.



10.3.11.3.9 AP-09 – Rua da Paz


Neste ponto-problema (Figura 166) o Rio do Engano é tubulado sob a Rua da Paz e dependendo do volume precipitado essa tubulação não consegue escoar toda a água e o Rio transborda, a Figura 167.

Essa rua não possui pavimentação, nem infraestruturas de microdrenagem, situação que também contribui para agravar o processo de inundação.

Figura 166: Localização da AP-09.

Fonte: Acervo próprio.

10.3.11.3.10 AP-10 – Rua Menino Deus esquina com a Rua Santa Maria

Nesta área-problema, as bocas de lobo instaladas não conseguem captar todo o volume de água escoado pelas Ruas Menino Deus e Santa Maria, ocasionando problema de alagamento no cruzamento entre essas duas ruas.

Há indício de que as tubulações estejam parcialmente bloqueadas, pois foi possível observar in loco, a presença de muitos sólidos nas bocas de lobo, ou estejam subdimensionadas. A presença de um vazamento da rede de esgoto na rua Menino Deus que é captado pelo sistema de drenagem intensifica o problema.

Figura 168: Localização da AP-10.

Figura 169: Região com problema na AP-10.

Fonte: Imagem Google Earth (2019).

10.3.11.3.11 AP-11 – Rua Rosalino Rodrigues e Avenida Governador Ivo Silveira

Nesta área foram relatados eventos de alagamento e de inundação. Conforme Figura 170, há um córrego tubulado que atravessa a Rua Rosalino Rodrigues e volta a escoar a céu aberto em um pequeno trecho de um terreno particular, e depois é novamente tubulado. Esse curso d'água passa por vários lotes, inclusive por baixo de edificações para posteriormente desaguar no Lago municipal.

O transbordamento deste córrego acontece em dois pontos: o primeiro deles, ao sul, ocorre em um terreno privado, onde o curso atualmente escoa a céu aberto (Figura 171) e a jusante desse ponto, ao norte, na Avenida Governador Ivo Silveira, onde existe uma pequena interrupção da tubulação do córrego (Figura 172).

Segundo relato, a origem dos problemas de inundação se dá no segundo ponto (Figura 172), onde aparentemente há um estrangulamento da tubulação do córrego, e onde também há a descarga de outras duas tubulações do sistema de drenagem pluvial. Além disso, em ambas as ruas foi relatada a ocorrência de acúmulo de água na pista apesar de haver sistema de microdrenagem implantado.

Figura 170: Localização da AP-11.

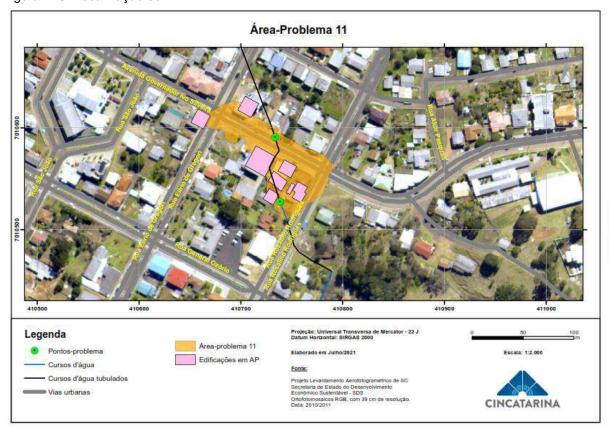


Figura 171: Ponto-problema 1 - Córrego canalizado que transborda.

Figura 172: Ponto-problema 2 - Interrupção da tubulação, onde ocorre transbordamento.

Fonte: Acervo próprio.

10.3.12 Problemas Associados à Alagamentos e Inundações

Os eventos de alagamento e inundação provocam uma série de transtornos e prejuízos para a população, porém é importante salientar que estes acontecimentos nada mais são, que o resultado de interferências antrópicas no meio natural. Seja pela impermeabilização de grandes áreas, decorrente do processo de urbanização, seja pela ocupação de áreas de planície de inundação.

Como já foi mencionado no Produto 3 – Diagnóstico e Prognóstico do Sistema de Esgotamento Sanitário, desta Revisão, não há no município de Irani um sistema público de coleta e tratamento de efluentes que abranja toda a área urbana municipal, existem apenas dois sistemas alternativos de coleta e tratamento de esgoto sanitário que têm cobertura parcial sobre os bairros Santo Antônio e Alto Irani. No restante da área urbana e na área rural, são empregadas soluções individuais de esgotamento sanitário.

Em 2010, de acordo com IBGE (2010), mais da metade da população realizava a disposição de seus efluentes de forma inadequada: 49,67% utilizavam-se de fossas rudimentares, que são sistemas sem comprovação de eficiência, e outros 2,95% informaram realizar o lançamento diretamente em cursos d'água ou valas. A disposição inadequada de efluentes altera a qualidade da água dos cursos d'água,

trazendo danos para a fauna e a flora aquática, além de ser a causa de diversas patologias. A existência de áreas-problema, onde são recorrentes eventos de alagamento e inundação, aumenta as chances de contato da população com essas águas e, consequentemente, a propagação de doenças de veiculação hídrica. As principais doenças com veiculação hídrica são: Esquistossomose, Hepatite A/E, Leptospirose, Dengue, Malária, Cólera, Amebíase, Giardíase, Febre Tifoide e Paratifoide. Na Tabela 84 é possível observar o número de algumas doenças de veiculação hídrica no Município.

Tabela 84: Doenças de veiculação hídrica no município de Irani.

Doones	Número de Casos										
Doença	2012	2013	2014	2015	2016	2017	2018	2019			
Cólera	0	0	0	0	0	0	0	0			
Dengue	0	0	0	0	0	0	0	0			
Febre Tifoide	0	0	0	0	0	0	0	0			
Hepatite (A, B, C e D)	4	1	2	7	4	17	7	-			
Leptospirose	0	0	5	0	0	1	1	2			
Esquistossomose	0	0	0	0	0	0	-	-			
Diarreia	229	140	167	226	217	146	167	350			

Fonte: TABNET/DATASUS (2017).

Na Tabela 85, pode-se observar a incidência e letalidade da leptospirose no Município.

Tabela 85: Situação da incidência e letalidade da leptospirose em Irani.

Ano	Taxa de incidência (cada 100	Letalidade
2008	10,34	0
2014	9,96	0
2017	9,72	0
2018	9,67	0

Fonte: SAGE (2019).

10.3.13 Índice de Fragilidade do Sistema – IFS

Cada área-problema foi avaliada nos quesitos tecnológico, ambiental e institucional - Anexo 09.

Através do cálculo do Índice de Fragilidade do Sistema é possível hierarquizar as áreas-problema, pois quanto maior for o IFS, maior é a prioridade da área-problema. Os índices, em ordem de prioridade são apresentados na Tabela 86.

Tabela 86: Indicadores Gerais de Fragilidade das AP do município de Irani.

Área-problema	IFS
AP-01	52
AP-11	47
AP-05	46
AP-08	44
AP-06	39
AP-10	38
AP-03	35
AP-04	35
AP-09	35
AP-02	34
AP-07	34

Fonte: Elaboração própria.

10.4 AVALIAÇÃO DA RESOLUÇÃO DAS PROPOSTAS DO PMSB

O Plano Municipal de Saneamento Básico de Irani, elaborado em 2011, verificou as demandas e deficiências do sistema de drenagem urbana e definiu as metas que deveriam ser desenvolvidas pelo Prestador de Serviços no horizonte de 20 anos (2011- 2030). Abaixo são apresentados comentários sobre as ações tomadas até o momento pelos atores envolvidos em relação ao cronograma físico-financeiro definido pelo PMSB 2011.

1 - Drenagem na pavimentação de vias.

<u>Comentários</u>: Demanda parcialmente atendida. Em todas as pavimentações têm ocorrido a implantação de sistema de drenagem pluvial, porém a realização destas obras não é orientada por projetos de drenagem, as obras são realizadas de acordo com a experiência.

2 - Manutenção programada de redes de drenagem pluvial.

<u>Comentários:</u> Demanda não atendida. A manutenção de redes de drenagem é realizada conforme a demanda.

3 - Limitar através de lei municipal a área impermeável do terreno (com programa de conscientização).

<u>Comentários</u>: Demanda parcialmente atendida. A taxa de permeabilidade foi definida através da Lei Complementar nº 91/2018, porém não foi implantado o programa de conscientização.

4 - Limpeza programada de bocas coletora de águas pluviais.

<u>Comentários:</u> Demanda não atendida. Esse serviço é realizado conforme a demanda.

5 - Cadastramento georreferenciado do sistema de drenagem pluvial.

<u>Comentários:</u> Demanda não atendida. O Município não realizou o cadastro do sistema de drenagem pluvial.

10.5 PROGNÓSTICO

Com a elaboração do diagnóstico do sistema de drenagem urbana e manejo de águas pluviais de Irani, pôde-se identificar que os problemas estão relacionados, principalmente, a falta de Plano Diretor de Drenagem Urbana, a ausência de cadastro técnico da malha de drenagem e seus acessórios, a realização de intervenções no sistema sem estudos técnicos, a falta de rotinas de manutenções periódicas e preventivas para todos os componentes dos sistemas de drenagem, a ausência de fiscalização e monitoramento do sistema, além da falta de cobrança pelo serviço de drenagem urbana de águas pluviais.

Cabe ressaltar que as deficiências do sistema de drenagem urbana são agravadas pela disposição inadequada de resíduos sólidos e de esgotos sanitários, lançados diretamente ou advindos de sistemas de tratamento individuais ineficientes, que são responsáveis pela geração do mau odor emanado das bocas de lobo.

Destaca-se que as soluções apresentadas neste documento são orientativas e é necessária a realização de estudos técnicos mais aprofundados para viabilizar as execuções.

Estas soluções deverão merecer ação do Poder Público Municipal, assegurando as áreas e espaços necessários para realização das intervenções, e impedindo, quando necessário edificações e urbanização sobre estas áreas ou condicionando o seu uso.

A principal recomendação deste relatório é de que qualquer intervenção a ser realizada receba o tratamento técnico adequado e siga as diretrizes de um projeto básico integrado de drenagem urbana. O dimensionamento dos dispositivos de drenagem deve ser desenvolvido prevendo as situações desfavoráveis de impermeabilização do solo trazidas pela urbanização futura, ou novos problemas aflorarão em áreas que se imaginavam equacionadas pelos serviços de drenagem urbana.

10.5.1 Da Materialização das Propostas

As propostas apresentadas neste capítulo deverão ser objeto de tratamento técnico específico para cada caso, para avaliação de sua viabilidade técnica e econômico-financeira. No entanto, as soluções projetadas não deverão, salvo exceções, ter tratamento exclusivo e pontual, mas estarem compatibilizadas pelas diretrizes de um projeto de concepção abrangente da bacia em que se encontram inseridas.

A interação e as interferências do sistema de drenagem urbana com os demais serviços públicos devem ser observadas no planejamento das ações definidas em projeto.

10.5.2 Confiabilidade e Segurança das Soluções

O processo de contratação das consultoras para elaboração e gerenciamento dos projetos básicos e executivos deve se revestir de todas as precauções para que sejam selecionadas empresas com habilitação e capacidade técnica para conduzir as soluções necessárias.

Os mesmos cuidados na definição dos períodos de retorno para as diferentes unidades do sistema de drenagem e na obtenção dos valores de precipitações pluviométricas (Curva IDF), objetivando a segurança e a funcionalidade, devem ser estendidos a todos os componentes do sistema de drenagem.

10.5.3 Macrodrenagem

O sistema de macrodrenagem de Irani está fundamentado principalmente, pelo escoamento ao longo do Rio do Engano e demais cursos d'água do perímetro urbano, ou seja, a topografia faz com que córregos e arroios sejam os seus componentes principais.

Das 11 áreas-problema identificadas no município, 10 tem ligação com a tubulação dos cursos d'água, assim, devem-se manter os corpos hídricos em seu curso natural, respeitando os novos conceitos de drenagem sustentável.

A tubulação dos cursos d'água deve ser criteriosamente avaliada e muito bem fundamentada para evitar problemas como os atualmente enfrentados pelo Município. Além disso, o argumento de que os córregos se transformaram em esgotos a céu aberto e o odor é insuportável, não pode ter como solução a sua tubulação, mas sim o tratamento dos efluentes domiciliares gerados e despejados no corpo d'água a montante.

As travessias dos córregos em vias públicas devem ser desenvolvidas preferencialmente por galerias, com cabeceiras que reduzam a possibilidade de obstrução por galhos e outros entulhos, o que é mais difícil de se obter com tubos de concreto.

10.5.4 Detenção e Permeabilidade

A principal regra de uma boa prática de drenagem urbana sustentável é reduzir o escoamento superficial minimizando as superfícies impermeáveis da cidade e dividindo a captação para evitar a concentração de grandes volumes de água em um ponto (FRESNO, 2005).

Deste modo, a detenção e a infiltração das águas pluviais devem ser incentivadas e disciplinadas para que se realizem nas unidades imobiliárias as intervenções necessárias para a implantação dessas alternativas.

Recomenda-se o uso de incentivo fiscal para a manutenção de um maior percentual de solos permeáveis, sendo que as obras públicas, praças e calçadas, devem ser direcionadas para uma valorização da permeabilidade do solo, Figura 173.

Figura 173: Exemplos de valorização da permeabilidade dos solos.

Fonte: Reprodução/Rhino Pisos.

A implantação de cisternas, Figura 174, para a coleta e reservação das águas pluviais, pode diminuir ou até evitar alagamentos e sobrecarga da rede pluvial, sendo que se apresenta como uma boa alternativa para detenção dessas águas. A instalação das cisternas deverá observar os parâmetros previstos na NBR 15527 (ANBT, 2019) e regulamentações específicas do município de Irani.

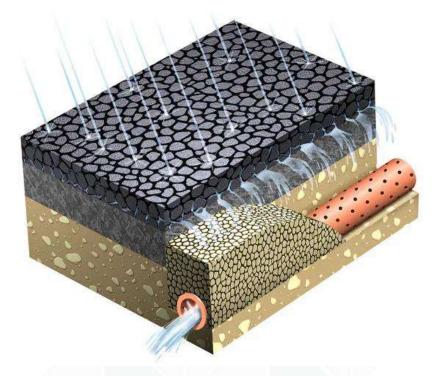
MINICISTERNA: COMO FUNCIONA? Calha: entrada da água da chuva Entrada de água de chuva na cisterna força a água a passar pelo interior da cisterna e agir como "fluxo de limpeza" ao extravasar, levando as Filtro sujeiras da superfície autolimpante: que separa a Tampinha (ou plug): sujeira grossa para verificação do nível da água ou colocação de cloro Separador Extravasor: de águas saída para o excesso de água, que pode ser conectada a uma segunda cisterna Reservatório Bombona temporário: Na ponta, instale uma armazena a "1º água da tela do tipo mosquiteiro chuva Saída de água para uso Extremidade do separador: com um pequeno furo regula o descarte de Redutor de turbulência água, de acordo com a intensidade da chuva

Fonte: www.sempresustentavel.com.br

Figura 174: Modelo de cisterna para captação de água pluvial.

Fonte: Sempre Sustentável, sem data.

Figura 175: Modelo de cisterna para captação de água pluvial.



Fonte: Valmaster, 2018.

Outro modo para diminuir o escoamento superficial, são as pavimentações permeáveis, que contribuem para a diminuição dos problemas de inundações urbanas. Este tipo de pavimento consegue absorver grande parte da água fazendo com que ela fique retida por mais tempo possibilitando um fluxo menor nos cursos hídricos que recebem a água da chuva evitando enchentes e diminuindo os alagamentos (Figura 176).

Figura 176: Exemplo de sistema de asfalto permeável.

Fonte: Pinheiro (2019).

10.5.5 Remuneração pelos Serviços

A cobrança específica pela prestação do serviço de drenagem é fundamental enquanto política pública para o planejamento sustentável e a gestão das águas urbanas, porém atualmente este serviço não gera receita.

Atualmente, o serviço de drenagem recebe recursos do orçamento geral do município, oriundo de impostos. A adoção de taxa exclusiva de drenagem permitirá cobrar efetivamente pelo uso. Considera-se uso, neste caso, a impermeabilização do solo, responsável pela geração do aumento do escoamento superficial. De outra forma, a proposta poderia não ser de caráter punitivo (onera-se mais quem utiliza mais), mas de benefício (onera-se menos quem adotar medidas de controle do escoamento superficial em sua propriedade).

A manutenção do sistema de drenagem necessita de equipes estruturadas para a atuação preventiva que assegure a funcionalidade de bocas de lobo, redes, galerias e córregos, assim como de investimentos significativos. Visando a sustentabilidade financeira do sistema de drenagem, as taxas de drenagem quando estabelecidas devem ter previsão de recursos para a manutenção e investimentos necessários.

O assunto da cobrança já foi previsto no art. 36 da Lei Federal nº 11.445/2007 e no art. 28 da Lei Complementar 68/2011:

"Os serviços públicos de saneamento básico terão a sustentabilidade econômico-financeira assegurada, sempre que possível, mediante remuneração pela cobrança dos serviços:

...III - de manejo de águas pluviais urbanas: na forma de tributos, inclusive taxas, em conformidade com o regime de prestação do serviço ou de suas atividades".

A aplicação de uma taxa de drenagem é uma forma de sinalizar ao usuário a existência de um valor para os serviços de drenagem urbana e que estes custos variam de acordo com a impermeabilização do solo (GOMES et al., 2008). Como o serviço é ofertado igualmente a todos os usuários, é difícil estabelecer um valor a ser cobrado pelo uso destes serviços.

De acordo com Tucci (2002), uma propriedade totalmente impermeabilizada gera 6,33 vezes mais volume de água do que uma propriedade não impermeabilizada, ou seja, essa propriedade sobrecarregará o sistema de drenagem seis vezes mais que uma não impermeabilizada. É prudente considerar que a taxa pelos serviços de drenagem de um lote impermeabilizado seja mais alta que a de um lote não impermeabilizado, devido à sobrecarga. Os custos variarão, portanto, em função da área de solo impermeabilizada. A adoção da cobrança proporcional à área impermeabilizada, ponderada por um fator de declividade, gera uma individualização da cobrança, permitindo a associação, por parte do consumidor, a uma efetiva produção de escoamento superficial. Este embasamento físico torna a cobrança mais facilmente perceptível para o consumidor, possibilitando a criação de uma taxa correspondente para cada usuário (BAPTISTA & NASCIMENTO, 2002).

No município, como anteriormente descrito, a Lei Complementar nº 68/2011 prevê a remuneração pela prestação do serviço de manejo de águas pluviais urbanas, Porém, apesar da previsão legal, a cobrança da taxa não foi implementada.

Para fins de parâmetro de comparação, destacamos o valor estipulado pelo Urban Drainage and Flood Control District, que faz a gestão de drenagem e proteção contra cheias da região metropolitana de Denver, no Colorado, EUA. O valor máximo de cobrança é de 0,1% sobre o valor venal da propriedade, mas o que tem sido cobrado varia de 0,06 a 0,07% (LARENTIS, 2017).

10.5.6 Alternativas para Solução das Áreas-Problema Diagnosticadas

A seguir são apresentadas algumas alternativas para solucionar as áreasproblema identificadas no município de Irani, relativas ao sistema de drenagem e
manejo de águas pluviais urbanas, considerando o cenário atual, sem o cadastro.
Enfatiza-se que em todos os casos, se faz necessária a elaboração de projeto de
drenagem de águas pluviais, que deverá levar em consideração o cadastro completo
do sistema e o Plano Diretor de Drenagem Urbana.

Cabe salientar que o Sistema de Drenagem e Manejo das Águas Pluviais Urbanas é um serviço que não tem sustentabilidade financeira (não é cobrado), sendo assim, os recursos a serem aplicados para as intervenções e obras, principalmente de macrodrenagem podem ser condicionados à disponibilidade de recursos de fundo perdido.

10.5.6.1 AP-01 – Rua Vicente Lemos das Neves, Avenida Governador Ivo Silveira,Rua José Fasolo e Rua Osório de Oliveira Vargas

Deve ser providenciada a pavimentação e instalação do sistema de microdrenagem nas vias onde essas infraestruturas são inexistentes, de modo a reduzir o transporte de sedimentos. Além disso, os trechos tubulados do Rio do Engano deverão ser recalculados e adequados.

Deve-se aguardar a finalização do Plano de Segurança e do Plano de Ação Emergencial do Lago para realizar um planejamento integrado, priorizando intervenções únicas para a realização de mais de um serviço.

10.5.6.2 AP-02 – SC 273 próximo à Rua Santa Catarina

A edificação existente no local está sujeita a eventos de enchente, pois se encontra no leito maior do curso d'água, sendo assim, medidas como o desassoreamento do curso d'água, a recomposição da vegetação na área de preservação permanente do rio e a construção de muro de proteção contra enchentes podem ser alternativas para minimizar o problema.

10.5.6.3 AP-03 – Avenida Santo Antônio

As dimensões da tubulação do córrego sob a Avenida Santo Antônio devem ser recalculadas e adequadas. Além disso, devem ser realizado o desassoreamento do curso d'água e implantação de dispositivos de microdrenagem na via para o escoamento adequado das águas pluviais. A via também deve ser pavimentada, de modo a reduzir o transporte de sólidos para os dispositivos de drenagem e para o córrego, minimizando os problemas de assoreamento do corpo receptor.

10.5.6.4 AP-04 – Rua João Galeazzi, Rua Luiz Guareski e Avenida Governador Ivo Silveira

Para a solução dos problemas listados nesta área, deverá ser realizada a substituição da tubulação da Rua Luiz Guareski por galeria com dimensões adequadas. Além disso, deverá ser realizado desassoreamento do curso d'água e pavimentação das Ruas João Galeazzi e Luiz Guareski e implantação de dispositivos de drenagem em ambas as vias para redução do transporte de sedimentos ao córrego. A Avenida Governador Ivo Silveira deve ser pavimentada e receber infraestrutura de microdrenagem. Em relação a tubulação existente nesta via, o seu dimensionamento deve ser reavaliado e adequado para evitar o estrangulamento do curso d'água e consequente transbordamento.

10.5.6.5 AP-05 – Avenida Governador Ivo Silveira com a Marli de Gregori

O dimensionamento das tubulações de macro e microdrenagem existentes devem ser reavaliados e adequados para reduzir a ocorrência de alagamentos durante eventos com chuvas intensas. Uma alternativa seria alterar o trajeto da tubulação que atravessa a Avenida Governador Ivo Silveira, que atualmente se encontra tubulado sob uma edificação, deslocá-la e substituir a rede que possivelmente se encontra subdimensionada.

Sugestão de Intervenção na Área-Problema 5

Lingo Munticipal

Ling

Figura 177: Sugestão de trajeto para a nova tubulação do córrego.

10.5.6.6 AP-06 – Rua Lindo Tebaldi

Para a solução dos problemas nessa região, existem 2 alternativas, a alternativa 1 sugere que seja analisada a viabilidade de instalação de uma tubulação extravasora, que teria a função de escoar o excesso de água do córrego em períodos de maior precipitação. A tubulação extra seria instalada a partir da entrada da tubulação localizada na Rua Lindo Tebaldi, por onde passa o córrego, indo em direção à Avenida Governador Ivo Silveira, percorrendo um trecho de aproximadamente 13 metros em direção à Rua José Kades. A alternativa 2, sugere a possibilidade de construção de uma bacia de detenção a montante da área-problema, o objetivo é armazenar o volume excessivo de água escoada, impedindo assim a inundação da área-problema a jusante, para depois lançá-lo novamente a rede de drenagem.

Além disso, as vias não pavimentadas que drenam até o curso d'água nas regiões a montante da área-problema devem ser pavimentadas e devem receber infraestruturas de microdrenagem, de modo que o máximo de água possível seja guiada até a Avenida Governador Ivo Silveira, pois esse procedimento diminuirá a

demanda de água escoada até o curso d'água e consequentemente contribuirá com a diminuição de eventos de enchente/inundação.

Sugestão de Intervenção na Área-Problema 6

**Balancia de Intervençã

Figura 178: Sugestão de intervenção na AP 6.

10.5.6.7 AP-07 – Rua Santo Antônio

Deve ser realizado o desassoreamento do córrego tanto a montante da rodovia, quanto a jusante, pois ele se encontra bastante assoreado. Além disso, deve ser realizada a limpeza da tubulação que se encontra sob a rodovia e implantação de sistema de microdrenagem e pavimentação na Rua Santo Antônio.

10.5.6.8 AP-08 – Rua Neri Guareski

Devido as recentes intervenções nas Ruas Amarilce Fontana e Progresso, indica-se que os trechos não tubulados do córrego sejam desassoreados, já a tubulação existente, deve passar por processo de desobstrução e limpeza.

10.5.6.9 AP-09 – Rua da Paz

Esta área-problema deve ser monitorada, pois durante os trabalhos de elaboração desta Revisão, houve a implantação de sistema de microdrenagem e pavimentação da via, além disso o tubo do Rio do Engano foi substituído por um de maior capacidade. Vale destacar que essa intervenção foi realizada de acordo com a experiência e que pode não ser a mais adequada para evitar os processos de inundação. Assim, o monitoramento se faz necessário para avaliar se houve minimização dos eventos de inundação ou se será necessário reavaliar a intervenção realizada.

10.5.6.10 AP-10 - Rua Menino Deus esquina com a Rua Santa Maria

Deve ser realizada a limpeza das bocas de lobo e da rede de microdrenagem, além disso deve ser avaliada a possibilidade de realizar a interligação entre duas bocas de lobo, Figura 179, possibilitando o melhor escoamento da água pluvial.

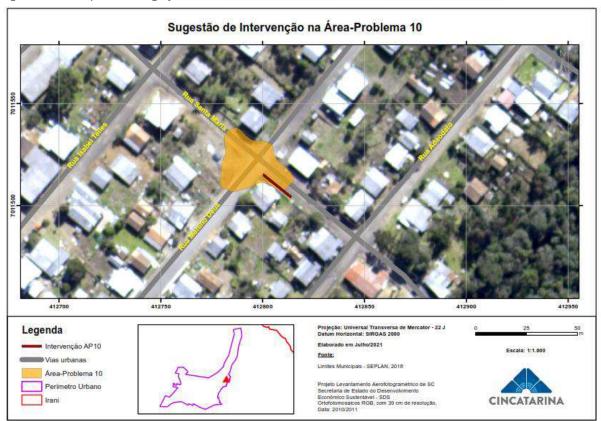


Figura 179: Proposta de ligação entre duas bocas de lobo.

10.5.6.11 AP-11 – Rua Rosalino Rodrigues e Avenida Governador Ivo Silveira

Visto que o trecho tubulado corta diversos lotes, sugere-se que seja avaliada a possibilidade de construção de uma tubulação extravasora, saindo da Avenida Governador Ivo Silveira, indo em direção à Rua Eilírio de Gregori e a partir daí, indo diretamente para o Lago, pois esta alternativa possibilita a condução de um maior volume de água, evitando os processos de inundação.

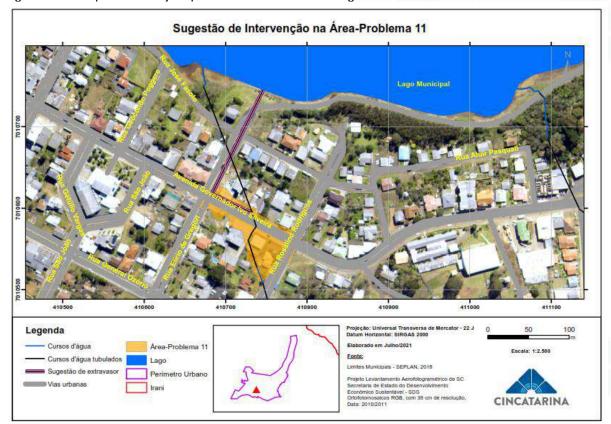


Figura 180: Proposta de trajeto para o extravasor do córrego.

10.5.6.12 Vias não pavimentadas

Como já apresentado no item 10.3.7, o perímetro urbano possui uma extensão de vias não pavimentadas de aproximadamente 30 Km que equivalem a cerca de 58% das vias do perímetro urbano. Deste modo, a indicação é que as vias sejam pavimentadas tendo como prioridades as áreas-problema descritas neste documento. De acordo com o IFS as vias que devem ser priorizadas no planejamento da pavimentação devem ser as que contribuem para as áreas-problema 01, 08, 10, 02,

06, 07, 03, 04 e 09, bem como a região da área com risco de deslizamento apresentada no item 10.3.4.

10.5.7 Ações Propostas por Área-Problema

Na Tabela 87, são apresentadas as sugestões para as ações a serem tomadas em relação às AP encontradas no município, para os onze pontos levantados.

Tabela 87: Proposta de ações a serem tomadas nas AP.

AP-01	AP-02	AP-03	AP-04	AP-05	AP-06	A D 07	AD 00	A D 00	AD 40	100
				7 00	AI -00	AF-UI	AP-08	AP-09	AP-10	AP-11
х	х	х	х	х	х	х	х	х	х	х
х	х	х	х	х	Х	Х	х	Х	х	х
х	х	х	х	х	Х	Х	х	Х		х
х	Х	х	х	х	Х	Х	х	Х	х	х
х	х	х	х	х	х	х	х	х	х	х
х	х	х	х	х	х	х	х	х	х	х
х	х	х	х	х	х	х	х	х	х	х
х	х	х	х	х	х	х	х	х	х	х
х	х	х	х	х	х	х	х	х	х	х
х										
х	х	х	х		х	х	х	х	х	
		х	х							
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
х	х	х	х	х	х	х	х	х	х	х
х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	x x x x x x x x	x x x x x x x x x x x x x x x x x x x	X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X <th>X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X</th> <th>X X</th> <th>X X</th> <th>X X</th> <th>X X</th> <th>X X</th>	X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	X X	X X	X X	X X	X X

Ação	AP-01	AP-02	AP-03	AP-04	AP-05	AP-06	AP-07	AP-08	AP-09	AP-10	AP-11
Treinamento de mão de obra	х	Х	Х	х	х	х	Х	Х	Х	х	х
Criação de dispositivos legais	х	х	Х	х	Х	х	Х	х			х
Ação conjunta com outros componentes do	Х	Х	х	х	Х	Х	х	х	х	х	х

Fonte: Adaptado de Silva Junior et al. (2018).

10.6.8 Propostas de Estruturação das Ações a Serem Implementadas

A Tabela 88 traz a relação da sugestão das propostas prioritárias de estruturação que devem ser tomadas pelo município.

Tabela 88: Prioridades nas propostas de estruturação a serem tomadas.

Tipo de ação	Demanda	AP envolvida	Proposta de estruturação
Tipo de ação	Demanda		
Elaboração de projetos básicos ou estudos preliminares e projetos executivos	11	01, 02, 03, 04, 05, 06, 07, 08, 09, 10,11	Contratar estudos preliminares ou projeto básico de drenagem da cidade. Contratar projetos executivos para as AP para as AP mais problemáticas, depois dos projetos básicos.
Implantação de obras de microdrenagem	11	01, 02, 03, 04, 05, 06, 07, 08, 09, 10,11	Realizar obras de microdrenagem conforme definido nos projetos básicos e executivos.
Implantação de obras de macrodrenagem	10	01, 02, 03, 04, 05, 06, 07, 08, 09,11	Realizar obras de macrodrenagem conforme definido nos projetos básicos e executivos.
Cadastro dos dispositivos existentes	11	01, 02, 03, 04, 05, 06, 07, 08, 09, 10,11	São informações básicas para o planejamento de qualquer sistema de drenagem. Inclui número, locais e dimensões das bocas de lobo, diâmetro das tubulações, estimativas de vazões a captar por cada sistema, locais para amortecimento, retenção e detenção de vazões etc.
Monitoramento	11	01, 02, 03, 04, 05, 06, 07, 08, 09, 10,11	Programa de fiscalização e monitoramento periódicos dos dispositivos que compõem o sistema de drenagem, norteando os programas de manutenção e recuperação.
Definição de referenciais técnicos	11	01, 02, 03, 04, 05, 06, 07, 08, 09, 10,11	Elaboração ou implantação de manual técnico, assegurando o tratamento mais adequado a todas as intervenções relativas a melhorias do sistema e implantação de redes.
Desobstrução de dispositivos hidráulicos	11	01, 02, 03, 04, 05, 06, 07, 08, 09, 10,11	Programa municipal de manutenção periódica dos dispositivos do sistema de drenagem, resultante do programa de fiscalização e monitoramento.
Recuperação física de dispositivos existentes	11	01, 02, 03, 04, 05, 06, 07, 08, 09, 10,11	Programa municipal de recuperação periódica dos dispositivos do sistema de drenagem, resultante do programa de fiscalização e monitoramento.
Adequação ou melhoramento de dispositivos existentes	11	01, 02, 03, 04, 05, 06, 07, 08, 09, 10,11	Resultado das etapas de monitoramento, manutenção e recuperação dos dispositivos, em consonância com estudos preliminares/projeto básico de drenagem.
Recuperação de pavimentos	1	01	Não foram apontados problemas pertinentes relativos à recuperação de pavimentos nos locais apontados como AP.
Implantação de pavimentos	9	01, 02, 03, 04, 06, 07, 08, 09, 10	Implantação de pavimentos e sistema de microdrenagem adequados aos projetos contratados nas ruas das AP.

Tipo de ação	Demanda	AP envolvida	Proposta de estruturação
Controle de processos erosivos	2	03, 04	Realizar obras cuja finalidade primordial é evitar ou reduzir a energia do escoamento das águas pluviais sobre terrenos desprotegidos.
Campanhas de educação pública ambiental	11	01, 02, 03, 04, 05, 06, 07, 08, 09, 10,11	Desenvolver programas de educação ambiental sobre a importância do monitoramento da situação dos dispositivos de drenagem, os danos que a má operação da drenagem urbana pode causar à saúde, bem como sobre a interferência do manejo inadequado dos resíduos sólidos no sistema e os problemas causados pela disposição irregular de esgotamento sanitário nos dispositivos do sistema de drenagem.
Serviços de comunicação social	11	01, 02, 03, 04, 05, 06, 07, 08, 09, 10,11	Disponibilizar canal de contato direto entre cidadãos e órgãos públicos responsáveis pela drenagem urbana, bem como canal para sugestões, críticas, denúncias etc.
Fiscalização	11	01, 02, 03, 04, 05, 06, 07, 08, 09, 10,11	Desenvolver rotinas de fiscalização de projetos e obras com interferências no sistema de drenagem.
Treinamento de mão de obra	11	01, 02, 03, 04, 05, 06, 07, 08, 09, 10,11	Capacitação técnica (teórica e prática) de toda a equipe municipal responsável pelo sistema de drenagem, permitindo-os analisar os estudos e os projetos propostos para execução, manutenção e operação do sistema, bem como capacitação de pessoal para orientação da população.
Criação de dispositivos legais	9	01, 02, 03, 04, 05, 06, 07, 08,11	Instituir servidões de passagem, faixas sanitárias, áreas de uso restrito para implantação e manutenção, e condicionantes para parcelamento do solo.
Ação conjunta com outros componentes do saneamento ambiental	11	01, 02, 03, 04, 05, 06, 07, 08, 09, 10,11	Monitoramento e fiscalização da situação do sistema de drenagem com relação a interferências causadas pela disposição irregular de esgotos e resíduos sólidos.

Fonte: Adaptado de Silva Junior et al. (2018).

Um aspecto muito importante na garantia das obras implantadas é a manutenção das estruturas que compõem o sistema hidráulico, pois muitas vezes pequenas intervenções de engenharia ao longo da vida do sistema de drenagem/contenção, feitas adequadamente, evitam ou impedem o colapso. A conscientização de todos na conservação das obras implantadas é fundamental na garantia do seu bom funcionamento.

10.6 CONSIDERAÇÕES FINAIS

Em relação ao atual modelo de gestão do sistema de drenagem urbana e manejo de águas pluviais praticado no município, pôde-se observar que este, apresenta inviabilidade econômica, indicando que os procedimentos e processos relacionados ao sistema devem ser revistos. A busca pela sustentabilidade econômica deve ser constante, tanto para o cumprimento da legislação quanto para a saúde financeira do município.

Assim, esta atualização serve de base para orientar as futuras ações da gestão pública, e para compatibilizar a estratégia de aplicação dos investimentos das ações vinculadas ao planejamento municipal.

Como conclusões deste relatório, para o estabelecimento de investimentos nos programas e projetos que serão objeto de detalhamento em etapa posterior desta revisão, destacam-se:

- Elaborar o cadastro técnico digitalizado da malha de drenagem e seus acessórios, e treinar o pessoal local para a manutenção e atualização contínua deste cadastro;
- Elaborar Plano Diretor de Drenagem Urbana detalhando as soluções globais e localizadas, métodos construtivos e serviços a executar com o orçamento do custo das obras necessárias;
- 3. Estudar a implementação da cobrança pelo serviço público de drenagem e manejo de águas pluviais urbanas de acordo com a Lei municipal nº 68/2011;
- Elaborar projetos técnicos necessários para as áreas-problema descritas nesta revisão, executando as obras conforme disponibilidade de recursos;
- Realizar a instalação de sistema de microdrenagem nas vias a serem pavimentadas. A pavimentação de vias deve priorizar as AP, onde essa demanda já foi destacada;
- Evitar a canalização dos cursos d'água, mantendo as condições naturais de escoamento;
- 7. Desenvolver programas permanentes e ações de educação ambiental para a divulgação e a sensibilização dos efeitos da impermeabilização e de incentivo à

- permeabilidade, dos conceitos de drenagem sustentável e do adequado uso do sistema de drenagem urbana;
- 8. Regulamentar a previsão de instalação de cisternas para as novas edificações, permitindo a utilização de água da chuva para fins não potáveis, diminuindo os danos causados pela erosão hídrica e principalmente contribuindo com a diminuição do escoamento superficial. Do mesmo modo, incentivar a manutenção da permeabilidade dos solos em residências e instalações comerciais e industriais;
- 9. Exercer as atividades de fiscalização e monitoramento de lançamentos indevidos no sistema de drenagem urbana através e quando identificados, exigir a adequação à legislação e às normas vigentes, especialmente quando da solicitação de alvará de reforma ou ampliação da edificação;
- 10. Criar normas, definindo critérios e outros dispositivos relativos ao setor para a elaboração e aprovação de projetos de drenagem no município. Manter rigor na análise técnica e na fiscalização da implantação dos projetos.
- 11. Valorizar a permeabilidade do solo e a retenção das águas pluviais nas obras públicas, praças e calçadas;
- 12. Manter permanente fiscalização para evitar a ocupação ilegal de áreas inadequadas para uso urbano, por apresentarem elevado risco, tais como várzeas, margens de retenção de sedimentos, áreas de acomodação de águas, margens de córregos e arroios, áreas de uso futuro previsto para componentes de drenagem urbana, entre outras;
- 13. Adequar a legislação de parcelamento do solo para que todos os loteamentos mantenham as vazões e as condições de escoamento preexistentes, reservando também faixas sanitárias quando pertinente.
- 14. Estabelecer rotinas de manutenções periódicas e preventivas para todos os componentes dos sistemas de drenagem, destacando a limpeza de redes, travessias e bocas de lobo.

11 PLANO DE METAS, PROGRAMAS, PROJETOS E AÇÕES

Os princípios fundamentais e diretrizes das políticas públicas de saneamento básico nortearam as ações de planejamento e definição dos objetivos gerais deste produto. Estabelecidos os objetivos gerais, prosseguiu-se com a definição das metas setoriais, tendo como base os cenários verificados nos diagnósticos, prognósticos e aqueles estabelecidos em legislação ao longo do horizonte desse plano.

Neste capítulo as considerações finais dos diagnósticos e prognósticos setoriais foram convertidas em metas, tendo sido elaboradas estimativas de recursos para execução das medidas propostas nesta revisão. As metas foram distribuídas no horizonte de planejamento deste plano através de cronograma físico financeiro. Os quadros detalham os períodos de execução das metas e os recursos necessários para alcance destas para cada um dos eixos do saneamento básico abordados nesta revisão do PMSB.

Os investimentos projetados para o atendimento das demandas futuras de ampliação e melhoria dos serviços para o SAA e de implantação do SES foram estimados a partir de custos integrados divulgados e/ou por sistemas paradigma, sendo todos os valores referenciados a junho de 2021. O valor global dos recursos estimado para a execução das metas, no horizonte de abrangência deste plano (20 anos), para os serviços de abastecimento de água e esgotamento sanitário é de R\$ 44.799.700,00

Os investimentos previstos para a Limpeza Urbana e o Manejo de Resíduos Sólidos do município foram projetados considerando os custos de ações semelhantes realizadas por municípios de mesmo porte. Mantendo o modelo de terceirização, o valor de recursos estimados para a execução das metas, no horizonte de abrangência deste plano (20 anos), para os serviços de Limpeza Urbana e o Manejo de Resíduos Sólidos é de R\$ 577.800,00.

Os investimentos previstos para a Drenagem e Manejo de água pluviais urbanas foram estimados com base em custos integrados, podendo variar após a elaboração dos projetos e tiveram como base o Sistema Nacional de Pesquisa de Custos e Índices – SINAPI e o Sistema de Custos Referências de Obras – SICRO. O valor de recursos estimados para a execução das metas, no horizonte de abrangência deste plano (20 anos), para os serviços de drenagem e manejo de águas pluviais

urbanas é de R\$ 2.830.650,00, sendo a execução destes condicionada a disponibilidade de recursos a fundo perdido.

Ressalte-se que as estimativas de investimento apresentadas carregam margem de erro em função da fragilidade das informações disponíveis e pela ausência de estudos de concepção com orçamentos estimativos. Estas projeções de investimento deverão ser revisadas assim que os projetos básicos sejam finalizados.

Os cronogramas financeiros para os serviços básicos de saneamento são apresentados na sequência (Tabela 89 à Tabela 99).

Tabela 89: Cronograma de metas para o SAA – Ano 1 ao Ano 10

Tabela 89: Cronograma de metas para o SAA – Ano Tao Ano To Metas	Ano 01	Ano 02	Ano 03	Ano 04	Ano 05	Ano 06	Ano 07	Ano 08	Ano 09	Ano 10
Reavaliar a capacidade dos poços atuais e se possível solicitar a reavaliação dos limites da Outorga de uso da água; avaliar novos mananciais subterrâneos e superficiais, e implantar novas captações;	14.000	80.000				80.000				
2. Realizar adequação das unidades de tratamento ETA 01 e ETA 02;	20.000									
 Implantar obras de melhorias no sistema distribuidor (implantação de novos reservatórios, ampliação de redes, substituição/manutenção de redes); 										
3.1 Novos reservatórios	91.000	302.000					186.000			
3.2 Substituição de reservatórios								22.600		
3.3 Ampliação de rede	101.500	100.900	99.600	98.300	97.700	96.400	95.100	94.600	93.300	92.000
3.4 Substituição de rede	138.400	140.400	142.400	144.400	146.300	148.300	150.200	152.100	153.900	155.800
3.5 Substituição de ramal	27.400	27.800	28.200	28.600	29.000	29.400	29.700	30.100	30.500	30.900
3.6 Novas ligações	4.000	4.000	3.500	3.500	3.500	3.500	3.500	3.500	3.500	3.500
4. Adquirir geradores de energia móveis para auxiliar na continuidade do abastecimento nos eventos de falta de energia elétrica nas principais unidades do sistema, prioritariamente para a operação dos poços. Manter registro de preços para locação emergencial de geradores para as demais unidades.		24.000					24.000			
5. Manter bombas reservas para as unidades de recalque, principalmente para o Booster 01, que não possui bomba reserva instalada, visando a redução de paradas por problemas mecânicos;	4.000	8.400	9.000	6.600		4.000	8.400	9.000	6.600	
6. Instalar equipamentos de telemetria nas unidades de recalque do SAA, e aumentar número de variáveis monitoradas nas demais unidades;	50.000	50.000	35.000	35.000	35.000					
7. Manter cadastro de rede atualizado, capacitando equipe para levantamento de informações durante obras de ampliação e/ou aberturas em campo, para posterior atualização do cadastro;										
8. Atualizar programa de perdas, definindo como meta mínima o índice de 25% de perdas no horizonte de projeto deste plano;										
9. Instituir rotina de aferição e troca dos macromedidores, de modo a garantir que estes operem dentro de faixa de erro aceitável;	4.500	3.100		4.700		19.500	3.100		4.700	
10. Instituir rotina de troca de micromedidores. Fazendo com que os hidrômetros com mais de 5 anos sejam substituídos, priorizando inicialmente os consumidores que se enquadram nas faixas superiores à 10 m³/mês;	41.600	42.200	42.800	43.400	43.900	44.500	45.100	45.700	46.200	46.800
11. Desenvolver programas de educação ambiental com foco na preservação de mananciais;										
12. Realizar campanha para a orientação da população sobre a importância de manter reservação de água própria em seus domicílios para a mitigação dos efeitos das interrupções do abastecimento de água, além de orientar sobre a necessidade de limpeza destas unidades;	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
13. Elaboração de Plano de Segurança da Água (PSA), que contemple a identificação de perigos e riscos desde o manancial até o consumidor, estabelecendo medidas de controle para reduzi-los ou eliminá-los e estabelecendo processos para verificação da eficiência da gestão preventiva. (art 6º - decreto estadual 1846/2018);										
14. Estimular a coleta e reservação das águas pluviais, com a implantação de cisternas, visando sua utilização para fins não potáveis e como forma de reduzir os picos de escoamento superficial durante as chuvas. A instalação das cisternas deverá observar os parâmetros previstos na NBR 15527 (ANBT, 2019) e regulamentações específicas do município de Irani;										
15. Realizar levantamento/cadastramento das soluções alternativas coletivas e individuais para abastecimento de água adotadas na área rural;	5.000	5.000								
16. Desenvolver campanha orientativa a população rural, que se utiliza de soluções alternativas para abastecimento, sobre importância do tratamento da água, sobretudo sobre a necessidade de desinfecção antes do consumo;		4.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
17. Buscar parceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA e EPAGRI para a universalização do abastecimento de água na área rural e implantação de técnicas de tratamento acessíveis;										
18. Auxiliar na adequação ou melhoria das soluções alternativas de abastecimento da área rural, disponibilizando apoio contínuo de profissional qualificado.			13.200	13.200	13.200	13.200	13.200	13.200	13.200	13.200
TOTAL GERAL DOS INVESTIMENTOS (R\$)	504.400	794.800	377.700	381.700	372.600	442.800	562.300	374.800	355.900	346.200

Tabela 90: Cronograma de metas para o SAA – Ano 11 ao Ano 20.

Metas Metas	Ano 11	Ano 12	Ano 13	Ano 14	Ano 15	Ano 16	Ano 17	Ano 18	Ano 19	Ano 20
 Reavaliar a capacidade dos poços atuais e se possível solicitar a reavaliação dos limites da Outorga de uso da água; avaliar novos mananciais subterrâneos e superficiais, e implantar novas captações; 	14.000	3.500				83.500				
2. Realizar adequação das unidades de tratamento ETA 01 e ETA 02;										
 Implantar obras de melhorias no sistema distribuidor (implantação de novos reservatórios, ampliação de redes, substituição/manutenção de redes); 										
3.1 Novos reservatórios										
3.2 Substituição de reservatórios	22.600							22.600		
3.3 Ampliação de rede	91.500	89.500	89.800	87.800	87.300	86.100	85.600	84.400	83.300	105.800
3.4 Substituição de rede	157.600	159.400	161.200	162.900	164.700	166.400	168.100	169.800	171.500	173.600
3.5 Substituição de ramal	31.200	31.600	31.900	32.300	32.600	33.000	33.300	33.600	34.000	34.400
3.6 Novas ligações	3.500	3.500	3.500	3.500	3.500	3.000	3.000	3.000	3.000	4.000
4. Adquirir geradores de energia móveis para auxiliar na continuidade do abastecimento nos eventos de falta de energia elétrica nas principais unidades do sistema, prioritariamente para a operação dos poços. Manter registro de preços para locação emergencial de geradores para as demais unidades.		24.000					24.000			
5. Manter bombas reservas para as unidades de recalque, principalmente para o Booster 01, que não possui bomba reserva instalada, visando a redução de paradas por problemas mecânicos;	4.000	8.400	9.000	6.600		4.000	8.400	9.000	6.600	
6. Instalar equipamentos de telemetria nas unidades de recalque do SAA, e aumentar número de variáveis monitoradas nas demais unidades;										
7. Manter cadastro de rede atualizado, capacitando equipe para levantamento de informações durante obras de ampliação e/ou aberturas em campo, para posterior atualização do cadastro;										
8. Atualizar programa de perdas, definindo como meta mínima o índice de 25% de perdas no horizonte de projeto deste plano;										
9. Instituir rotina de aferição e troca dos macromedidores, de modo a garantir que estes operem dentro de faixa de erro aceitável;	4.500	3.100		4.700		19.500	3.100		4.700	
10. Instituir rotina de troca de micromedidores. Fazendo com que os hidrômetros com mais de 5 anos sejam substituídos, priorizando inicialmente os consumidores que se enquadram nas faixas superiores à 10 m³/mês;	47.300	47.900	48.400	48.900	49.500	50.000	50.500	51.000	51.500	52.100
11. Desenvolver programas de educação ambiental com foco na preservação de mananciais;										
12. Realizar campanha para a orientação da população sobre a importância de manter reservação de água própria em seus domicílios para a mitigação dos efeitos das interrupções do abastecimento de água, além de orientar sobre a necessidade de limpeza destas unidades;	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
13. Elaboração de Plano de Segurança da Água (PSA), que contemple a identificação de perigos e riscos desde o manancial até o consumidor, estabelecendo medidas de controle para reduzi-los ou eliminá-los e estabelecendo processos para verificação da eficiência da gestão preventiva. (art 6º - decreto estadual 1846/2018);										
14. Estimular a coleta e reservação das águas pluviais, com a implantação de cisternas, visando sua utilização para fins não potáveis e como forma de reduzir os picos de escoamento superficial durante as chuvas. A instalação das cisternas deverá observar os parâmetros previstos na NBR 15527 (ANBT, 2019) e regulamentações específicas do município de Irani;										
15. Realizar levantamento/cadastramento das soluções alternativas coletivas e individuais para abastecimento de água adotadas na área rural;										
16. Desenvolver campanha orientativa a população rural, que se utiliza de soluções alternativas para abastecimento, sobre importância do tratamento da água, sobretudo sobre a necessidade de desinfecção antes do consumo;	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
17. Buscar parceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA e EPAGRI para a universalização do abastecimento de água na área rural e implantação de técnicas de tratamento acessíveis;										
18. Auxiliar na adequação ou melhoria das soluções alternativas de abastecimento da área rural, disponibilizando apoio contínuo de profissional qualificado.	13.200	13.200	13.200	13.200	13.200	13.200	13.200	13.200	13.200	13.200
TOTAL GERAL DOS INVESTIMENTOS (R\$)	393.400	388.100	361.000	363.900	354.800	462.700	393.200	390.600	371.800	387.100

Tabela 91: Resumo Investimentos SAA

Tabela 91: Resumo investimentos SAA	
Metas	Investimento no horizonte de 20 anos (R\$)
1. Reavaliar a capacidade dos poços atuais e se possível solicitar a reavaliação dos limites da Outorga de uso da água; avaliar novos mananciais subterrâneos e superficiais, e implantar novas captações;	275.000
2. Realizar adequação das unidades de tratamento ETA 01 e ETA 02;	20.000
3. Implantar obras de melhorias no sistema distribuidor (implantação de novos reservatórios, ampliação de redes, substituição/manutenção de redes);	-
3.1 Novos reservatórios	579.000
3.2 Substituição de reservatórios	67.800
3.3 Ampliação de rede	1.860.500
3.4 Substituição de rede	3.127.400
3.5 Substituição de ramal	619.500
3.6 Novas ligações	69.500
4. Adquirir geradores de energia móveis para auxiliar na continuidade do abastecimento nos eventos de falta de energia elétrica nas principais unidades do sistema, prioritariamente para a operação dos poços. Manter registro de preços para locação emergencial de geradores para as demais unidades.	96.000
5. Manter bombas reservas para as unidades de recalque, principalmente para o Booster 01, que não possui bomba reserva instalada, visando a redução de paradas por problemas mecânicos;	112.000
6. Instalar equipamentos de telemetria nas unidades de recalque do SAA, e aumentar número de variáveis monitoradas nas demais unidades;	205.000
7. Manter cadastro de rede atualizado, capacitando equipe para levantamento de informações durante obras de ampliação e/ou aberturas em campo, para posterior atualização do cadastro;	-
8. Atualizar programa de perdas, definindo como meta mínima o índice de 25% de perdas no horizonte de projeto deste plano;	-
9. Instituir rotina de aferição e troca dos macromedidores, de modo a garantir que estes operem dentro de faixa de erro aceitável;	79.200
10. Instituir rotina de troca de micromedidores. Fazendo com que os hidrômetros com mais de 5 anos sejam substituídos, priorizando inicialmente os consumidores que se enquadram nas faixas superiores à 10 m³/mês;	939.300
11. Desenvolver programas de educação ambiental com foco na preservação de mananciais;	
12. Realizar campanha para a orientação da população sobre a importância de manter reservação de água própria em seus domicílios para a mitigação dos efeitos das interrupções do abastecimento de água, além de orientar sobre a necessidade de limpeza destas unidades;	60.000
13. Elaboração de Plano de Segurança da Água (PSA), que contemple a identificação de perigos e riscos desde o manancial até o consumidor, estabelecendo medidas de controle para reduzi-los ou eliminá-los e estabelecendo processos para verificação da eficiência da gestão preventiva. (art 6º - decreto estadual 1846/2018);	
14. Estimular a coleta e reservação das águas pluviais, com a implantação de cisternas, visando sua utilização para fins não potáveis e como forma de reduzir os picos de escoamento superficial durante as chuvas. A instalação das cisternas deverá observar os parâmetros previstos na NBR 15527 (ANBT, 2019) e regulamentações específicas do município de Irani;	
15. Realizar levantamento/cadastramento das soluções alternativas coletivas e individuais para abastecimento de água adotadas na área rural;	10.000
16. Desenvolver campanha orientativa a população rural, que se utiliza de soluções alternativas para abastecimento, sobre importância do tratamento da água, sobretudo sobre a necessidade de desinfecção antes do consumo;	22.000
17. Buscar parceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA e EPAGRI para a universalização do abastecimento de água na área rural e implantação de técnicas de tratamento acessíveis;	-
18. Auxiliar na adequação ou melhoria das soluções alternativas de abastecimento da área rural, disponibilizando apoio contínuo de profissional qualificado.	237.600
TOTAL GERAL DOS INVESTIMENTOS (R\$)	8.379.800

Tabela 92: Cronograma de metas para o SES – Ano 1 ao Ano 10.

Tabela 92: Cronograma de metas para o SES – Ano 1 ao Ano 10.										
Metas	Ano 1	Ano 2	Ano 3	Ano 4	Ano 5	Ano 6	Ano 7	Ano 8	Ano 9	Ano 10
 Manter rotina de avaliação, aprovação de projetos, com base nas normativas em vigor para implantação de soluções individuais. Fiscalizando a execução com os projetos aprovados; 										
 Ampliar o diagnóstico dos sistemas sanitários que está em andamento para a área rural, realizar cadastro de todas as edificações que dispõem de soluções individuais, incluindo características estruturais, tipo de tratamento e frequência de limpeza das unidades; 	5.000	5.000								
3. Promover ações para a regularização dos sistemas individuais implantados em desconformidade com a normativas vigentes. Além de regulamentar em lei a obrigatoriedade de manutenção dos sistemas implantados, conforme frequência do projeto aprovado na Prefeitura;										
4. Elaborar um programa de monitoramento dos sistemas alternativos de tratamento de esgoto, sob gestão do Município, que avalie a eficiência de tratamento destes e o possível impacto do lançamento dos efluentes tratados sob os corpos receptores.										
5. Realizar adequações nos sistemas alternativos coletivos, com a manutenção das redes coletoras nos pontos com vazamento e ajustes, se necessário, no tratamento conforme necessidade apontada pelo monitoramento destas unidades.	12.000	12.000								
6. Revisão da taxa de serviço de limpeza dos sistemas individuais, buscando metodologia de cobrança justa aos munícipes e que não comprometa a saúde financeira do município;										
7. Elaborar projetos básico e executivo do Sistema de Esgotamento Sanitário coletivo (SES) da área urbana;		350.000								
8. Elaborar cronograma sequencial necessário às obras decorrentes dos projetos, com implantação conforme disponibilidade de recursos não onerosos;										
8.1. Execução de rede coletora de esgotos, interceptores e acessórios			1.916.800	1.972.700	2.027.500	2.057.200	2.028.100	2.077.500	2.125.900	2.060.500
8.2. Implantação da estação de tratamento de esgoto (ETE)			6.400.000	1.600.000						
8.3. Implantação de elevatórias e linhas de recalque			777.300	255.400	665.100			208.700		404.800
8.4. Implantação dos ramais de ligação predial			273.000	281.000	288.800	293.000	292.300	311.100	318.400	309.400
9. Elaborar instruções normativas para que novos empreendimentos da sede urbana já possam ser liberados seguindo as diretrizes do projeto básico do SES;										
10. Apoiar as populações rurais no tratamento e disposição dos esgotos sanitários, buscando parceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA, EPAGRI, Vigilância Sanitária, Secretaria da Agricultura e Meio Ambiente do município;		15.400	15.400	15.400	15.400	15.400	15.400	15.400	15.700	15.700
11. Desenvolver campanhas de educação sanitária aos usuários das soluções individuais e alternativas existentes e aos futuros usuários do sistema coletivo, para uma adequada utilização, visando a manutenção da funcionalidade destes sistemas.		40.000	15.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
TOTAL GERAL DOS INVESTIMENTOS (R\$)	17.000	422.400	9.397.500	4.130.500	3.002.800	2.371.600	2.341.800	2.618.700	2.466.000	2.796.400

Tabela 93: Cronograma de metas para o SES - Ano 11 ao Ano 20.

1. Manter rotina de avaliação, aprovação de projetos, com base nas normativas em vigor para implantação de soluções individuais. Fiscalizando a exocução com os projetos aprovados; 2. Ampliar o diagnostico dos sistemas sanitários que está em andamento para a área rural, realizar cadastro de todos as edificações que dispôem de soluções individuais, incluindo caracterisfistade estruturais, tipo de tratamento feroparea de impacta de binação de su indiadas. 3. Promover ações para a regularização dos sistemas individuais implantados em desconformidados com a normativas vigentes. After de regulamentar em lei a contigentoledade de manuterição dos sistemas implantados, conforme frequência em lei a contigentoledade de manuterição dos estemas implantados, conforme frequência em lei a contigentoledade de manuterição dos estemas alternativos de tratamento deservações nos segurante de ministramento deste e o possível impacto do lançamento dos efluentes tratados sob os corpos receptores. 5. Realizar adequações nos seistemas alternativos de tratamento deste e o possível impacto do lançamento dos efluentes tratados sob os corpos receptores. 5. Realizar adequações nos seistemas alternativos de tratamento deste e o possível impacto do lançamento dos efluentes tratados sob os corpos receptores. 5. Realizar adequações nos seistemas alternativos de tratamento deste e o possível impacto do lançamento dos efluentes tratados sob os corpos receptores. 6. Revisão da taxa de serviçõe de limpeza dos sistemas individuais, buscando metodologia de corbarneja pista aos municipes que não comprende a saúde financeira do municípic: 7. Elaborar cronograma sequencial necessário às obras decorrentes dos projetos, com implantação conforme disponibilidade de recursos não onerosos: 8. Elaborar cronograma sequencial necessário às obras decorrentes dos projetos, com implantação conforme disponibilidade de recursos não onerosos: 8. Elaborar cronograma sequencial necessário às obras decorrentes dos projetos paracteria, para de lipação de rede colet	Tabela 93: Cronograma de metas para o SES – Ano 11 ao Ano 20. Metas	Ano 11	Ano 12	Ano 13	Ano 14	Ano 15	Ano 16	Ano 17	Ano 18	Ano 19	Ano 20
realizar cadastro de todas as edificações que dispõem de soluções individuais, incluindo características estruturais, tipo de tratamento de requência de limpeza das unidades; 3. Promover ações para a regularização dos sistemas individuais implantados em desconformidade com anomativas vigentes. Além de regulamentar em lei a obrigatoridade de manutemção dos sistemas implantados, conforme frequência do prioreto aprovado na Prefetitura. 4. Elaborar um programa de monitoramento dos sistemas alternativos de tratamento de esgoto, sob gestão do Município, que avalia e aficiência de tratamento destes e o possível impacto do languamento dos effuentes tratados sob os corpos receptores. 5. Realizar adequações nos sistemas alternativos codetivos, com a manutenção das redes coletoras nos pontos com vazamento e ajustes, se necessário, no tratamento conforme necessidade apontada pelo monitoramento destinades. 6. Revisão da taxa de serviço de limpeza dos sistemas individuais, buscando metodologia de cobrança justa aos municípes e que não comprometa a saúde financeira do município; 7. Elaborar projetos básico e executivo do Sistema de Espotamento Sanitário coletivo (SES) da recurso conograma sequencial necessário às obras decorrentes dos projetos, com insplantação de redevaciona de esgotos, interceptores e acessórios 8. Execução de rede coletora de esgotos, interceptores e acessórios 8. Execução de rede coletora de esgotos, interceptores e acessórios 8. Elaborar crinorgama sequencial necessário às obras decorrentes dos projetos, com insplantação de elevação de tratamento de esgoto (ETE) 9. Elaborar instruções normativas existemas alternativos coletos de sede urbana já possam ser libração de setação de tratamento de esgoto (ETE) 9. Elaborar instruções normativas existentas ou suaínos do sistema coleto dos esgotos sanitários, buscando paracer in junto a FUNASA (Responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA, EPAGRI, Vigilância Sanitária, Secretaria da Agricultura e Meio Rural per ou FUNAS											
desconformidade com a normativas vigentes. Além de regulamentar em lei a obrigatoriedade de manutenção dos sistemas implantados, conforme frequência do projeto aprovado na Prefeitura; 4. Elaborar um programa de monitoramento dos esistemas alternativos de tratamento destes e o possível impacto do lançamento dos elluentes tratados sob os corpos receptores. 5. Realizar adequações nos sistemas alternativos coletivos, com a manutenção das redes coletoras nos pontos com vazamento e ajustes, se necessárido, no tratamento conforme necessidade apontada pelo monitoramento destas unidades. 6. Revisão da taxa de serviço de limpeza dos sistemas individuais, buscando metodologia de cobrança justa aos municipes e que não comprometa a saúde financeira do município; 7. Elaborar projetos básico e executivo do Sistema de Esgotamento Sanitário coletivo (SES) da área urbana; 8. Elaborar conograma sequencial necessário às obras decorrentes dos projetos, com implantação conforme disponibilidade de recursos não onerosos; 8.1. Execução de rede coletora de esgotos, interceptores e acessórios 8.2. Implantação de elevatórias e linhas de recalque 424.100 277.400 361.000 362.000 365.000 184.400 181.800 179.400 183.200 143.20	realizar cadastro de todas as edificações que dispõem de soluções individuais, incluindo										
esgoto, sob gestão do Município, que avalie a eficiência de tratamento destes e o possível impacto do lançamento dos efluentes tratados sob os corpos receptores. 5. Realizar adequações nos sistemas alternativos coletivos, com a manutenção das redes coletoras nos pontos com vazamento e ajustes, se necessário, no tratamento conforme necessidade apontada pelo monitoramento destas unidades. 6. Revisão da taxa de serviço de limpeza dos sistemas individuais, buscando metodologia de cobrança justa aos municípes e que não comprometa a saúde financeira do município; 7. Elaborar projetos básico e executivo do Sistema de Esgotamento Sanitário coletivo (SES) da área urbana; 8. Elaborar cronograma sequencial necessário às obras decorrentes dos projetos, com implantação conforme disponibilidade de recursos não onerosos; 8.1. Execução de rede coletora de esgotos, interceptores e acessórios 8.2. Implantação da estação de tratamento de esgoto (ETE) 8.3. Implantação de elevatórias e linhas de recalque 424.100 277.400 9. Elaborar instruções normativas para que novos empreendimentos da sede urbana já possam ser liberados seguindo as diretizes do projeto básico do SES; 10. Apoiar as populações rurais no tratamento e desgotos (SES) do SES; 10. Apoiar as populações rurais no tratamento e desgotos (SES) dos segotos sanitários, buscando parceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA, EPAGRI, Vigilância Sanitária, Secretaria da Agricultura e Meio Ambiente do município; 11. Deservolver campanhas de educação sanitária aos usuários dos stetama coletivo, para uma adequada utilização, visando a manutenção da funcionalidade destes sistemas.	desconformidade com a normativas vigentes. Além de regulamentar em lei a obrigatoriedade de manutenção dos sistemas implantados, conforme frequência do projeto aprovado na										
coletoras nos pontos com vazamento e ajustes, se necessário, no tratamento conforme necessidade apontada pelo monitoramento destas unidades. 6. Revisão da taxa de serviço de limpeza dos sistemas individuais, buscando metodologia de cobrança justa aos munícipes e que não comprometa a saúde financeira do município; 7. Elaborar projetos básico e executivo do Sistema de Esgotamento Sanitário coletivo (SES) da área urbana; 8. Elaborar cronograma sequencial necessário às obras decorrentes dos projetos, com implantação conforme disponibilidade de recursos não onerosos; 8.1. Execução de rede coletora de esgotos, interceptores e acessórios 8.2. Implantação de elevatórias e linhas de recalque 8.3. Implantação de elevatórias e linhas de recalque 8.4. Implantação dos ramais de ligação predial 9. Elaborar instruções normativas para que novos emprendimentos da sede urbana já possam ser liberados segujudo as diretrizes do projeto básico do SES; 10. Apoiar as populações rurais no tratamento de disposição dos esgotos sanitários, buscando parceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBARAPA, EPAGRI, Vigilância Sanitária, Secretaria da Agricultura e Meio Ambiente do município; 11. Desenvolver campanhas de educação sanitária aos susáriórs das soluções individuais e alternativas existentes e aos futuros usuários do sistema coletivo, para uma adequada utilização, visando a manutenção da funcionalidade destes sistemas.	esgoto, sob gestão do Município, que avalie a eficiência de tratamento destes e o possível			Y			U W				
de cobrança justa aos munícipes e que não comprometa a saúde financeira do município; 7. Elaborar projetos básico e executivo do Sistema de Esgotamento Sanitário coletivo (SES) da área urbana; 8. Elaborar cronograma sequencial necessário às obras decorrentes dos projetos, com implantação conforme disponibilidade de recursos não onerosos; 8.1. Execução de rede coletora de esgotos, interceptores e acessórios 2.103.200 402.600 402.700 361.000 362.500 365.500 184.400 181.800 179.400 8.2. Implantação da estação de tratamento de esgoto (ETE) 3.3. Implantação de elevatórias e linhas de recalque 424.100 277.400 314.300 202.000 113.500 143.200 143.200 9. Elaborar instruções normativas para que novos empreendimentos da sede urbana já possam ser liberados seguindo as diretrizes do projeto básico do SES; 10. Apoiar as populações rurais no tratamento e disposição dos esgotos sanitários, buscando paraceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA, EPAGRI, Vigilância Sanitária, Secretaria da Agricultura e Meio Ambiente do município; 11. Desenvolver campanhas de educação sanitária aos usuários da sistema coletivo, para uma adequada ditilização, visando a manutenção da funcionalidade destes sistemas.	coletoras nos pontos com vazamento e ajustes, se necessário, no tratamento conforme										
da área urbana; 8. Elaborar cronograma sequencial necessário às obras decorrentes dos projetos, com implantação conforme disponibilidade de recursos não onerosos; 8.1. Execução de rede coletora de esgotos, interceptores e acessórios 8.2. Implantação da estação de tratamento de esgoto (ETE) 8.3. Implantação de elevatórias e linhas de recalque 424.100 277.400 8.4. Implantação dos ramais de ligação predial 9. Elaborar instruções normativas para que novos empreendimentos da sede urbana já possam ser liberados seguindo as diretrizes do projeto básico do SES; 10. Apoiar as populações rurais no tratamento e disposição dos esgotos sanitários, buscando parceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA, EPAGRI, Vigilância Sanitária, Secretaria da Agricultura e Meio Ambiente do município; 11. Desenvolver campanhas de educação sanitária aos usuários do sistema coletivo, para uma adequada utilização, visando a manutenção da funcionalidade destes sistemas.			4								
implantação conforme disponibilidade de recursos não onerosos; 8.1. Execução de rede coletora de esgotos, interceptores e acessórios 8.2. Implantação da estação de tratamento de esgoto (ETE) 8.3. Implantação de elevatórias e linhas de recalque 8.4. Implantação dos ramais de ligação predial 9. Elaborar instruções normativas para que novos empreendimentos da sede urbana já possam ser liberados seguindo as diretrizes do projeto básico do SES; 10. Apoiar as populações rurais no tratamento e disposição dos esgotos sanitários, buscando parceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA, EPAGRI, Vigilância Sanitária, Secretaria da Agricultura e Meio Ambiente do município; 11. Desenvolver campanhas de educação sanitária aos usuários das soluções individuais e alternativas existentes e aos futuros usuários do sistema coletivo, para uma adequada utilização, visando a manutenção da funcionalidade destes sistemas.	, ,										
8.2. Implantação da estação de tratamento de esgoto (ETE) 8.3. Implantação de elevatórias e linhas de recalque 424.100 277.400 314.300 202.000 113.500 143.200 8.4. Implantação dos ramais de ligação predial 332.200 90.600 63.700 57.800 64.500 65.000 39.300 32.500 32.000 9. Elaborar instruções normativas para que novos empreendimentos da sede urbana já possam ser liberados seguindo as diretrizes do projeto básico do SES; 10. Apoiar as populações rurais no tratamento e disposição dos esgotos sanitários, buscando parceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA, EPAGRI, Vigilância Sanitária, Secretaria da Agricultura e Meio Ambiente do município; 11. Desenvolver campanhas de educação sanitária aos usuários das soluções individuais e alternativas existentes e aos futuros usuários do sistema coletivo, para uma adequada utilização, visando a manutenção da funcionalidade destes sistemas.											
8.3. Implantação de elevatórias e linhas de recalque 8.4. Implantação dos ramais de ligação predial 8.4. Implantação dos ramais de ligação predial 9. Elaborar instruções normativas para que novos empreendimentos da sede urbana já possam ser liberados seguindo as diretrizes do projeto básico do SES; 10. Apoiar as populações rurais no tratamento e disposição dos esgotos sanitários, buscando parceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA, EPAGRI, Vigilância Sanitária, Secretaria da Agricultura e Meio Ambiente do município; 11. Desenvolver campanhas de educação sanitária aos usuários das soluções individuais e alternativas existentes e aos futuros usuários do sistema coletivo, para uma adequada utilização, visando a manutenção da funcionalidade destes sistemas.	8.1. Execução de rede coletora de esgotos, interceptores e acessórios	2.103.200	402.600	402.700	361.000	362.500	365.500	184.400	181.800	179.400	
8.4. Implantação dos ramais de ligação predial 9. Elaborar instruções normativas para que novos empreendimentos da sede urbana já possam ser liberados seguindo as diretrizes do projeto básico do SES; 10. Apoiar as populações rurais no tratamento e disposição dos esgotos sanitários, buscando parceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA, EPAGRI, Vigilância Sanitária, Secretaria da Agricultura e Meio Ambiente do município; 11. Desenvolver campanhas de educação sanitária aos usuários das soluções individuais e alternativas existentes e aos futuros usuários do sistema coletivo, para uma adequada utilização, visando a manutenção da funcionalidade destes sistemas. 32.200 90.600 63.700 57.800 64.500 65.000 39.300 32.500 32.000	8.2. Implantação da estação de tratamento de esgoto (ETE)										
9. Elaborar instruções normativas para que novos empreendimentos da sede urbana já possam ser liberados seguindo as diretrizes do projeto básico do SES; 10. Apoiar as populações rurais no tratamento e disposição dos esgotos sanitários, buscando parceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA, EPAGRI, Vigilância Sanitária, Secretaria da Agricultura e Meio Ambiente do município; 11. Desenvolver campanhas de educação sanitária aos usuários das soluções individuais e alternativas existentes e aos futuros usuários do sistema coletivo, para uma adequada utilização, visando a manutenção da funcionalidade destes sistemas.	8.3. Implantação de elevatórias e linhas de recalque	424.100	277.400		314.300	202.000		113.500		143.200	
possam ser liberados seguindo as diretrizes do projeto básico do SES; 10. Apoiar as populações rurais no tratamento e disposição dos esgotos sanitários, buscando parceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA, EPAGRI, Vigilância Sanitária, Secretaria da Agricultura e Meio Ambiente do município; 11. Desenvolver campanhas de educação sanitária aos usuários das soluções individuais e alternativas existentes e aos futuros usuários do sistema coletivo, para uma adequada utilização, visando a manutenção da funcionalidade destes sistemas.	8.4. Implantação dos ramais de ligação predial	332.200	90.600	63.700	57.800	64.500	65.000	39.300	32.500	32.000	
parceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA, EPAGRI, Vigilância Sanitária, Secretaria da Agricultura e Meio Ambiente do município; 11. Desenvolver campanhas de educação sanitária aos usuários das soluções individuais e alternativas existentes e aos futuros usuários do sistema coletivo, para uma adequada utilização, visando a manutenção da funcionalidade destes sistemas.											
alternativas existentes e aos futuros usuários do sistema coletivo, para uma adequada 6.000 6.00	parceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA, EPAGRI, Vigilância Sanitária, Secretaria da Agricultura e Meio										
TOTAL GERAL DOS INVESTIMENTOS (R\$) 2.865.500 776.600 472.400 739.100 635.000 436.500 343.200 220.300 360.600 6.000	alternativas existentes e aos futuros usuários do sistema coletivo, para uma adequada	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
	TOTAL GERAL DOS INVESTIMENTOS (R\$)	2.865.500	776.600	472.400	739.100	635.000	436.500	343.200	220.300	360.600	6.000

Tabela 94: Resumo Investimentos SES

Tabela 94: Resumo Investimentos SES	
Metas	Investimentos (R\$)
1. Manter rotina de avaliação, aprovação de projetos, com base nas normativas em vigor para implantação de soluções individuais. Fiscalizando a execução com os projetos aprovados;	-
2. Ampliar o diagnóstico dos sistemas sanitários que está em andamento para a área rural, realizar cadastro de todas as edificações que dispõem de soluções individuais, incluindo características estruturais, tipo de tratamento e frequência de limpeza das unidades;	10.000,00
3. Promover ações para a regularização dos sistemas individuais implantados em desconformidade com a normativas vigentes. Além de regulamentar em lei a obrigatoriedade de manutenção dos sistemas implantados, conforme frequência do projeto aprovado na Prefeitura;	-
4. Elaborar um programa de monitoramento dos sistemas alternativos de tratamento de esgoto, sob gestão do Município, que avalie a eficiência de tratamento destes e o possível impacto do lançamento dos efluentes tratados sob os corpos receptores.	-
5. Realizar adequações nos sistemas alternativos coletivos, com a manutenção das redes coletoras nos pontos com vazamento e ajustes, se necessário, no tratamento conforme necessidade apontada pelo monitoramento destas unidades.	24.000,00
6. Revisão da taxa de serviço de limpeza dos sistemas individuais, buscando metodologia de cobrança justa aos munícipes e que não comprometa a saúde financeira do município;	-
7. Elaborar projetos básico e executivo do Sistema de Esgotamento Sanitário coletivo (SES) da área urbana;	350.000,00
8. Elaborar cronograma sequencial necessário às obras decorrentes dos projetos, com implantação conforme disponibilidade de recursos não onerosos;	-
8.1. Execução de rede coletora de esgotos, interceptores e acessórios	20.809.300,00
8.2. Implantação da estação de tratamento de esgoto (ETE)	8.000.000,00
8.3. Implantação de elevatórias e linhas de recalque	3.785.800,00
8.4. Implantação dos ramais de ligação predial	3.144.600,00
9. Elaborar instruções normativas para que novos empreendimentos da sede urbana já possam ser liberados seguindo as diretrizes do projeto básico do SES;	-
10. Apoiar as populações rurais no tratamento e disposição dos esgotos sanitários, buscando parceria junto a FUNASA (responsável pela coordenação do Programa Nacional de Saneamento Rural), EMBRAPA, EPAGRI, Vigilância Sanitária, Secretaria da Agricultura e Meio Ambiente do município;	139.200,00
11. Desenvolver campanhas de educação sanitária aos usuários das soluções individuais e alternativas existentes e aos futuros usuários do sistema coletivo, para uma adequada utilização, visando a manutenção da funcionalidade destes sistemas.	157.000,00
TOTAL GERAL DOS INVESTIMENTOS (R\$)	36.419.900,00

Tabela 95: Cronograma de metas para os serviços de Limpeza pública e manejo de resíduos - Ano 01 ao Ano 10.

abela 95: Cronograma de metas para os serviços de Limpeza publica e manejo					ANO	ANG	ANGZ	ANGO	ANGO	ANG
Metas	ANO 1	ANO 2	ANO 3	ANO 4	ANO 5	ANO 6	ANO 7	ANO 8	ANO 9	ANO 10
1. Implementar programa de educação ambiental de âmbito rural e urbano, desenvolvendo ações que promovam a formação de sujeitos capazes de compreender a sua realidade e formas de agir perante o meio, de modo consciente e equilibrado. Devem ser elaboradas adequadamente as soluções tecnológicas para infraestrutura física e de gestão considerando todas as variáveis socioculturais e ambientais presentes no município	12.000,00	4.000,00	4.000,00	4.000,00	6.000,00	4.000,00	4.000,00	4.000,00	6.000,00	4.000,00
2. Realizar a revisão da taxa de coleta de resíduos, garantindo a sustentabilidade econômico-financeira do sistema de Limpeza Urbana e Manejo de Resíduos Sólidos										
3. Estabelecer legalmente como procedimento para aprovação de projetos e emissão de alvará de construção a apresentação do Plano de gerenciamento de resíduos da construção civil – PGRCC de todas as empresas de construção civil (Lei Federal n° 12.305/2010) e por grandes geradores desse tipo de resíduo (Resolução CONAMA nº 307/2002)										
4. Reavaliar a Lei nº 917/1997 no que diz respeito a cobrança pelos serviços de limpeza pública e conservação de vias e logradouros públicos, uma vez que a cobrança está prevista, mas não é realizada						7				
5. Elaborar legislação que defina de forma clara parâmetros para avaliação de pequenos e grandes geradores										
6. Implantar uma Ouvidoria com o objetivo de avaliar, acompanhar e fiscalizar os serviços públicos prestados pela municipalidade										
7. Designar um responsável pela gestão operacional do sistema, que fará o acompanhamento permanente dos serviços e será o canal de comunicação entre a administração pública e as empresas terceirizadas										
8. Realizar o controle da pesagem de resíduos, arquivando esses dados para que possam servir como fonte de consulta para as futuras revisões do PMSB										
9. Desenvolver procedimento de controle para todas as empresas e unidades integradas ao sistema público de manejo e destino final de resíduos sólidos, exigindo não só as Licenças Ambientais pertinentes, como também a comprovação do cumprimento das condicionantes de validade destas. Sugere-se que seja previsto nos novos contratos penalidades e caducidade pelo não cumprimento das condicionantes ambientais	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
10. Estabelecer manual de procedimentos operacionais para os serviços desenvolvidos pela administração municipal (como realizar determinadas operações, por exemplo, a condução das coletas, a condução da varrição e da poda, a atuação em equipe, etc.) e a especificação mínima de equipamentos e pessoal envolvidos nas operações (quantidade, idade de frota, materiais de segurança, etc.)										
11. Estabelecer rotina de vistorias nas unidades de triagem e disposição final de resíduos sólidos para verificação das condições de operação	1.200,00	1.200,00	1.200,00	1.200,00	1.200,00	1.200,00	1.200,00	1.200,00	1.200,00	1.200,00
12. Realizar treinamento anual para capacitação dos servidores envolvidos na gestão e operação dos serviços de manejo de resíduos sólidos										
13. Realizar estudo gravimétrico dos resíduos produzidos no município com o intuito de subsidiar a elaboração do Plano Municipal de Gestão Integrada de Resíduos Sólidos ou atualização do Projeto do Plano Intermunicipal de Gestão Integrada de Resíduos Sólidos		20.000,00				20.000,00				20.000,00
14. Realizar a revisão do Projeto do Plano Intermunicipal de Gestão Integrada de Resíduos Sólidos elaborado em 2015 pelo Consórcio Lambari e Secretaria Municipal de Agricultura e Meio Ambiente e instituí-lo de acordo com a Lei nº 12.305/2010			30.000,00							
15. Monitorar e manter atualizados os Planos de Gerenciamento de Resíduos dos Serviços de Saúde para todas as unidades de saúde do município										
16. Implantar locais licenciados para entrega voluntária de pequenos volumes de resíduos da construção civil e para recebimento de resíduos de limpeza urbana (poda) e resíduos volumosos					130.200,00					
17. Fomentar a implantação de pontos de coleta de resíduos eletrônicos e especiais pela iniciativa privada										
18. Estudar a possibilidade de soluções compartilhadas com os outros municípios da região para a disposição final dos resíduos										
19. Realizar estudo de viabilidade para a implantação de sistema de compostagem						15.200,00				
20. Unidades Centro/ Pronto Atendimento e Marlei Alves Batista (construção novo abrigo)	28.600,00									
21. Unidade Sede (reforma)	3.800,00	1.7								
TOTAL GERAL DOS INVESTIMENTOS (R\$)	51.600,00	31.200,00	41.200,00	11.200,00	143.400,00	46.400,00	11.200,00	11.200,00	13.200,00	31.200,00

Tabela 96: Cronograma de metas para os serviços de Limpeza pública e manejo de - Ano 11 ao Ano 20.

Tabela 96: Cronograma de metas para os serviços de Limpeza pública e manejo										
Metas Metas	Ano 11	Ano 12	Ano 13	Ano 14	Ano 15	Ano 16	Ano 17	Ano 18	Ano 19	Ano 20
1. Implementar programa de educação ambiental de âmbito rural e urbano, desenvolvendo ações que promovam a formação de sujeitos capazes de compreender a sua realidade e formas de agir perante o meio, de modo consciente e equilibrado. Devem ser elaboradas adequadamente as soluções tecnológicas para infraestrutura física e de gestão considerando todas as variáveis socioculturais e ambientais presentes no município	4.000,00	4.000,00	6.000,00	4.000,00	4.000,00	4.000,00	6.000,00	4.000,00	4.000,00	4.000,00
2. Realizar a revisão da taxa de coleta de resíduos, garantindo a sustentabilidade econômico-financeira do sistema de Limpeza Urbana e Manejo de Resíduos Sólidos										
3. Estabelecer legalmente como procedimento para aprovação de projetos e emissão de alvará de construção a apresentação do Plano de gerenciamento de resíduos da construção civil – PGRCC de todas as empresas de construção civil (Lei Federal nº 12.305/2010) e por grandes geradores desse tipo de resíduo (Resolução CONAMA nº 307/2002)										
4. Reavaliar a Lei nº 917/1997 no que diz respeito a cobrança pelos serviços de limpeza pública e conservação de vias e logradouros públicos, uma vez que a cobrança está prevista, mas não é realizada										
5. Elaborar legislação que defina de forma clara parâmetros para avaliação de pequenos e grandes geradores										
6. Implantar uma Ouvidoria com o objetivo de avaliar, acompanhar e fiscalizar os serviços públicos prestados pela municipalidade										
7. Designar um responsável pela gestão operacional do sistema, que fará o acompanhamento permanente dos servicos e será o canal de comunicação entre a administração pública e as empresas terceirizadas										
8. Realizar o controle da pesagem de resíduos, arquivando esses dados para que possam servir como fonte de consulta para as futuras revisões do PMSB										
9. Desenvolver procedimento de controle para todas as empresas e unidades integradas ao sistema público de manejo e destino final de resíduos sólidos, exigindo não só as Licenças Ambientais pertinentes, como também a comprovação do cumprimento das condicionantes de validade destas. Sugere-se que seja previsto nos novos contratos penalidades e caducidade pelo não cumprimento das condicionantes ambientais	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
10. Estabelecer manual de procedimentos operacionais para os serviços desenvolvidos pela administração municipal (como realizar determinadas operações, por exemplo, a condução das coletas, a condução da varrição e da poda, a atuação em equipe, etc.) e a especificação mínima de equipamentos e pessoal envolvidos nas operações (quantidade, idade de frota, materiais de segurança, etc.)										
11. Estabelecer rotina de vistorias nas unidades de triagem e disposição final de resíduos sólidos para verificação das condições de operação	1.200,00	1.200,00	1.200,00	1.200,00	1.200,00	1.200,00	1.200,00	1.200,00	1.200,00	1.200,00
12. Realizar treinamento anual para capacitação dos servidores envolvidos na gestão e operação dos serviços de manejo de resíduos sólidos										
13. Realizar estudo gravimétrico dos resíduos produzidos no município com o intuito de subsidiar a elaboração do Plano Municipal de Gestão Integrada de Resíduos Sólidos ou atualização do Projeto do Plano Intermunicipal de Gestão Integrada de Resíduos Sólidos				20.000,00				20.000,00		
14. Realizar a revisão do Projeto do Plano Intermunicipal de Gestão Integrada de Resíduos Sólidos elaborado em 2015 pelo Consórcio Lambari e Secretaria Municipal de Agricultura e Meio Ambiente e instituí-lo de acordo com a Lei nº 12.305/2010			30.000,00							
15. Monitorar e manter atualizados os Planos de Gerenciamento de Resíduos dos Serviços de Saúde para todas as unidades de saúde do município										
16. Implantar locais licenciados para entrega voluntária de pequenos volumes de resíduos da construção civil e para recebimento de resíduos de limpeza urbana (poda) e resíduos volumosos										
17. Fomentar a implantação de pontos de coleta de resíduos eletrônicos e especiais pela iniciativa privada										
18. Estudar a possibilidade de soluções compartilhadas com os outros municípios da região para a disposição final dos resíduos										
19. Realizar estudo de viabilidade para a implantação de sistema de compostagem										
20. Unidades Centro/ Pronto Atendimento e Marlei Alves Batista (construção novo abrigo)										
21. Unidade Sede (reforma)				-						
TOTAL GERAL DOS INVESTIMENTOS (R\$)	11.200,00	11.200,00	43.200,00	31.200,00	11.200,00	11.200,00	13.200,00	31.200,00	11.200,00	11.200,00

Tabela 97: Resumo Investimentos Limpeza Urbana e Manejo de Resíduos Sólidos.

97: Resumo Investimentos Limpeza Urbana e Manejo de Residuos Solidos.	
Metas	Investimentos (R\$)
1. Implementar programa de educação ambiental de âmbito rural e urbano, desenvolvendo ações que promovam a formação de sujeitos capazes de compreender a sua realidade e formas de agir perante o meio, de modo consciente e equilibrado. Devem ser elaboradas adequadamente as soluções tecnológicas para infraestrutura física e de gestão considerando todas as variáveis socioculturais e ambientais presentes no município	96.000,00
2. Realizar a revisão da taxa de coleta de resíduos, garantindo a sustentabilidade econômico-financeira do sistema de Limpeza Urbana e Manejo de Resíduos Sólidos	-
3. Estabelecer legalmente como procedimento para aprovação de projetos e emissão de alvará de construção a apresentação do Plano de gerenciamento de resíduos da construção civil – PGRCC de todas as empresas de construção civil (Lei Federal n° 12.305/2010) e por grandes geradores desse tipo de resíduo (Resolução CONAMA nº 307/2002)	
4. Reavaliar a Lei nº 917/1997 no que diz respeito a cobrança pelos serviços de limpeza pública e conservação de vias e logradouros públicos, uma vez que a cobrança está prevista, mas não é realizada	-
 5. Elaborar legislação que defina de forma clara parâmetros para avaliação de pequenos e grandes geradores 6. Implantar uma Ouvidoria com o objetivo de avaliar, acompanhar e fiscalizar os 	· / -
serviços públicos prestados pela municipalidade 7. Designar um responsável pela gestão operacional do sistema, que fará o	
acompanhamento permanente dos serviços e será o canal de comunicação entre a administração pública e as empresas terceirizadas	-
8. Realizar o controle da pesagem de resíduos, arquivando esses dados para que possam servir como fonte de consulta para as futuras revisões do PMSB	-
9. Desenvolver procedimento de controle para todas as empresas e unidades integradas ao sistema público de manejo e destino final de resíduos sólidos, exigindo não só as Licenças Ambientais pertinentes, como também a comprovação do cumprimento das condicionantes de validade destas. Sugere-se que seja previsto nos novos contratos penalidades e caducidade pelo não cumprimento das condicionantes ambientais	120.000,00
10. Estabelecer manual de procedimentos operacionais para os serviços desenvolvidos pela administração municipal (como realizar determinadas operações, por exemplo, a condução das coletas, a condução da varrição e da poda, a atuação em equipe, etc.) e a especificação mínima de equipamentos e pessoal envolvidos nas operações (quantidade, idade de frota, materiais de segurança, etc.)	
11. Estabelecer rotina de vistorias nas unidades de triagem e disposição final de resíduos sólidos para verificação das condições de operação	24.000,00
12. Realizar treinamento anual para capacitação dos servidores envolvidos na gestão e operação dos serviços de manejo de resíduos sólidos	-
13. Realizar estudo gravimétrico dos resíduos produzidos no município com o intuito de subsidiar a elaboração do Plano Municipal de Gestão Integrada de Resíduos Sólidos ou atualização do Projeto do Plano Intermunicipal de Gestão Integrada de Resíduos Sólidos	100.000,00
14. Realizar a revisão do Projeto do Plano Intermunicipal de Gestão Integrada de Resíduos Sólidos elaborado em 2015 pelo Consórcio Lambari e Secretaria Municipal de Agricultura e Meio Ambiente e instituí-lo de acordo com a Lei nº 12.305/2010	60.000,00
15. Monitorar e manter atualizados os Planos de Gerenciamento de Resíduos dos Serviços de Saúde para todas as unidades de saúde do município	-
16. Implantar locais licenciados para entrega voluntária de pequenos volumes de resíduos da construção civil e para recebimento de resíduos de limpeza urbana (poda) e resíduos volumosos	130.200,00
17. Fomentar a implantação de pontos de coleta de resíduos eletrônicos e especiais pela iniciativa privada	-
18. Estudar a possibilidade de soluções compartilhadas com os outros municípios da região para a disposição final dos resíduos	-
19. Realizar estudo de viabilidade para a implantação de sistema de compostagem	15.200,00
Unidades Centro e Pronto Atendimento (construção novo abrigo) 20. Unidade Sede (reforma)	28.600,00 3.800,00
TOTAL GERAL DOS INVESTIMENTOS (R\$)	577.800,00

Tabela 98: Cronograma de metas para o sistema de drenagem e manejo de águas pluviais urbana – Ano 1 ao Ano 10.

Tabela 98: Cronograma de metas para o sistema de drenagem e manejo de água					ANOF	ANIO	4110.7	ANGO	ANGO	ANIO 40
Metas	ANO 1	ANO 2	ANO 3	ANO 4	ANO 5	ANO 6	ANO 7	8 ONA	ANO 9	ANO 10
Elaborar o cadastro técnico digitalizado da malha de drenagem e seus acessórios	25.000	25.000								
2. Treinar o pessoal local para a manutenção e atualização contínua do cadastro técnico da malha										
de drenagem										
3. Elaborar Plano Diretor de Drenagem Urbana detalhando as soluções globais e localizadas,		75.000	75.000		200					
métodos construtivos e serviços a executar com o orçamento do custo das obras necessárias		70.000	70.000							
4. Elaborar projetos técnicos necessários para as áreas-problema descritas nesta revisão por nível	56.500	70.400	21.200							
de prioridade	00.000	7 0. 100	21.200							
5. Elaborar projetos para captação de recursos										
6. Realizar intervenções na AP-01 - Rua Vicente Lemos das Neves, Avenida Governador Ivo		454.700,00								
Silveira, Rua José Fasolo e Rua Osório de Oliveira Vargas		434.700,00								
7. Realizar intervenções na AP-11 - Rua Rosalino Rodrigues e Avenida Governador Ivo Silveira			170.400							
8. Realizar intervenções na AP-05 – Avenida Governador Ivo Silveira com a Marli de Gregori			315.500	-,						
9. Realizar intervenções na AP-08 – Rua Neri Guareski				4.750				4.750		
10. Realizar intervenções na AP-06 – Rua Lindo Tebaldi				1.151.300						
11. Realizar intervenções na AP-10 – Rua Menino Deus esquina com a Rua Santa Maria		100		20.800						
12. Realizar intervenções na AP-03 – Avenida Santo Antônio					90.200					
13. Realizar intervenções na AP-04- Rua João Galeazzi, Rua Luiz Guareski e Avenida Governador										
Ivo Silveira					182.400					
14. Realizar intervenções na AP-09 – Rua da Paz										
15. Realizar intervenções na AP-02 – SC 473 próximo à Rua Santa Catarina						4.750				
16. Realizar intervenções na AP-07 – Rua Santo Antônio						4.750				
17. Desenvolver programas permanentes e ações de educação ambiental para a divulgação e a						4.730				
sensibilização dos efeitos da impermeabilização e de incentivo à permeabilidade, dos conceitos de	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
drenagem sustentável e do adequado uso do sistema de drenagem urbana	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
18. Estudar a implementação da cobrança pelo serviço público de drenagem e manejo de águas pluviais urbanas de acordo com a Lei municipal nº 68/2011										
19. Regulamentar a previsão de instalação de cisternas para as novas edificações, permitindo a										
utilização de água da chuva para fins não potáveis, diminuindo os danos causados pela erosão										
hídrica e principalmente contribuindo com a diminuição do escoamento superficial.										
20. Exercer as atividades de fiscalização e monitoramento de lançamentos indevidos no sistema de										
drenagem urbana através e quando identificados, exigir a adequação à legislação e às normas										
vigentes, especialmente quando da solicitação de alvará de reforma ou ampliação da edificação										
21. Criar normas, definindo critérios e outros dispositivos relativos ao setor para a elaboração e										
aprovação de projetos de drenagem no município. Manter rigor na análise técnica e na fiscalização										
da implantação dos projetos; adequar a legislação de parcelamento do solo para que todos os				y#*						
loteamentos mantenham as vazões e as condições de escoamento preexistentes, reservando										
também faixas sanitárias quando pertinente										
22. Valorizar a permeabilidade do solo e a retenção das águas pluviais nas obras públicas, praças										
e calçadas										
23. Manter permanente fiscalização para evitar a ocupação ilegal de áreas inadequadas para uso										
urbano, por apresentarem elevado risco, tais como várzeas, margens de retenção de sedimentos,										
áreas de acomodação de águas, margens de córregos e arroios, áreas de uso futuro previsto para										
componentes de drenagem urbana, entre outras										
24. Estabelecer rotinas de manutenções periódicas e preventivas para todos os componentes dos	1 200 00	1 200 00	1 200 00	1 200 00	1 200 00	1 200 00	1 200 00	1 200 00	1 200 00	1 200 00
	1.200,00 84.700	1.200,00 628.300	1.200,00 585.300	1.200,00 1.180.050	1.200,00 275,800	1.200,00 12.700	1.200,00	1.200,00 7.950	1.200,00	1.200,00 3.200

Tabela 99: Cronograma de metas para o sistema de drenagem e manejo de águas pluviais urbana - Ano 11 ao Ano 20.

Tabela 99: Cronograma de metas para o sistema de drenagem e manejo de águas pl											
Metas Metas	Ano 11	An	o 12	Ano 13	Ano 14	Ano 15	Ano 16	Ano 17	Ano 18	Ano 19	Ano 20
Elaborar o cadastro técnico digitalizado da malha de drenagem e seus acessórios											
2. Treinar o pessoal local para a manutenção e atualização contínua do cadastro técnico da malha de											
drenagem											
3. Elaborar Plano Diretor de Drenagem Urbana detalhando as soluções globais e localizadas, métodos											
construtivos e serviços a executar com o orçamento do custo das obras necessárias											
4. Elaborar projetos técnicos necessários para as áreas-problema descritas nesta revisão por nível de											
prioridade											
5. Elaborar projetos para captação de recursos											
6. Realizar intervenções na AP-01 – Rua Vicente Lemos das Neves, Avenida Governador Ivo Silveira,											
Rua José Fasolo e Rua Osório de Oliveira Vargas											
7. Realizar intervenções na AP-11 - Rua Rosalino Rodrigues e Avenida Governador Ivo Silveira											
8. Realizar intervenções na AP-05 – Avenida Governador Ivo Silveira com a Marli de Gregori											
9. Realizar intervenções na AP-08 – Rua Neri Guareski		4.7	' 50				4.750				4.750
10. Realizar intervenções na AP-06 – Rua Lindo Tebaldi											
11. Realizar intervenções na AP-10 – Rua Menino Deus esquina com a Rua Santa Maria											
12. Realizar intervenções na AP-03 – Avenida Santo Antônio											
13. Realizar intervenções na AP-04- Rua João Galeazzi, Rua Luiz Guareski e Avenida Governador Ivo											
Silveira											
14. Realizar intervenções na AP-09 – Rua da Paz											
15. Realizar intervenções na AP-02 – SC 473 próximo à Rua Santa Catarina											
16. Realizar intervenções na AP-07 – Rua Santo Antônio											
17. Desenvolver programas permanentes e ações de educação ambiental para a divulgação e a											
sensibilização dos efeitos da impermeabilização e de incentivo à permeabilidade, dos conceitos de	2.000	2.	000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
drenagem sustentável e do adequado uso do sistema de drenagem urbana											
18. Estudar a implementação da cobrança pelo serviço público de drenagem e manejo de águas pluviais											
urbanas de acordo com a Lei municipal nº 68/2011											
19. Regulamentar a previsão de instalação de cisternas para as novas edificações, permitindo a											
utilização de água da chuva para fins não potáveis, diminuindo os danos causados pela erosão hídrica											
e principalmente contribuindo com a diminuição do escoamento superficial.		7									
20. Exercer as atividades de fiscalização e monitoramento de lançamentos indevidos no sistema de											
drenagem urbana através e quando identificados, exigir a adequação à legislação e às normas vigentes,											
especialmente quando da solicitação de alvará de reforma ou ampliação da edificação											
21. Criar normas, definindo critérios e outros dispositivos relativos ao setor para a elaboração e	_										
aprovação de projetos de drenagem no município. Manter rigor na análise técnica e na fiscalização da											
implantação dos projetos; adequar a legislação de parcelamento do solo para que todos os loteamentos											
mantenham as vazões e as condições de escoamento preexistentes, reservando também faixas											
sanitárias quando pertinente											
22. Valorizar a permeabilidade do solo e a retenção das águas pluviais nas obras públicas, praças e											
calçadas											
23. Manter permanente fiscalização para evitar a ocupação ilegal de áreas inadequadas para uso urbano,											
por apresentarem elevado risco, tais como várzeas, margens de retenção de sedimentos, áreas de											
acomodação de águas, margens de córregos e arroios, áreas de uso futuro previsto para componentes											
de drenagem urbana, entre outras											
24. Estabelecer rotinas de manutenções periódicas e preventivas para todos os componentes dos	1.200	4	200	1.200	1.200	1.200	1.200	1.200	1.200	1.200	1.200
sistemas de drenagem, destacando a limpeza de redes, travessias e bocas de lobo	1.200	1	200	1.200	1.200	1.200	1.200	1.200	1.200	1.200	1.200
TOTAL GERAL DOS INVESTIMENTOS (R\$)		3.200 7.9	50	3.200	3.200	3.200	7.950	3.200	3.200	3.200	7.950

Tabela 100: Resumo Investimentos Manejo de Águas Pluviais e Drenagem Urbana.

Tabela 100: Resumo Investimentos Manejo de Aguas Pluviais e Drenagem Urb	
Metas Metas	Investimento (R\$)
Elaborar o cadastro técnico digitalizado da malha de drenagem e seus acessórios	50.000,00
2. Treinar o pessoal local para a manutenção e atualização contínua do cadastro técnico da malha de drenagem	-
3. Elaborar Plano Diretor de Drenagem Urbana detalhando as soluções globais e localizadas, métodos construtivos e serviços a executar com o orçamento do	150.000,00
custo das obras necessárias 4. Elaborar projetos técnicos necessários para as áreas-problema descritas	148.100,00
nesta revisão por nível de prioridade 5. Elaborar projetos para captação de recursos	-
6. Realizar intervenções na AP-01 – Rua Vicente Lemos das Neves, Avenida Governador Ivo Silveira, Rua José Fasolo e Rua Osório de Oliveira Vargas	454.700,00
7. Realizar intervenções na AP-11 - Rua Rosalino Rodrigues e Avenida Governador Ivo Silveira	170.400,00
8. Realizar intervenções na AP-05 – Avenida Governador Ivo Silveira com a Marli de Gregori	315.500,00
9. Realizar intervenções na AP-08 – Rua Neri Guareski	23.750,00
10. Realizar intervenções na AP-06 – Rua Lindo Tebaldi	1.151.300,00
11. Realizar intervenções na AP-10 – Rua Menino Deus esquina com a Rua Santa Maria	20.800,00
12. Realizar intervenções na AP-03 – Avenida Santo Antônio	90.200,00
13. Realizar intervenções na AP-04- Rua João Galeazzi, Rua Luiz Guareski e Avenida Governador Ivo Silveira	182.400,00
14. Realizar monitoramento na AP-09 – Rua da Paz 15. Realizar intervenções na AP-02 – SC 473 próximo à Rua Santa Catarina	4.750,00
16. Realizar intervenções na AP-02 – 30 473 proximo a Rua Santa Catarilla 16. Realizar intervenções na AP-07 – Rua Santo Antônio	4.750,00
17. Desenvolver programas permanentes e ações de educação ambiental para a divulgação e a sensibilização dos efeitos da impermeabilização e de incentivo à permeabilidade, dos conceitos de drenagem sustentável e do adequado uso do sistema de drenagem urbana	40.000
18. Estudar a implementação da cobrança pelo serviço público de drenagem e manejo de águas pluviais urbanas de acordo com a Lei municipal nº 68/2011	-
19. Regulamentar a previsão de instalação de cisternas para as novas edificações, permitindo a utilização de água da chuva para fins não potáveis, diminuindo os danos causados pela erosão hídrica e principalmente contribuindo com a diminuição do escoamento superficial.	<u> </u>
20. Exercer as atividades de fiscalização e monitoramento de lançamentos indevidos no sistema de drenagem urbana através e quando identificados, exigir a adequação à legislação e às normas vigentes, especialmente quando da solicitação de alvará de reforma ou ampliação da edificação	
21. Criar normas, definindo critérios e outros dispositivos relativos ao setor para a elaboração e aprovação de projetos de drenagem no município. Manter rigor na análise técnica e na fiscalização da implantação dos projetos; adequar	
a legislação de parcelamento do solo para que todos os loteamentos mantenham as vazões e as condições de escoamento preexistentes, reservando também faixas sanitárias quando pertinente	-
22. Valorizar a permeabilidade do solo e a retenção das águas pluviais nas obras públicas, praças e calçadas	-
23. Manter permanente fiscalização para evitar a ocupação ilegal de áreas inadequadas para uso urbano, por apresentarem elevado risco, tais como várzeas, margens de retenção de sedimentos, áreas de acomodação de águas, margens de córregos e arroios, áreas de uso futuro previsto para componentes de drenagem urbana, entre outras	-
24. Estabelecer rotinas de manutenções periódicas e preventivas para todos os componentes dos sistemas de drenagem, destacando a limpeza de redes, travessias e bocas de lobo	24.000
TOTAL GERAL DOS INVESTIMENTOS (R\$)	2.830.650,00

12 VIABILIDADE FINANCEIRA DOS SISTEMAS

A Lei Federal nº 11.445/2007 traz como princípio a universalização do atendimento dos serviços de saneamento básico, no entanto, esta também reverbera a necessidade dos serviços serem autossustentáveis economicamente. Assim, a avaliação da sustentabilidade financeira na prestação dos serviços de saneamento básico é ponto chave a ser considerado nas decisões estratégicas dos gestores, de modo a garantir um serviço de qualidade, sem comprometer a saúde financeira dos prestadores de serviços e do usuário contribuinte.

Para a prestação dos serviços de abastecimento de água e esgotamento sanitário foram avaliados dois cenários, em conjunto, para análise da sustentabilidade do planejamento proposto no horizonte de 20 anos desta revisão:

- Cenário 1: Investimentos no SAA e SES integralmente realizados pelo prestador de serviço (Tabela 101), com implantação gradual conforme projeção apresentada no item 8.4.1;
- Cenário 2: Investimentos no SAA pelo prestador de serviço e 50% dos investimentos no SES realizados através de recursos não onerosos (Tabela 102), com implantação inicial acelerada;

As projeções de custos e despesas operacionais (OPEX) e as receitas diretas e indiretas do SAA, que alimentam esses modelos, tiveram como base informações fornecidas pela CASAN referentes ao ano de 2018 e 2019, cujos valores foram levados à base de referência de junho/2021. Para a estimativa de OPEX, foi considerado o somatório de despesas com pessoal, materiais e serviços de terceiros. Adotou-se ainda, um índice de 1,5% para perdas por inadimplência e 14,6% relativo a despesas gerais e tributárias, incidindo sobre a receita. O faturamento foi projetado considerando o padrão de consumo observado através dos histogramas de 2018 e 2019 e a política tarifária vigente adotada pela CASAN.

Já para o SES, em virtude da ausência de projetos, os custos e despesas foram estimados através de sistemas paradigma, também levados à base de junho/2021 e considerando a cobertura apresentada no item 8.4.1. Ressalta-se que nesta análise de viabilidade foi adotada uma taxa de desconto de 6% a.a. que tem como objetivo proteger o prestador de serviço quanto à imprevistos, tais como

investimentos emergenciais e ainda dar uma margem de segurança nos investimentos previstos nesta revisão, visto que os investimentos carecem de bases mais sólidas (projetos de engenharia). Nesta análise de viabilidade os valores de CAPEX apresentados não incluem as os investimentos na área rural.

Tabela 101: Cenário 1 – Investimento SES+SAA -Prestador dos serviços.

	01. 001						aco oci viç	00.								
ANO CONCESSÃO	CAPEX SAA	CAPEX SES	CAPEX SAA + SES	RECURSOS NÃO ONEROSOS	DIRETO DO	FATURAMENTO DIRETO DO SERVIÇO SES	SOMA DOS FATURAMENTOS DIRETOS DOS SERVIÇOS	OUTRAS RECEITAS SAA +SES	PERDAS POR INADIMPLÊNCIA	IMPOSTOS DIRETOS	RECEITA LÍQUIDA	OPEX SAA	OPEX SES	OPEX DOS SISTEMAS	RESULTADO LÍQUIDO	FCL
1	499.400	0	499.400		2.326.168	0,00	2.326.168	46.523	34.893	341.319	1.996.480	1.732.815	0,00	1.732.815	263.665	-235.735
2	785.800	390.000	1.175.800		2.389.518	0,00	2.389.518	47.790	35.843	350.614	2.050.852	1.746.893	0,00	1.746.893	303.959	-871.841
3	363.500	9.382.100	9.745.600		2.453.380	0	2.453.380	49.068	36.801	359.985	2.105.663	1.760.784	0,00	1.760.784	344.879	-9.400.721
4	367.500	4.115.100	4.482.600		2.517.748	238.564	2.756.312	55.126	41.345	404.434	2.365.660	1.774.489	387.814,98	2.162.304	203.356	-4.279.244
5	358.400	2.987.400	3.345.800		2.582.882	489.911	3.072.793	61.456	46.092	450.871	2.637.286	1.788.117	433.796,38	2.221.913	415.373	-2.930.427
6	428.600	2.356.200	2.784.800		2.648.512	754.188	3.402.700	68.054	51.040	499.278	2.920.435	1.900.179	487.034,58	2.387.213	533.222	-2.251.578
7	548.100	2.326.400	2.874.500		2.714.628	1.031.542	3.746.170	74.923	56.193	549.676	3.215.226	1.913.443	513.182,70	2.426.625	788.600	-2.085.900
8	360.600	2.603.300	2.963.900		2.781.502	1.322.254	4.103.756	82.075	61.556	602.144	3.522.131	1.926.633	540.146,69	2.466.780	1.055.351	-1.908.549
9	341.700	2.450.300	2.792.000		2.848.854	1.626.382	4.475.236	89.505	67.129	656.651	3.840.961	1.939.644	680.154,16	2.619.799	1.221.162	-1.570.838
10	332.000	2.780.700	3.112.700		2.916.676	1.944.065	4.860.741	97.215	72.911	713.216	4.171.828	1.952.479	708.710,63	2.661.190	1.510.638	-1.602.062
11	379.200	2.865.500	3.244.700		2.985.245	2.275.665	5.260.910	105.218	78.914	771.933	4.515.281	1.965.243	811.037,82	2.776.281	1.739.000	-1.505.700
12	373.900	776.600	1.150.500		3.053.987	2.620.891	5.674.878	113.498	85.123	832.675	4.870.577	1.977.729	845.450,58	2.823.179	2.047.398	896.898
13	346.800	472.400	819.200		3.123.756	2.712.389	5.836.145	116.723	87.542	856.338	5.008.988	1.990.250	855.549,06	2.845.799	2.163.189	1.343.989
14	349.700	739.100	1.088.800		3.193.683	2.805.404	5.999.087	119.982	89.986	880.246	5.148.837	2.002.496	861.923,32	2.864.419	2.284.418	1.195.618
15	340.600	635.000	975.600		3.264.343	2.900.475	6.164.818	123.296	92.472	904.564	5.291.079	2.014.675	876.961,78	2.891.637	2.399.442	1.423.842
16	448.500	436.500	885.000		3.335.439	2.997.343	6.332.782	126.656	94.992	929.209	5.435.237	2.026.686	887.762,34	2.914.448	2.520.788	1.635.788
17	379.000	343.200	722.200		3.407.262	3.096.300	6.503.562	130.071	97.553	954.268	5.581.812	2.038.632	894.349,52	2.932.982	2.648.830	1.926.630
18	376.400	220.300	596.700		3.479.510	3.163.775	6.643.285	132.866	99.649	974.769	5.701.732	2.050.412	899.133,45	2.949.546	2.752.187	2.155.487
19	357.600	360.600	718.200		3.552.177	3.231.647	6.783.824	135.676	101.757	995.390	5.822.353	2.062.027	902.819,51	2.964.847	2.857.506	2.139.306
20	372.900	6.000	378.900		3.596.031	3.273.308	6.869.339	137.387	103.040	1.007.938	5.895.748	2.076.792	907.532,99	2.984.325	2.911.423	2.532.523
Total	8.110.200	36.246.700	44.356.900	0	59.171.300	36.484.103	95.655.403	1.913.108	1.434.831	14.035.517	82.098.162	38.640.417	12.493.360	51.133.777	30.964.385	-13.392.515

Taxa de desconto = 6% V.P.L = R\$ -16.377.143,00

Tabela 102: Cenário 2 – Investimento SAA (Prestador dos serviços) + 50% dos Investimentos SES através de recursos não onerosos.

ANO CONCESSÃO	CAPEX SAA	CAPEX SES	CAPEX SAA + SES	RECURSOS NÃO ONEROSOS	FATURAMENTO DIRETO DO SERVIÇO SAA	FATURAMENTO DIRETO DO SERVIÇO SES	SOMA DOS FATURAMENTOS DIRETOS DOS SERVIÇOS	OUTRAS RECEITAS SAA +SES	PERDAS POR INADIMPLÊNCIA	IMPOSTOS DIRETOS	RECEITA LÍQUIDA	OPEX SAA	OPEX SES	OPEX DOS SISTEMAS	RESULTADO LÍQUIDO	FCL
1	499.400	0	499.400		2.326.168	0,00	2.326.168	46.523	34.893	341.319	1.996.480	1.732.815	0,00	1.732.815	263.665	-235.735
2	785.800	390.000	1.175.800	390.000	2.389.518	0,00	2.389.518	47.790	35.843	350.614	2.050.852	1.746.893	0,00	1.746.893	303.959	-481.841
3	363.500	9.600.700	9.964.200	9.600.700	2.453.380	0,00	2.453.380	49.068	36.801	359.985	2.105.663	1.760.784	0,00	1.760.784	344.879	-18.621
4	367.500	8.500.100	8.867.600	8.132.650	2.517.748	262.421	2.780.168	55.603	41.703	407.934	2.386.135	1.774.489	389.569,31	2.164.058	222.077	-512.873
5	358.400	1.771.200	2.129.600		2.582.882	930.831	3.513.713	70.274	52.706	515.567	3.015.714	1.788.117	495.685,33	2.283.802	731.912	1.397.688
6	428.600	1.802.700	2.231.300		2.648.512	1.142.057	3.790.568	75.811	56.859	556.190	3.253.331	1.900.179	514.965,04	2.415.144	838.187	1.393.113
7	548.100	1.822.000	2.370.100		2.714.628	1.363.109	4.077.738	81.555	61.166	598.326	3.499.800	1.913.443	534.825,96	2.448.269	1.051.531	- 1.318.569
8	360.600	2.038.600	2.399.200		2.781.502	1.594.260	4.375.762	87.515	65.636	642.056	3.755.586	1.926.633	669.853,50	2.596.486	1.159.099	- 1.240.101
9	341.700	2.061.600	2.403.300		2.848.854	1.835.488	4.684.342	93.687	70.265	687.333	4.020.430	1.939.644	700.003,01	2.639.647	1.380.783	- 1.022.517
10	332.000	1.975.900	2.307.900		2.916.676	2.086.894	5.003.569	100.071	75.054	734.174	4.294.413	1.952.479	725.369,59	2.677.849	1.616.565	-691.335
11	379.200	2.301.900	2.681.100		2.985.245	2.348.812	5.334.056	106.681	80.011	782.666	4.578.060	1.965.243	817.861,20	2.783.104	1.794.956	-886.144
12	373.900	625.300	999.200		3.053.987	2.620.891	5.674.878	113.498	85.123	832.675	4.870.577	1.977.729	845.450,58	2.823.179	2.047.398	1.048.198
13	346.800	616.000	962.800		3.123.756	2.712.389	5.836.145	116.723	87.542	856.338	5.008.988	1.990.250	853.402,86	2.843.653	2.165.336	1.202.536
14	349.700	739.100	1.088.800		3.193.683	2.805.404	5.999.088	119.982	89.986	880.246	5.148.837	2.002.496	861.923,32	2.864.419	2.284.418	1.195.618
15	340.600	635.000	975.600		3.264.343	2.900.475	6.164.818	123.296	92.472	904.564	5.291.078	2.014.675	876.961,78	2.891.637	2.399.441	1.423.841
16	448.500	436.500	885.000		3.335.439	2.997.343	6.332.782	126.656	94.992	929.209	5.435.236	2.026.686	887.762,34	2.914.448	2.520.788	1.635.788
17	379.000	343.200	722.200		3.407.262	3.096.300	6.503.562	130.071	97.553	954.268	5.581.812	2.038.632	894.349,52	2.932.982	2.648.830	1.926.630
18	376.400	220.300	596.700		3.479.510	3.163.775	6.643.285	132.866	99.649	974.769	5.701.732	2.050.412	899.133,45	2.949.546	2.752.186	2.155.486
19	357.600	360.600	718.200		3.552.177	3.231.647	6.783.823	135.676	101.757	995.390	5.822.352	2.062.027	902.819,51	2.964.847	2.857.506	2.139.306
20	372.900	6.000	378.900		3.596.031	3.273.308	6.869.339	137.387	103.040	1.007.938	5.895.747	2.076.792	907.532,99	2.984.325	2.911.423	2.532.523
Total	8.110.200	36.246.700	44.356.900	18.123.350	59.171.300	38.365.402	97.536.702	1.950.734	1.463.051	14.311.560	83.712.825	38.640.417	12.777.469	51.417.886	32.294.939	6.061.389

Taxa de desconto = 6%

V.P.L = R\$ -417.360,00

Observa-se, a partir Tabela 101 (Cenário 01), que dentro de um horizonte de 20 anos, mesmo considerando uma implantação gradual do sistema de esgotamento sanitário, não há viabilidade econômica para execução da meta de universalização estipulada para o serviço de e esgotamento sanitário pela Lei nº 14.026/2020 ("Novo Marco do Saneamento"). O Cenário 02 (Tabela 102), mesmo considerando a disponibilidade de recursos não onerosos para subsidiar 50% dos custos de implantação do sistema de esgotamento sanitário do Município, também não apresenta sustentabilidade econômica para o prestador de serviço em um horizonte de 20 anos. Períodos superiores a 20 anos deverão ser avaliados durante o processo de concessão dos serviços para avaliar a viabilidade de atendimento as novas metas para o esgotamento sanitário.

Para os serviços de limpeza urbana e manejo dos resíduos sólidos, verificouse que os recursos provenientes da taxa de coleta de resíduos são insuficientes para cobrir os custos operacionais informados para prestação deste serviço, cobrindo apenas 64,35% dos custos totais em 2020 (Tabela 103).

Tabela 103: Arrecadação x Despesas (2020).

Serviço	Valor total(R\$)
Despesas coleta de resíduos domiciliares	- 526.078,06
Receitas	+ 338.518,06
Total	- 187.560,00

Quando considerados os custos totais do município para a prestação dos serviços públicos de limpeza urbana e manejo de resíduos sólidos, a autossuficiência desses serviços é ainda mais comprometida, com arrecadação específica correspondendo a apenas 43,80%. Portanto, se faz necessária a realização de estudo para revisão da taxa de coleta.

Em relação aos serviços de Drenagem e Manejo de Águas Pluviais, apesar da previsão legal estar vigente através da Lei nº 68/2011, a cobrança pelo serviço de drenagem não foi implementada. Assim, os recursos para prestação destes serviços estão condicionados à disponibilidade de dotação orçamentária do município, a eventuais recursos de programas federais ou estaduais e disponibilidade de recursos não onerosos. A falta de recursos próprios compromete a implantação de estruturas adequadas e a gestão dos sistemas de drenagem urbana, uma vez que, normalmente, estes implicam na mobilização de quantidades significativas de recursos financeiros.

Embora a possibilidade de uma cobrança individualizada dos serviços seja um tema complexo tanto no âmbito jurídico, como político, é importante que ele seja discutido e amadurecido, de modo a garantir a esse sistema sustentabilidade financeira e independência.

13 AÇÕES DE RESPOSTA A EMERGÊNCIAS E CONTINGÊNCIAS

Os eventos de emergência são aqueles resultantes de fenômenos da natureza ou imprevistos que fogem do controle do prestador de serviços e podem causar grandes transtornos à toda a comunidade e aos sistemas afetados. Neste sentido, as intervenções de emergência e contingência procuram destacar as estruturas disponíveis e estabelecer as formas de atuação dos órgãos operadores, tanto preventiva quanto corretivamente, para assim maximizar o grau de segurança e possibilitar a continuidade das operações.

Estas ações buscam conferir maior segurança e confiabilidade operacional aos sistemas, reduzindo os impactos resultantes da ocorrência de eventos como sinistros, acidentes e desastres naturais, ou outras ocorrências adversas e de circunstâncias não controláveis.

Em caso de ocorrências atípicas, que excedam a capacidade de atendimento local, os operadores deverão dispor de estruturas de apoio (mão de obra, materiais e equipamentos), de manutenção estratégica, das áreas de gestão operacional, de controle de qualidade, de suporte como comunicação, suprimentos e tecnologias de informação, dentre outras, visando possibilitar que os sistemas tenham a segurança e a continuidade operacional devida.

As ações de emergência possuem um papel mitigador, uma vez que irão corrigir as consequências dos eventos. Já as ações de contingências são as que visam prevenir o sistema contra os efeitos de ocorrências ou situações indesejadas sob algum controle do prestador.

Na Tabela 104 foram listados os pontos vulneráveis dos sistemas de abastecimento de água, esgotamento sanitário, manejo de resíduos sólidos e drenagem urbana, os eventos adversos que podem ocorrer e as medidas emergenciais e de contingência a serem adotadas.

É importante que seja mantido, pelos operadores dos sistemas, histórico de situações emergenciais enfrentadas e a avaliação crítica quanto a eficiência das ações realizadas, esse histórico deverá ser utilizado como base para a revisão e aperfeiçoamento deste plano.

Tabela 104: Ações de resposta a emergências e contingências.

	Eventos Adversos													
	Pontos vulneráveis	Inundação/ Alagamento/ Enxurrada	Vandalismo	Incêndio	Estiagem	Rompimento	Falta de insumos	Falha mecânica ou elétrica	Contaminação Acidental	Falta de Energia	Entupimento/ obstrução	Represamento	Greve	Vias Temporariamente interditadas
	Captação (poço)		1 -4-15		1 – 4-13			5	3 - 5 - 6 - 7-8- 13	4 -13-16-21	5			18-19
	Tratamento		1 -4-15			1-4-5-13	3-4-11-13	3-5	3 - 5 - 6 - 7-8- 13	4-13-16-21	\ \		4-11-20	18-19
_ [ERAT/Booster	9	1 -4-13-15					1-3-4-5-13		4 -13 -16-21				
SAA	Adutora de Água Tratada		1 - 2 -4- 7 - 15			3 - 4 - 5 -6- 7 - 8-13-17								
	Reservatórios		1-4-15			1-4- 5-13-19			3 -4- 5 - 6 - 7 - 8- 9-13					
	Redes Grande Diâmetro		1 - 2 -4- 7 - 15			2 - 4 - 5 - 6- 7 -8 -9-17			200					
	Rede Coletora		9-15			5-8 -9-14					5			
SES	Interceptores		9-14-15			5 -8-9-14					5			
N N	Elevatórias	9	9-15			5-9		5		8 -16-21	5			
	ETE	9	9-14-15			5-8-14	11	5		8 -16-21			20	
	Coleta e transporte	9 -10	15						8-14	1/4 10			10 -11 -20	9-10-17-18
SO	Triagem			14										
RESÍDUOS	Disposição final													9
Ä	Limpeza Urbana	9-12		14									20	9-10-17-18
	Aterro Sanitário		15	14					8-14				9-10-20	18-19
ΕΨ	Macrodrenagem	10 - 17 - 18 -19	5-15			17 - 18-19					10 - 17 - 18 -19	10 - 17 - 18 -19		17 - 18
AAG SAN	Microdrenagem	10 - 17 - 18- 19	5-15			17 - 18-19					10 - 17 - 18 -19	10 - 17 - 18 -19		17 - 18
DRENAGEM	Boca de Lobo	10 - 17 - 18- 19	5-15			17 - 18-19					10 - 17 - 18 -19	5 - 10 - 17 - 18		17 - 18

	Medi	das Em	ergenciais
1	Manobras de redes para atendimento de atividades essenciais.	12	Reforço de equipe para retirada de lama ou sedimentos das vias e dispositivos de drenagem.
2	Manobras de rede para isolamento da perda.	13	Apoio com carros pipa – fontes alternativas
3	Interrupção do abastecimento até conclusão de medidas saneadoras.	14	Acionar Polícia Ambiental e/ou Corpo de Bombeiros.
4	Acionamento dos meios de comunicação para aviso de racionamento à população.	15	Comunicação à Polícia.
5	Acionamento emergencial da manutenção.	16	Acionar Concessionária de energia para atendimento preferencial.
6	Acionamento dos meios de comunicação para alerta de água imprópria para consumo.	17	Acionamento do órgão de trânsito para sinalizações necessárias e dos meios de comunicação para alerta do bloqueio.
7	Realizar descarga de rede.	18	Acionamento da Secretaria de Obras (manutenção e/ou limpeza).
8	Informar o órgão ambiental competente e/ou Vigilância Sanitária.	19	Acionamento emergencial da manutenção da Defesa Civil e Corpo de Bombeiros se for o caso.
9	Paralisação temporária.	20	Contratação de empresa especializada em caráter emergencial.
10	Acionamento dos meios de comunicação para aviso à população para evitar depósito de resíduo nas ruas.	21	Utilização de fonte alternativa de energia, geradores próprios ou locados.
11	Busca de apoio nos municípios vizinhos.		

14 INTEGRAÇÃO COM POLÍTICAS E PLANOS NACIONAIS/ESTADUAIS/MUNICIPAIS

O desenvolvimento da revisão do Plano de Saneamento Básico de Irani buscou a compatibilização deste com as Políticas e Planos Nacionais, Estaduais e Municipais buscando sempre o cumprimento da Legislação, e das normas e resoluções vigentes, ressaltando os princípios fundamentais da Política Nacional de Saneamento Básico – PNSB.

A integração do PMSB com a PNSB apresenta como principal indicador o planejamento da universalização que garante o atendimento de 99% da população com água potável e de 90% da população com coleta e tratamento de esgotos até 31 de dezembro de 2033, assim como a integralidade, metas de redução de perdas e de melhoria dos processos de tratamento.

Apesar disso, devem ser discutidos e revistos os dispositivos legais municipais que tratam das soluções de esgotamento sanitário, devendo ser consideradas situações especiais como as soleiras negativas e as áreas onde o solo possui baixa permeabilidade, de modo a garantir o uso de técnicas adequadas a essas situações e consequentemente a universalização. Para os novos parcelamentos do solo, pode-se avaliar a exigência de corredores sanitários para os fundos dos lotes com soleira baixa e em talvegues, medida que asseguraria uma adequada coleta e transporte de esgotos sanitários para estas unidades, além de facilitar a manutenção dos componentes deste sistema. Essa medida pode também ser aplicada ao sistema de drenagem urbana e manejo de águas pluviais, garantindo a integralidade dos serviços e universalização ao acesso.

É possível compatibilizar o PMSB com o Plano Estadual de Recursos Hídricos - PERH, onde as ações relacionadas a recuperação ambiental de cursos d'água e fiscalização de ocupações irregulares, indicadas no PMSB se integram com o PERH.

Relacionado a resíduos sólidos, o PMSB articula-se com a Política Nacional de Resíduos Sólidos - PNRS e com a PNSB, principalmente no que se refere a regularidade, continuidade, funcionalidade e universalização da prestação dos serviços públicos de limpeza urbana e de manejo de resíduos sólidos, buscando atingir a sustentabilidade econômico-financeira.

15 REGULAÇÃO

A Agência Reguladora Intermunicipal de Saneamento (ARIS) é a responsável, desde dezembro de 2009, pela regulação dos serviços de saneamento básico de Irani, conforme Lei municipal nº 1.512 de 18 dezembro de 2009, que autorizou o município a ingressar nesse Consórcio Público.

Conforme o Decreto Federal nº 7.217/2010, que regulamentou a Lei Federal nº 11.445/2007, em seu Art. 27, os objetivos da regulação são:

 I - estabelecer padrões e normas para a adequada prestação dos serviços e para a satisfação dos usuários;

II - garantir o cumprimento das condições e metas estabelecidas;

III - prevenir e reprimir o abuso do poder econômico, ressalvada a competência dos órgãos integrantes do sistema nacional de defesa da concorrência; e

IV - definir tarifas e outros preços públicos que assegurem tanto o equilíbrio econômico-financeiro dos contratos, quanto à modicidade tarifária e de outros preços públicos, mediante mecanismos que induzam a eficiência e eficácia dos serviços e que permitam a apropriação social dos ganhos de produtividade.

Parágrafo único. Compreendem-se nas atividades de regulação dos serviços de saneamento básico a interpretação e a fixação de critérios para execução dos contratos e dos serviços e para correta administração de subsídios.

De acordo com a Lei Municipal nº 68/2011, a entidade reguladora e fiscalizadora dos serviços é a responsável pela verificação do cumprimento do plano de saneamento por parte dos prestadores de serviços, na forma das disposições legais, regulamentares e contratuais.

Além disso, estão entre as atribuições da agência reguladora a edição de normas relativas às dimensões técnica, econômica e social de prestação dos serviços de saneamento básico, abrangendo, pelo menos, os seguintes aspectos:

I - padrões e indicadores de qualidade da prestação dos serviços;

II - requisitos operacionais e de manutenção dos sistemas;

III - as metas progressivas de expansão e de qualidade dos serviços e os respectivos prazos;

IV - regime, estrutura e níveis tarifários, bem como os procedimentos e prazos de sua fixação, reajuste e revisão;

V - medição, faturamento e cobrança de serviços;

VI - monitoramento dos custos;

VII - avaliação da eficiência e eficácia dos serviços prestados;

VIII - plano de contas e mecanismos de informação, auditoria e certificação;

IX - subsídios tarifários e não tarifários;

X - padrões de atendimento ao público e mecanismos de participação e informação;

XI - medidas de contingências e de emergências, inclusive racionamento.

16 INSTRUMENTOS DE AVALIAÇÃO E MONITORAMENTO

A eficácia das ações previstas nesta revisão do PMSB está condicionada ao acompanhamento e avaliação sistemática destas, sendo essencial a criação de uma estrutura de gestão e a determinação de indicadores de desempenho para este fim.

16.1 ESTRUTURA DE GESTÃO DO PLANO

Para que a gestão do plano ocorra de forma eficaz e eficiente, recomenda-se que o município nomeie ao menos um técnico qualificado de seu quadro de servidores para acompanhamento deste Plano. Este deve preferencialmente fazer parte do Conselho Municipal de Saneamento Básico, de modo a facilitar a troca de informações sobre os serviços.

Como forma de aproximação do PMSB à população, sugere-se que a Ouvidoria Municipal seja utilizada para atender também os serviços de saneamento básico, funcionando como um canal permanente de registro dos problemas identificados pela população nos serviços. O técnico responsável pela gestão do PMSB deverá acompanhar e avaliar os problemas comunicados à ouvidoria, e sempre que necessário a Ouvidoria deverá informar a Agência Reguladora e o Conselho Municipal de Saneamento Básico sobre os problemas registrados.

Fazem parte das atribuições da estrutura gestora do Plano de Saneamento Básico:

- A supervisão dos programas, projetos e ações previstas no PMSB, mantendo informados o Conselho Municipal de Saneamento, as esferas superiores da administração municipal e às entidades ligadas ao saneamento básico municipal a respeito do seu andamento.
- O acompanhamento e o registro das aplicações de recursos do Fundo Municipal de Saneamento Ambiental, de modo a assegurar a transparência e o controle social, principalmente no que compete ao Conselho Municipal de Saneamento.
 - O apoio a elaboração de propostas orçamentárias.
- A organização de sistema de informação para acompanhar os indicadores de gestão e subsidiar a avaliação dos operadores e prestadores dos serviços de saneamento básico, bem como as atualizações futuras, mais fundamentadas, do

PMSB. O Sistema de Informações deverá atender ao Art. 9º da Lei Federal nº 11.445/2007 e ao Art. 23º do Decreto nº 7.217/2010.

Garantir fácil acesso para o controle social do desempenho na gestão do
 Plano e na prestação dos serviços, com informações de interesse ao conhecimento
 da qualidade e cobertura dos serviços, dos resultados dos programas, projetos e
 ações propostos no PMSB.

Sugere-se ainda a disponibilização periódica de pesquisas de satisfação com os usuários dos serviços de saneamento básico, estas funcionarão como importantes ferramentas de avaliação da eficácia das ações de saneamento propostas neste PMSB.

16.2 INDICADORES SETORIAIS

Os indicadores permitem o acompanhamento da prestação dos serviços, sistematizando a avaliação da eficiência de operação dos sistemas e do cumprimento das metas.

A Agência Reguladora Intermunicipal de Saneamento – ARIS estabeleceu, através da Resolução Normativa nº 08/2016 (Alterada pela Resolução Normativa nº 11/2017), os indicadores de desempenho a serem utilizados por ela para fiscalização e avaliação do desempenho da prestação dos serviços públicos de abastecimento de água e esgotamento sanitário nos municípios regulados. Fazem parte desses indicadores informação estabelecidas como compulsória pelo Sistema Nacional de Informações em Saneamento Básico – SNIS e outros indicadores considerados relevantes para fiscalização dos serviços regulados.

Na determinação dos indicadores, a ARIS considerou a necessidade de estabelecimento de padrões uniformes, o que traz como vantagem a possibilidade de comparação entre sistemas semelhantes, motivo pelo qual optou-se pela adoção destes indicadores para acompanhamento da revisão deste plano. Os indicadores da ARIS e a metodologia de mensuração podem ser acessados no site da ARIS.

Para drenagem urbana e manejo dos resíduos sólidos deverão ser empregados os mesmos indicadores utilizados no Diagnóstico dos Serviços de Águas Pluviais Urbanas e no Diagnóstico do manejo de Resíduos Sólidos Urbanos, respectivamente, do Sistema Nacional de Informações em Saneamento Básico – SNIS.

Sugere-se que avaliação destes indicadores, para os quatro eixos de saneamento, seja realizada trimestralmente, sendo estes dados apresentados e discutidos pelo Conselho Municipal de Saneamento Básico.

17 DIVULGAÇÃO DO PLANO

Esta revisão do Plano Municipal de Saneamento Básico deve ter ampla publicidade, tornando-o acessível à toda a população. As metas apresentadas neste PMSB deverão ser incorporadas em todos os programas da administração pública e dos prestadores de serviços, de modo que todos os agentes envolvidos concentrem seus esforços no alcance destas.

Esta revisão do PMSB deverá estar disponível para acesso no site da Prefeitura Municipal. Além disso, deverá ser divulgado regularmente o andamento das metas previstas no PMSB. Deverão ainda ser explorados todos os demais meios de comunicação à disposição da Prefeitura Municipal que possam contribuir para a publicidade dessa revisão, sendo esta uma responsabilidade prioritária da estrutura de gestão do PMSB, que deve estar muito próxima do setor de relações públicas do executivo municipal e do Conselho Municipal de Saneamento.

18 CONSIDERAÇÕES GERAIS

A revisão periódica do plano municipal de saneamento básico é uma ferramenta ativa de planejamento e gestão e não deve ultrapassar o estabelecido na Lei municipal nº 68/2011, que define prazo não superior a 4 anos para sua revisão, bem como, define que esta revisão deve ser realizada anteriormente à elaboração ou revisão do Plano Plurianual.

O processo de revisão deve assimilar o aprendizado obtido nos anos de implementação do plano anterior, com relação às metodologias de gestão e monitoramento, estratégias, soluções e ações aplicadas.

Para que esta revisão se processe em bases mais consistentes, recomendase:

- A implantação de um sistema de informações municipais com monitoramento e divulgação do Plano conforme definido na Lei e destacado nesta revisão do PMSB.
- A realização periódica de reuniões do Conselho Municipal de Saneamento Básico para avaliação da eficácia de gestão do PMSB.
- A aplicação periódica de pesquisas de satisfação dos usuários dos serviços públicos de saneamento em todo o território municipal, de forma representativa do universo de usuários.
- A revisão das projeções populacionais assim que o novo censo demográfico seja disponibilizado.
- A revisão das estimativas de investimentos assim que os projetos básicos propostos nesta revisão forem elaborados.

19 ANEXOS

- Anexo 01 Pesquisa de Satisfação.
- Anexo 02 Resposta ofício CASAN.
- Anexo 03 Relatórios ARIS.
- Anexo 04 Poços cadastrados no município CPRM SIAGAS.
- Anexo 05 Cartograma Localização Unidades SAA urbano.
- Anexo 06 Tabela de serviços e prazos CASAN.
- Anexo 07 Cartograma SES Santo Antônio.
- Anexo 08 Projeto de adequação SES Santo Antônio.
- Anexo 09 Índice de Fragilidade do Sistema IFS

20 REFERÊNCIAS BIBLIOGRÁFICAS

AMARAL, R. & RIBEIRO, R.R. Enchentes e Inundações. In: TOMINAGA, L.K; SANTORO, J; AMARAL, R. (Orgs.), **Desastres Naturais, conhecer para prevenir**. São Paulo: Instituto Geológico, p. 40-53. 2009.

ARIS. Agência Reguladora Intermunicipal de Saneamento. **Metodologia para avaliação dos indicadores de desempenho** (Revisão 01). 2017. Disponível em: https://www.aris.sc.gov.br/uploads/legislacao/5936/u-

PQ3uWgPYYF5NouKomgu9gAKtd_CS03.pdf>. Acesso em: 22 jan. 2021.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 9648: Estudos de Concepção de Sistemas de Esgoto Sanitário. Rio de Janeiro, p. 5. 1986.

BACK, Á.J. Chuvas intensas e chuva para o dimensionamento de estruturas de drenagem para o estado de Santa Catarina. (com programa HidroChuSC para cálculos). Florianópolis: Epagri, 193p. 2013.

BAPTISTA, M. B. e NASCIMENTO, N. O. **Aspectos institucionais e de financiamento dos sistemas de drenagem urbana**. RBRH – Revista Brasileira de Recursos Hídricos, Porto Alegre: ABRH, vol. 7, n° 1, p29-49. 2002.

BAPTISTA, M., NASCIMENTO N., BARRAUD, S. **Técnicas compensatórias em Drenagem Urbana**. Porto Alegre: ABRH, 266 p. 2005.

BRASIL. **Lei nº 6.766, de 19 de dezembro de 1979**. Dispõe sobre o Parcelamento do Solo Urbano e dá outras providências.

BRASIL. **Lei nº. 11.445 de 5 de janeiro de 2007**. Estabelece diretrizes nacionais para o saneamento básico; altera as Leis nº 6.766, de 19 de dezembro de 1979, 8.036, de 11 de maio de 1990, 8.666, de 21 de junho de 1993, 8.987, de 13 de fevereiro de 1995; revoga a Lei nº 6.528, de 11 de maio de 1978; e dá outras providências.

	Decreto	federal no 7	.217 de 2	1 de junh	o de 201	0 . Regular	nenta a	Lei
Federal	nº 11.445	e estabelece	diretrizes	nacionais	para o sa	neamento	básico e	dá
outras pr	ovidência	S.						

Lei Federal nº 12.527 de 18 de novembro de 2011. Regula o acesso a informações previsto no inciso XXXIII do art. 5º, no inciso II do § 3º do art. 37 e no § 2º do art. 216 da Constituição Federal; altera a Lei nº 8.112, de 11 de dezembro de 1990; revoga a Lei nº 11.111, de 5 de maio de 2005, e dispositivos da Lei nº 8.159, de 8 de janeiro de 1991; e dá outras providências.

BRASIL. Ministério das Cidades. **Guia para a elaboração de Planos Municipais de Saneamento Básico** - Brasília: Ministério das Cidades, 2011. 2ª edição. 152 p.: il.

CASAN - Companhia Catarinense de Águas e Saneamento. **Tabela de serviços CASAN**. Disponível em:

https://www.casan.com.br/ckfinder/userfiles/files/Documentos_Download/Pre%C3%A

<u>70s%20e%20Prazos%20de%20Servi%C3%A7os%20-%20Oficial%2001-11-2019.pdf</u>. Acesso em: 08 fev. 2021.

CERH, Resolução 01/2008, Conselho Estadual de Recursos Hídricos de Santa Catarina, Classificação dos corpos de água de Santa Catarina, 2008

CNES2 – Cadastro Nacional de Estabelecimentos de Saúde /DATASUS – Departamento de Informática do SUS. **Consultas: Tipos de Estabelecimentos**.

COMCAP. COMPANHIA MELHORAMENTOS DA CAPITAL. Caracterização Física dos resíduos Sólidos Urbanos de Florianópolis. Florianópolis, 2002. 119p.

CONAMA. Conselho Nacional do Meio Ambiente. Resolução CONAMA nº 237, de 19 de dezembro de 1997. Conselho Nacional de Meio Ambiente regulamenta aspectos de licenciamento ambiental.

CONAMA - Conselho Nacional do Meio Ambiente. **Resolução CONAMA nº 357**: Classificação de águas, doces, salobras e salinas do território nacional, 2005.

CONSEMA/SC. Conselho Estadual do Meio Ambiente/Santa Catarina. **Resolução CONSEMA nº 13, de 14 de dezembro 2012**. Conselho Estadual de Meio Ambiente aprova a Listagem das Atividades Consideradas Potencialmente Causadoras de Degradação Ambiental passíveis de licenciamento ambiental pela Fundação do Meio Ambiente – FATMA e a indicação do competente estudo ambiental para fins de licenciamento.

CONICELLI, B. P.; HIRATA, R. **Novos Paradigmas na Gestão das Águas Subterrâneas**. In: XIX Congresso Brasileiro de Águas Subterrâneas, 2016, Campinas. XIX Congresso Brasileiro de Águas Subterrâneas, 2016.

CPRM - Companhia de Pesquisa de Recursos Minerais. **SIAGAS - Sistema de Informações de Águas Subterrâneas**. Disponível em: http://siagasweb.cprm.gov.br/layout/pesquisa_complexa.php. Acesso em: dez. 2020.

DAEE/CETESB (1980). Drenagem urbana. 2ª ed., São Paulo, SP.

DATASUS – Departamento de Informática do SUS. **TABNET: Epidemiológicas e Morbidade: Doenças e agravos de notificação – De 2007 em diante (SINAM)**.

DCSBC – DEFESA CIVIL DE SÃO BERNARDO DO CAMPO. (2011). **Enchente, inundação, alagamento ou enxurrada?** Disponível em: < http://dcsbcsp.blogspot.com/2011/06/enchente-inundacao-ou-alagamento.html> Acesso em: 05 de fevereiro de 2018.

Histórico

do

IRANI.

FORGIARINI, F.R.; SOUZA, C.F.; SILVEIRA, A.L.L. da; SILVEIRA, G.L.da; TUCCI, C.E.M. **Avaliação de cenários de cobrança pela drenagem urbana de águas pluviais**. In: Simpósio Brasileiro de Recursos Hídricos, 17, 2007. São Paulo. Anais eletrônicos. SBRH, 2007. Disponível em: http://xa.yimg.com/kq/groups/24138517/89675186/name/drenagem+urbana+para+s ustentabilidade.pdf>. Acesso em: 02 de setembro de 2018.

FRESNO, D. et al. **Sistemas urbanos de drenaje sostenible (Suds)**. INCI, Caracas, v. 30, n. 5, p. 255-260, mayo 2005. Disponível em < file:///C:/Users/Cincatarina/Downloads/7245-Texto%20do%20artigo-31291-1-10-20160923.pdf>. Acesso em 23 de junho de 2021.

GALVÍNCIO, J. D., SOUSA, F. A. S., SHIRINIVASAN, V. Análise do relevo da bacia hidrográfica do açude Epitácio Pessoa. 2006. Disponível em: < https://periodicos.ufpe.br/revistas/revistageografia/article/view/228652 > Acesso em 01 de abril de 2021.

GOMES, C. A. B. M., BAPTISTA, M. B., NASCIMENTO, N. O. **Financiamento da Drenagem Urbana: Uma Reflexão**. RBRH – Revista Brasileira de Recursos Hídricos, Porto Alegre: ABRH, vol. 13, nº 3, p93-104. 2008.

GUADAGNIN, M. R. et al. Classificação, determinação e análise da composição gravimétrica dos resíduos urbanos dos municípios de Criciúma, Içara e Nova Veneza, do Estado de Santa Catarina, Brasil. **Rev. Tecnologia e Ambiente**, Universidade do Extremo Sul Catarinense, v. 7, n. 2, 2001.

IBGE - Instituto Brasileiro de Geografia e Estatística. **Contagem da População 1996.** Disponível em: https://sidra.ibge.gov.br/pesquisa/censo-demografico/contagem-1996/inicial.

 <https: sidra.ibge.gov<="" th=""><th>Censo v.br/pesquis</th><th></th><th>gráfico lemografic</th><th>2000. co/demog</th><th>Disponível rafico-2000/inicia</th><th>em: al>.</th></https:>	Censo v.br/pesquis		gráfico lemografic	2000 . co/demog	Disponível rafico-2000/inicia	em: al>.
·	Censo	Demogra	áfico c	de 201	0 . Disponível	em:
<https: sidra.ibge.gov<="" td=""><td>.br/pesquis</td><td>a/censo-c</td><td>lemografic</td><td>co/demog</td><td>rafico-2010/inici</td><td>al>.</td></https:>	.br/pesquis	a/censo-c	lemografic	co/demog	rafico-2010/inici	al>.
	Pesc	ļuisas,	2018	8.	Disponível	em:
https://cidades.ibge.g	gov.br/brasi	il/sc/irani/p	anorama	>.		
	Cidades:	Irani,	Santa	Catarina	a. Disponível	em:<
https://cidades.ibge.go agosto de 2020.	ov.br/brasil/	sc/irani/pe	squisa/23	3/25124>.	Acesso em:	26 de

de

Irani,

2014.

Município

https://www.irani.sc.gov.br/cms/pagina/ver/codMapaItem/53334.

em:

Disponível

Disponível

- IRANI. Lei Complementar nº. 89 de 24 de abril de 2018. Dispõe sobre normas relativas às edificações do município de Irani, Estado de Santa Catarina Código de edificações e dá outras providências.
- ITO, M.H.; COLOMBO, R. Resíduos volumosos no município de São Paulo: gerenciamento e valorização. urbe. **Revista Brasileira de Gestão Urbana** v. 11, 2019. Tradução. Disponível em:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S217533692019000100252&tlng=pt. Acesso em: 11 set. 2020.
- LARENTIS, D. **Problemas na drenagem urbana**. RHAMA. Disponível em http://rhama.com.br/blog/index.php/aguas-urbanas/problemas-na-drenagem-urbana/>. Acesso em 18 de outubro de 2019.
- LEOPOLD, L.B. Hydrology for Urban Planning A Guide Book on the Hydrologic Effects on Urban Land Use. USGS circ. 554, 18p. 1968.
- MARA, D.D.; SILVA, S.A. Tratamento biológico de águas residuárias: lagoas de estabilização. Rio de Janeiro; ABES,1979.
- MARIANO, M. O. H. **Avaliação da retenção de gases em camadas de cobertura de aterro de resíduos sólido**. Tese de Doutorado. Universidade Federal de Pernambuco. Programa de Pós-Graduação em Engenharia Civil, Recife. 2008. 243p. Disponível em c https://repositorio.ufpe.br/bitstream/123456789/5082/1/arquivo2289_1.pdf>. Acesso em: 09 mar. 2021.
- MARSALEK, J. The current state of sustainable urban stormwater management: an international perspective. Japan and Taiwan International Workshop on Urban Regeneration 2005 Air and Water. 2005. Disponível em: http://www.recwet.t.utokyo.ac.jp/furumailab/crest/workshop05/june9pm_1.pdf Acesso em 01 de fevereiro de 2018.
- MATTEI, G.; ESCOSTEGUY, P. A. V. Composição, gravimétrica de resíduos sólidos aterrados. **Revista Engenharia Sanitária e Ambiental**, Rio de Janeiro, v. 12, n. 3, p. 247-251, jul./set. 2007.

MINISTÉRIO DAS CIDADES. Instituto de Pesquisas Tecnológicas (IPT). Disponível em: http://planodiretor.mprs.mp.br/arquivos/mapeamento.pdf>.

Ministério do Des	senvolvimento Reg	ional. Secretar	ria Nacional de	Saneamento –	SNS.
Do SNIS ao SIN	NISA. Informações	para planejai	r o Manejo de	Resíduos Sóli	dos -
Diagnóstico	SNIS-RS.	2019.	Disponível	em	<
http://www.snis.g	jov.br/downloads/c	adernos/2019/	DO_SNIS_AO_	_SINISA_RESII	DUO
S_SOLIDOS_SN	IIS_2019.pdf>. Ace	esso em 28 de	abril de 2021.		
				_	
		. Manuais	com orientaç	cões aos ges	tores.

<

em

https://www.gov.br/mdr/pt-

br/assuntos/saneamento/webinar/manuais-com-orientacoes-aos-gestores>. Acesso em 03 de junho de 2021.

Ministério da Educação, Instituto Nacional de Estudos e Pesquisas Educacionais – INEP – Censo Educacional 2018. Disponível em http://portal.inep.gov.br/censo-escolar.

MINISTÉRIO DA SAÚDE. Portaria de Consolidação nº 5/2017. Consolidação das normas sobre as ações e os serviços de saúde do Sistema Único de Saúde. Anexo XX – Do controle e da Vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Brasil, 2017.

MINISTÉRIO DA SAÚDE. **Dados de doenças diarreicas agudas (DDA): Casos de DDA por município.** Disponível em: https://www.saude.gov.br/component/content/article/932-saude-de-a-a-z/doenca-diarreica-aguda-dda/43216-dados. Acesso em 25 de setembro de 2020.

MINISTÉRIO DA SAÚDE. **Leptospirose: o que é, causas, sintomas, tratamento, diagnóstico e prevenção**. Disponível em http://saude.gov.br/saude-de-a-z/leptospirose> Acesso em 23 de setembro de 2019.

_____. Sala de Apoio à Gestão Estratégica (SAGE). Disponível em <sage.saude.gov.br> Acesso em 23 de setembro de 2019.

NIELSEN, M. J. et al. **Medição de Água – Estratégias e Experimentações**. Optagraf Editora & Gráfica. ABES. São Paulo, 2003.

PARANÁ. Secretaria de Estado do Meio Ambiente e Recursos Hídricos. **Manual de Drenagem urbana Região Metropolitana de Curitiba- PR**, VERSÃO 1.0. Curitiba, 2002.

PINHEIRO, Igor. Descubra Tudo Sobre Asfalto Permeável. Disponível em: https://www.inovacivil.com.br/asfalto-permeavel/>. Acesso em 15 de março de 2021.

PORTAL DE TRANSPARÊNCIA. Disponível em: https://e-gov.betha.com.br/transparencia/01037-027/recursos.faces.

Prefeitura Municipal de Irani. Plano Municipal de Saneamento Básico de Irani, 2011.

PNUD, IPEA - Atlas do Desenvolvimento Humano no Brasil. Perfil – Irani, SC, 2013.

SANTA CATARINA. **Lei Ordinária Estadual nº 6.063, de 24 de maio de 1982**. Dispõe sobre o parcelamento do solo urbano, e dá outras providências.

SANTA CATARINA. Plano Estadual de Recursos Hídricos. **Relatório Temático (RT-01): Detalhamento do plano de trabalho**. Fundo Estadual de Recursos Hídrico (Fehidro), Secretaria de Estado do Desenvolvimento Sustentável (SDS). E. revisada, 152 p. 2007

SANTA CATARINA. Plano Estadual de Recursos Hídricos de Santa Catarina (PERHSC). Florianópolis, 2017.

SANTA CATARINA. Secretaria de Desenvolvimento Sustentável, e Secretaria da Agricultura e Desenvolvimento Rural. Estudos dos Instrumentos de Gestão de Recursos Hídricos para o Estado de Santa Catarina e apoio a sua implementação: Regionalização de Vazões das Bacias Hidrográficas Estaduais do Estado de Santa Catarina 2006. v.1, pp.1-14.

_____. Secretaria de Estado do Desenvolvimento Econômico Sustentável de Santa Catarina. **Levantamento aerofotogramétrico do Estado de Santa Catarina.** Florianópolis. 2010. Disponível em <sigsc.sds.sc.gov.br/>. Acesso em 12 de setembro de 2010.

SCHNEIDER, V. E. et al. A evolução da geração de resíduos sólidos no município de Bento Gonçalves-RS no período de 1993 a 2001. In: Congreso Interamericano de Ingeniería Sanitaria y Ambiental, 28, 2002, Cancún. **Anais**. Cancún, 2002.

SDS, **Portaria nº 36/2006**, Secretaria do Estado do Desenvolvimento Econômico e Sustentável, Outorga de Direito de Uso de Recursos Hídricos, Santa Catarina, 2006.

SEBRAE - SANTA CATARINA EM NÚMEROS - Irani, 2010. Disponível em < http://www.sebrae-sc.com.br/scemnumero/arquivo/Irani.pdf>.

SEMPRE SUSTENTÁVEL. Aproveitamento de Água de Chuva de Baixo Custo com a Tecnologia da Minicisterna. Disponível em < http://sempresustentavel.com.br/ >. Acesso em 23 de junho de 2021.

SILVA, B. J. da.; PEREIRA, O. S.; ASSIS, W. A. V. de; MORAES, L. R. S. O Componente Drenagem Urbana no Plano Municipal de saneamento Ambiental de Alagoinhas, Bahia, 2004. Disponível em: http://servicos.semasa.sp.gov.br/admin/biblioteca/docs/PDF/35Assemae126.pdf Acesso em 24 de setembro de 2019.

SISTEMA DE INFORMAÇÕES HIDROLÓGICAS (SNIRH). **Agência Nacional de Águas**. Disponível em: http://www.snirh.gov.br/hidroweb/publico/medicoes_historicas_abas.jsf>. Acesso em 19 de setembro de 2019.

SOUZA, C. F. Mecanismos técnico-institucionais para a sustentabilidade da **Drenagem Urbana**. Dissertação de Mestrado. Universidade Federal do Rio Grande do Sul. Instituto de Pesquisas Hidráulicas. Programa de Pós-Graduação em Recursos Hídricos e Saneamento Ambiental. Porto Alegre. BR-RS, 193 p. 2005. Disponível em https://www.lume.ufrgs.br/bitstream/handle/10183/6727/000489126.pdf

SNIS - Sistema Nacional De Informações Sobre Saneamento. **Diagnóstico dos serviços de água e esgotos 2019**. Site institucional, 2020.

TABNET - Informações de Saúde Epidemiológicas e Morbidade, 2020. Disponível em: http://www2.datasus.gov.br/DATASUS/index.php?area=0203&id=29878153.

TSUTIYA, M. T.; ALEM SOBRINHO, P. Coleta e Transporte de Esgoto Sanitário. 3. ed. Rio de Janeiro: ABES, 2011.

TUCCI, C.E.M; COLLISCHONN, W. 1998. **Drenagem urbana e Controle de Erosão**. VI Simpósio Nacional de Controle da Erosão, 1998. Presidente Prudente, São Paulo

TUCCI, C. E. M. **Gerenciamento da Drenagem Urbana**. RBRH – Revista Brasileira de Recursos Hídricos, Porto Alegre: ABRH, vol. 7, nº1. p5-27. 2002.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY (USEPA). **Preliminary Data Summary of Urban Storm Water Best Management Practices**. Washington, DC. 1999. Disponível em: https://www.epa.gov/sites/production/files/2015-11/documents/urban-stormwater-bmps_preliminary-study_1999.pdf Acesso em 01 de fevereiro de 2018.

VALTERMASTER. Sistema de captação de água da chuva, 2018. Disponível em http://valmaster.com.br/sistema-de-captacao-de-agua-da-chuva/ >. Acesso em 23 de junho de 2021.

VON SPERLING, M. **Princípios do tratamento biológico de águas residuárias: Introdução à qualidade das águas e ao tratamento de esgotos**. Vol. 1. 3ª.ed. Belo Horizonte. DESA/UFMG, 452 p. 2005.

Anexo 01

Pesquisa de Satisfação dos Serviços de Saneamento

PESQUISA DE SATISFAÇÃO DOS SERVIÇOS DE SANEAMENTO BÁSICO IRANI

Irani Março 2021

INTRODUÇÃO

Visando à participação da população na etapa de diagnóstico dos serviços de saneamento básico (abastecimento de água potável, esgotamento sanitário, resíduos sólidos e drenagem urbana) do processo de revisão do Plano Municipal de Saneamento Básico, foi disponibilizada uma pesquisa online para coletar informações sobre a satisfação dos munícipes sobre a prestação desses serviços no município A pesquisa foi disponibilizada no dia 14/07/2020 e ficou disponível para preenchimento até o dia 05/02/2021, tendo recebido 171 participações durante esse período.

A seguir são apresentados os resultados dessa pesquisa por eixo do saneamento.

ABASTECIMENTO DE ÁGUA POTÁVEL

ABASTECIMENTO DE ÁGUA POTÁVEL

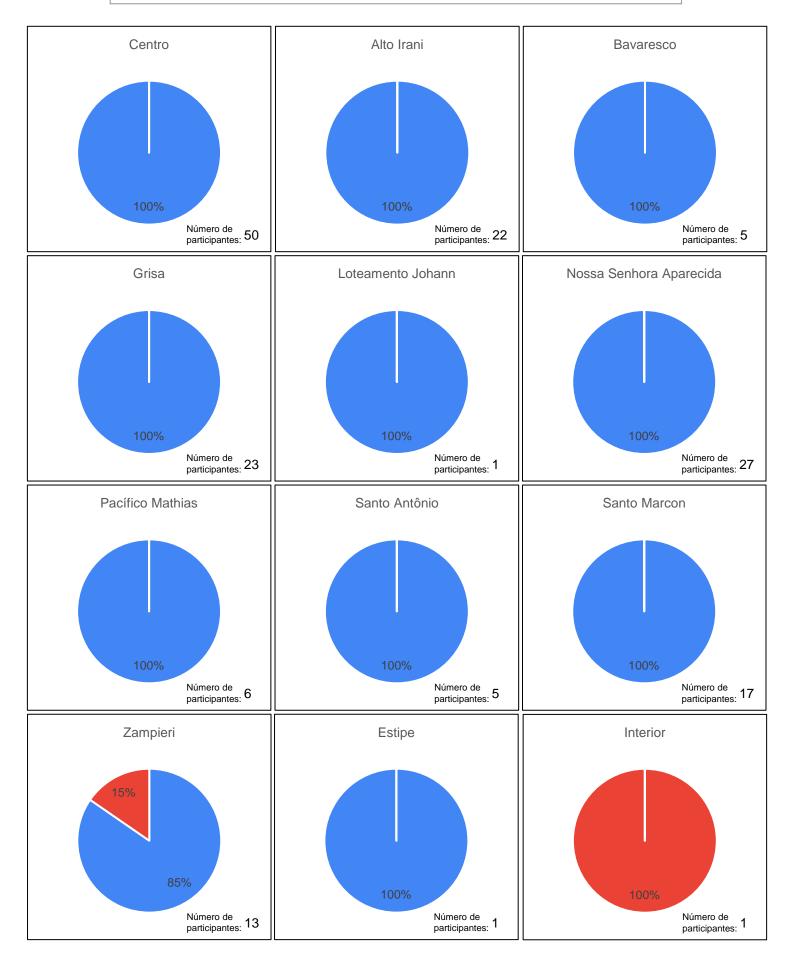
A primeira pergunta do questionário de abastecimento de água buscou conhecer como se dava o abastecimento nas residências do município. Segundo o levantamento, 98,25% dos participantes informaram que suas residências eram atendidas pelo sistema de abastecimento de água (SAA) operado pela CASAN, os outros 1,75% informaram que possuíam solução própria (poço, nascente...).

A segunda pergunta foi direcionada às pessoas que se utilizavam do SAA operado pela CASAN ou outras soluções coletivas, permitindo que esses elencassem seus níveis de satisfação para 4 eixos relacionados a prestação do serviço de abastecimento: atendimento as reclamações; cobranças e faturas; qualidade da água; e regularidade e continuidade no abastecimento.

Em relação ao atendimento às reclamações, 68,45% dos participantes avaliaram esse serviço como muito bom ou bom, 25,60% informaram que consideravam o atendimento às reclamações como regular, os outros 5,95% consideraram esse serviço como ruim ou muito ruim.

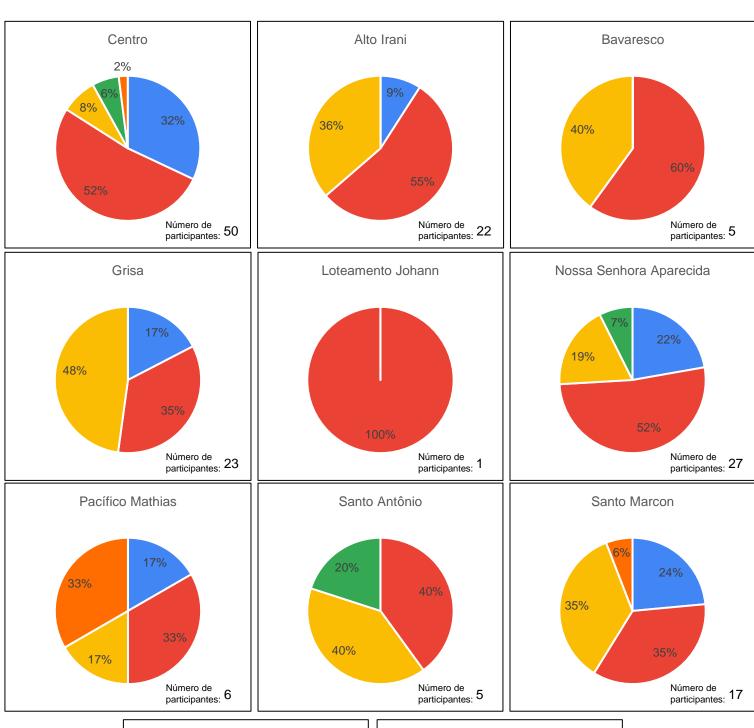
Quanto a satisfação em relação a cobranças e faturas, 69,05% dos participantes consideraram esse serviço como muito bom ou bom, 25,60% avaliaram como regular, e os outros 5,95% consideraram esse serviço como ruim ou muito ruim.

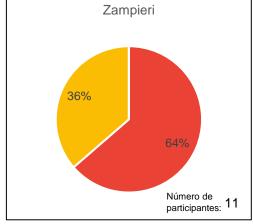
Em relação a qualidade da água fornecida, 85,12% dos participantes avaliaram esta como muito boa ou boa, 13,69% informaram que consideravam a qualidade da água como regular, os outros 1,19% classificaram a qualidade da água como ruim ou muito ruim.

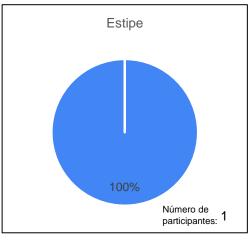

Quanto a regularidade e continuidade no abastecimento, 75% dos participantes consideraram esse serviço como muito bom ou bom, 19,64% avaliaram como regular, e os outros 5,36% consideraram esse serviço como ruim ou muito ruim.

Quanto a satisfação geral em relação aos serviços de abastecimento de água prestados pela CASAN, 83,33% informaram estar satisfeitos e 16,67% informaram não estar satisfeitos com os serviços.

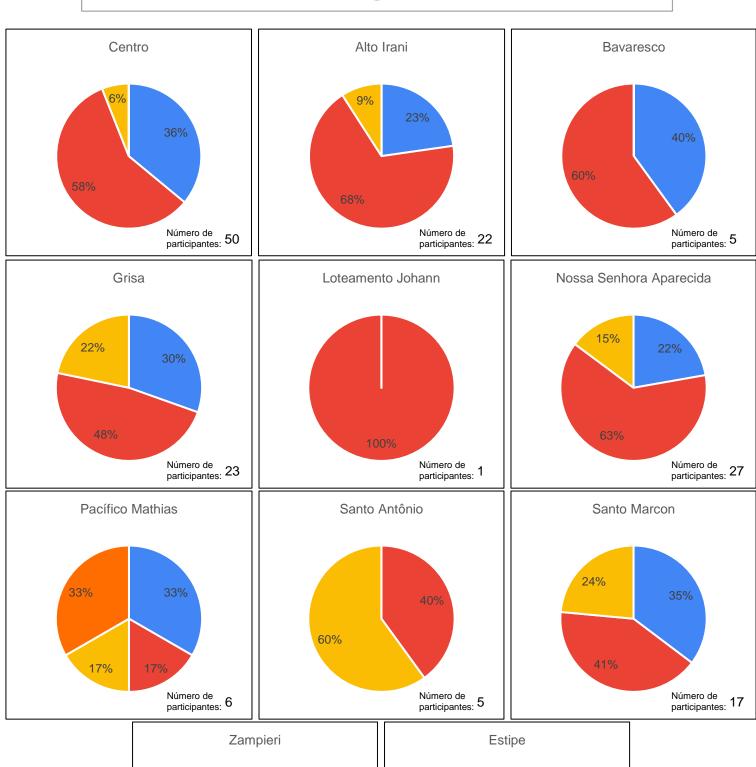
Os resultados da pesquisa segmentados por bairro ou localidade são apresentados na sequência.

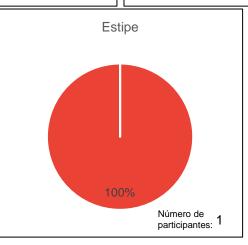

Quem presta o serviço de abastecimento de água para sua residência? (%)


■ CASAN. ■ Solução Própria (poço, nascente...).

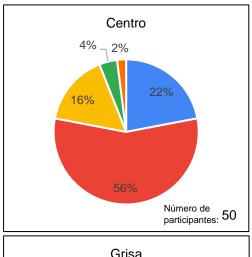


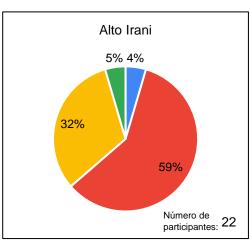
SAA CASAN Atendimento as reclamações (%)

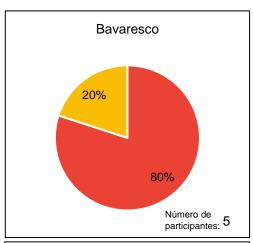


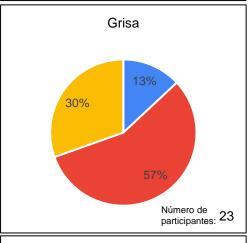


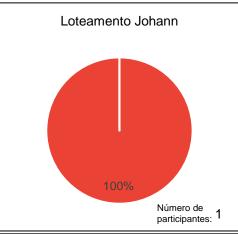
SAA CASAN Qualidade da água (%)



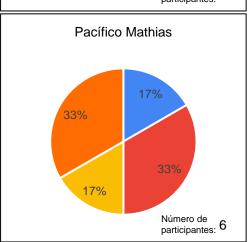


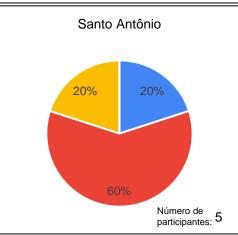


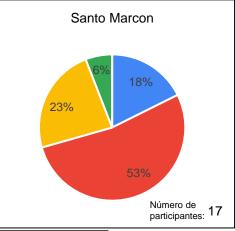

SAA CASAN Cobranças e faturas(%)

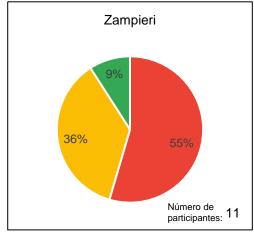


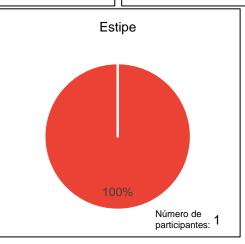


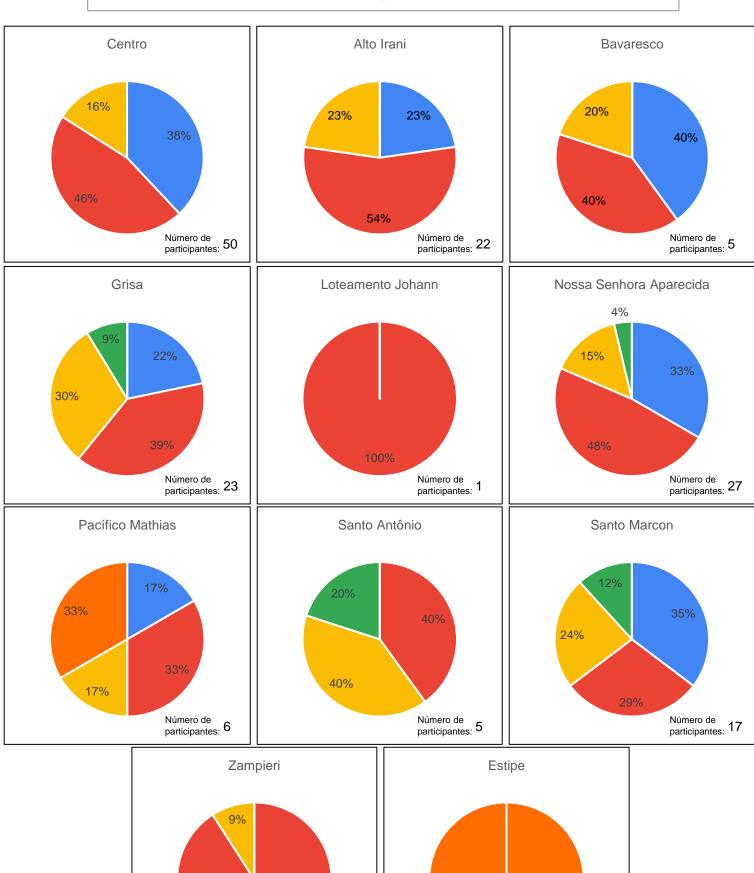








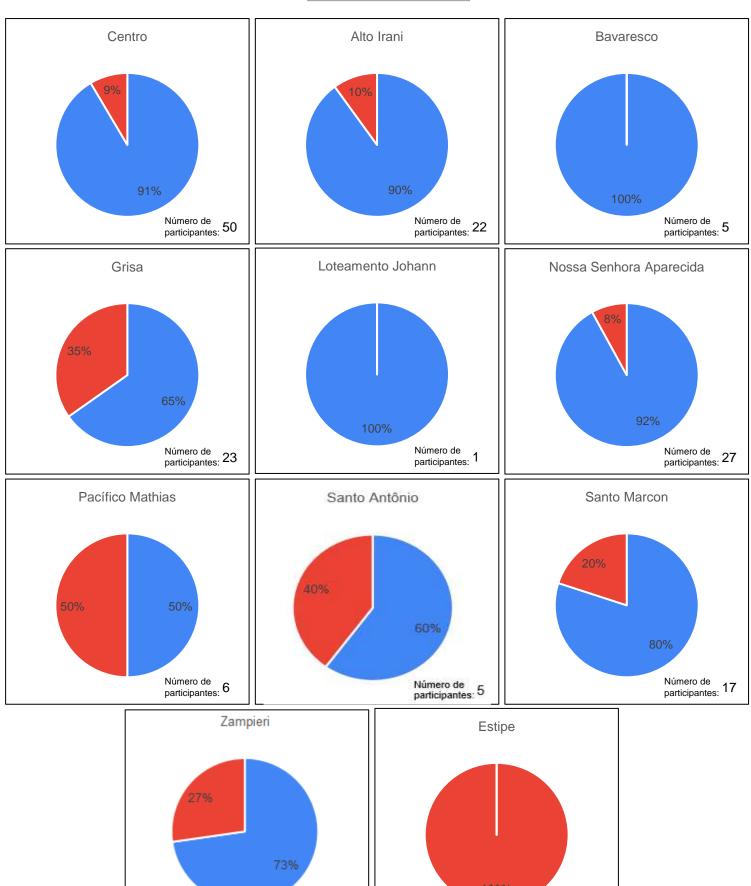




SAA CASAN Regularidade e continuidade no abastecimento (%)

Número de

participantes: 11


100%

Número de

participantes: 1

SAA CASAN Você está satisfeito com o serviço abastecimento de água? (%)

Número de participantes: 11

Número de participantes: 1

RESÍDUOS SÓLIDOS

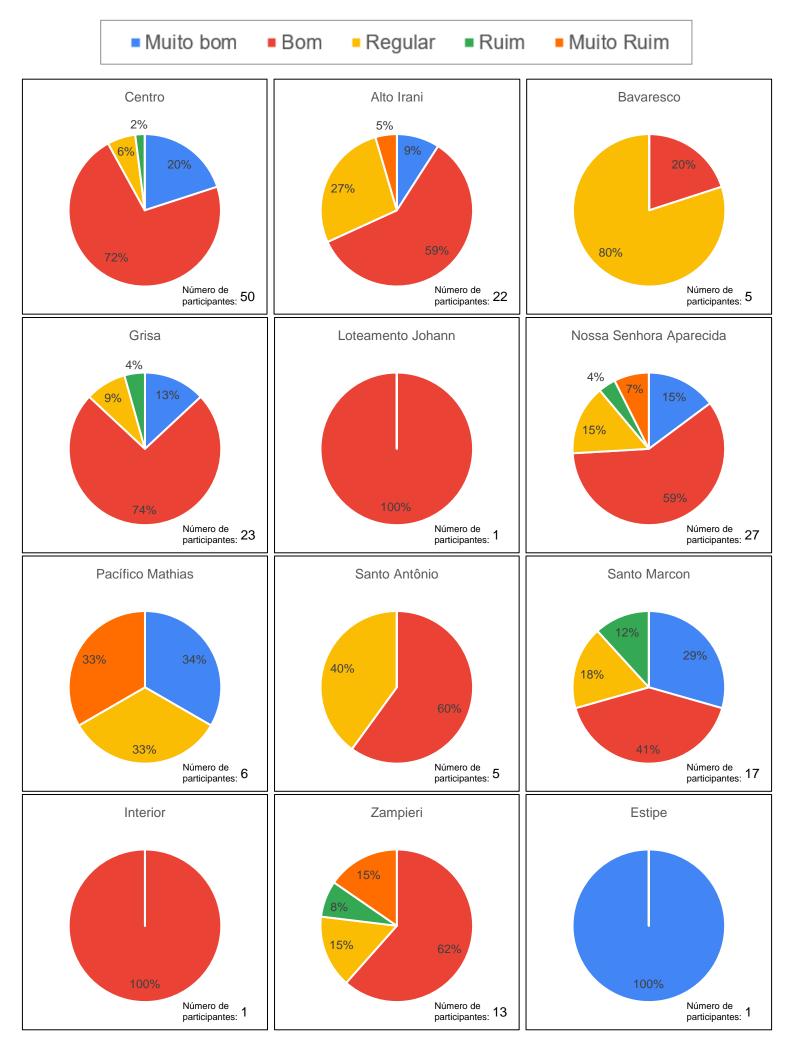
RESÍDUOS SÓLIDOS

Coleta convencional

As duas primeiras perguntas do questionário de resíduos sólidos buscaram entender o nível de satisfação dos munícipes em relação ao serviço de coleta convencional (resíduos orgânicos e rejeitos). Além de uma avaliação geral em relação a este serviço, os participantes também puderam expressar seus níveis de satisfação para 4 eixos relacionados a coleta convencional: atendimento às reclamações; cumprimento e frequência do calendário de coleta; resíduos pós coleta de lixo; e orientações de disposição do lixo para coleta.

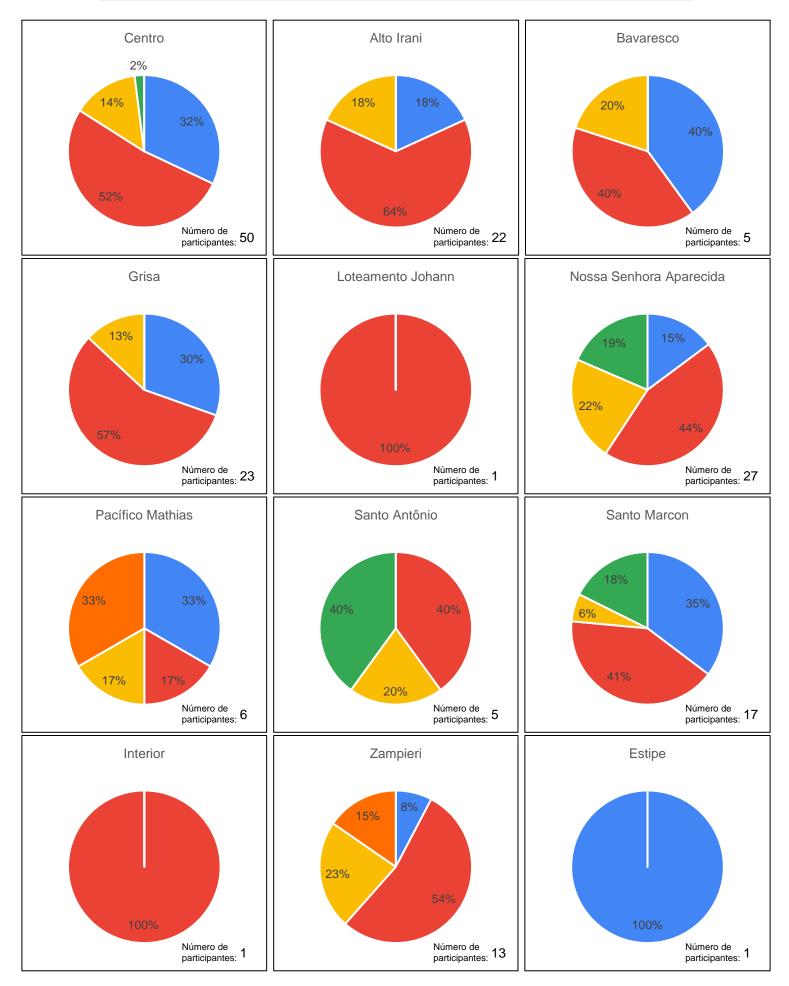
Em relação ao atendimento às reclamações, 76,02% dos participantes avaliaram esse serviço como muito bom ou bom, 16,37% informaram que consideravam o atendimento como regular, os outros 7,60% consideraram esse serviço como ruim ou muito ruim.

Quanto a satisfação em relação ao cumprimento e frequência do calendário de coleta, 75,44% dos participantes consideraram esse serviço como muito bom ou bom, 15,79% avaliaram como regular, e os outros 8,77% consideraram esse serviço como ruim ou muito ruim.

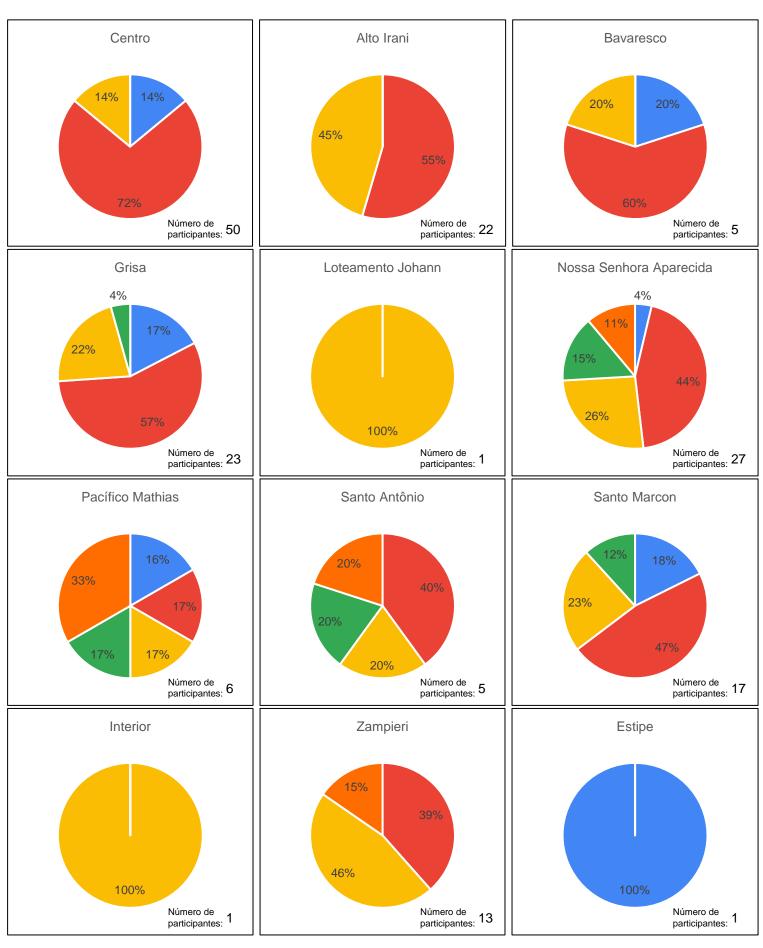

Em relação a resíduos pós coleta de lixo, 64,33% dos participantes avaliaram seu nível de satisfação como muito bom ou bom, 25,73% consideraram como regular, os outros 9,94% classificaram como ruim ou muito ruim.

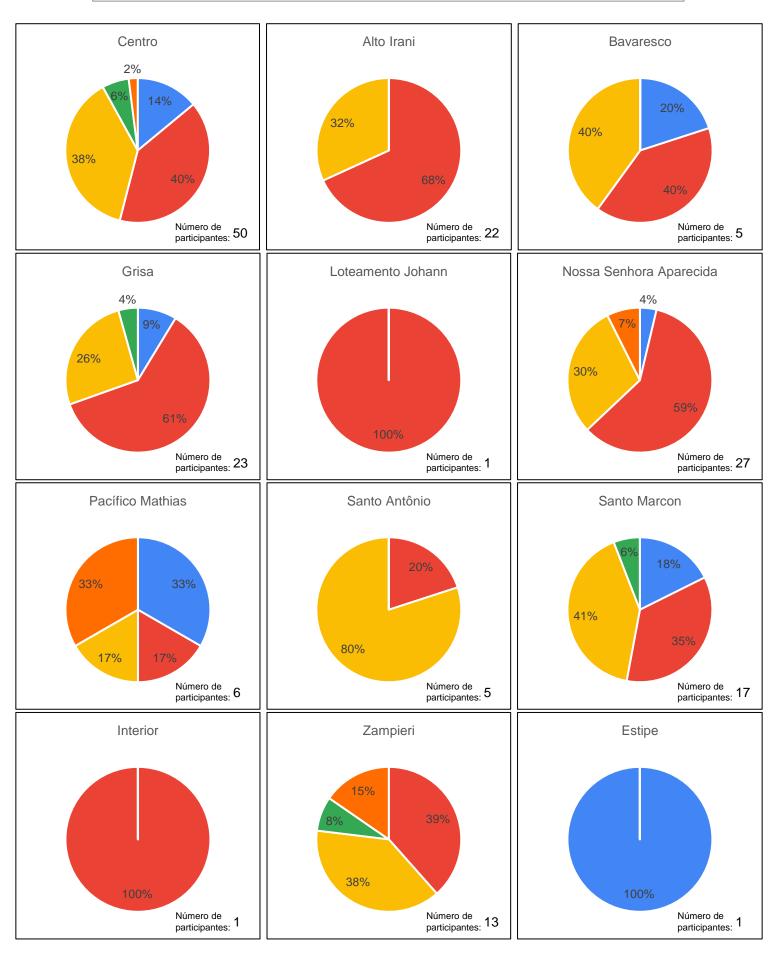
Quanto a satisfação quanto as orientações de disposição do lixo para coleta, 57,89% dos participantes consideraram esse serviço como muito bom ou bom, 34,50% avaliaram como regular, e os outros 7,60% consideraram esse serviço como ruim ou muito ruim.

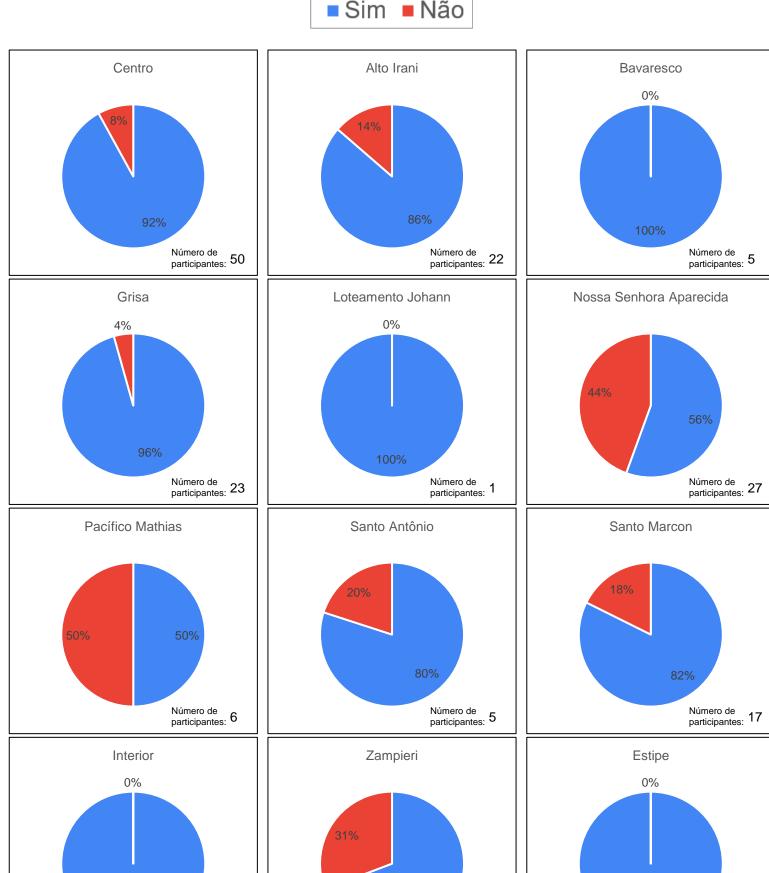
Quanto a satisfação geral em relação ao serviço de coleta convencional 81,87% informaram estar satisfeitos e 18,13% informaram não estar satisfeitos com os serviços.


Os resultados da pesquisa segmentados por bairro ou localidade são apresentados na sequência.

Coleta convencional de lixo Atendimento as reclamações (%)


Coleta convencional de lixo Cumprimento e frequência do calendário de coleta(%)


Coleta convencional de lixo Resíduos pós coleta de lixo (%)


Coleta convencional de lixo Orientações de disposição do lixo para coleta(%)

Você está satisfeito com o serviço de coleta convencional de resíduos? (%)

69%

Número de

participantes: 13

100%

Número de

participantes: 1

100%

Número de

participantes: 1

RESÍDUOS SÓLIDOS

Coleta de recicláveis

Este item tinha como objetivo a verificação do nível de satisfação dos munícipes em relação ao serviço de coleta de recicláveis, que começou a ser prestado a partir de novembro de 2019. Da mesma forma que no item da coleta convencional, os participantes também puderam expressar seus níveis de satisfação para 4 eixos relacionados a coleta de recicláveis: atendimento as reclamações; cumprimento e frequência do calendário de coleta; resíduos pós coleta de lixo; e orientações de disposição do lixo para coleta. A população também pôde expressar seu nível de satisfação geral em relação a esse serviço.

Em relação ao atendimento as reclamações, 47,95% dos participantes avaliaram esse serviço como muito bom ou bom, 36,26% informaram que consideravam o atendimento como regular, os outros 15,79% consideraram esse serviço como ruim ou muito ruim.

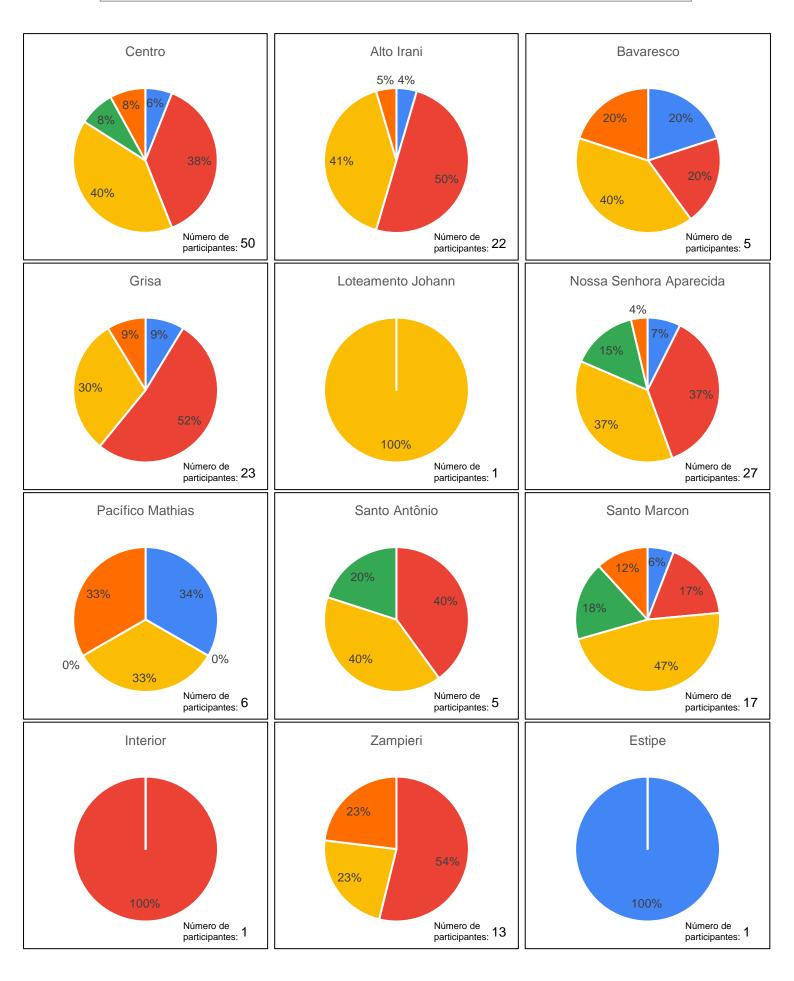
Quanto a satisfação em relação ao cumprimento e frequência do calendário de coleta, 46,20% dos participantes consideraram esse serviço como muito bom ou bom, 37,43% avaliaram como regular, e os outros 16,37% consideraram esse serviço como ruim ou muito ruim.

Em relação a resíduos pós coleta de lixo, 46,78% dos participantes avaliaram seu nível de satisfação como muito bom ou bom, 36,84% consideraram como regular, os outros 16,37% classificaram como ruim ou muito ruim.

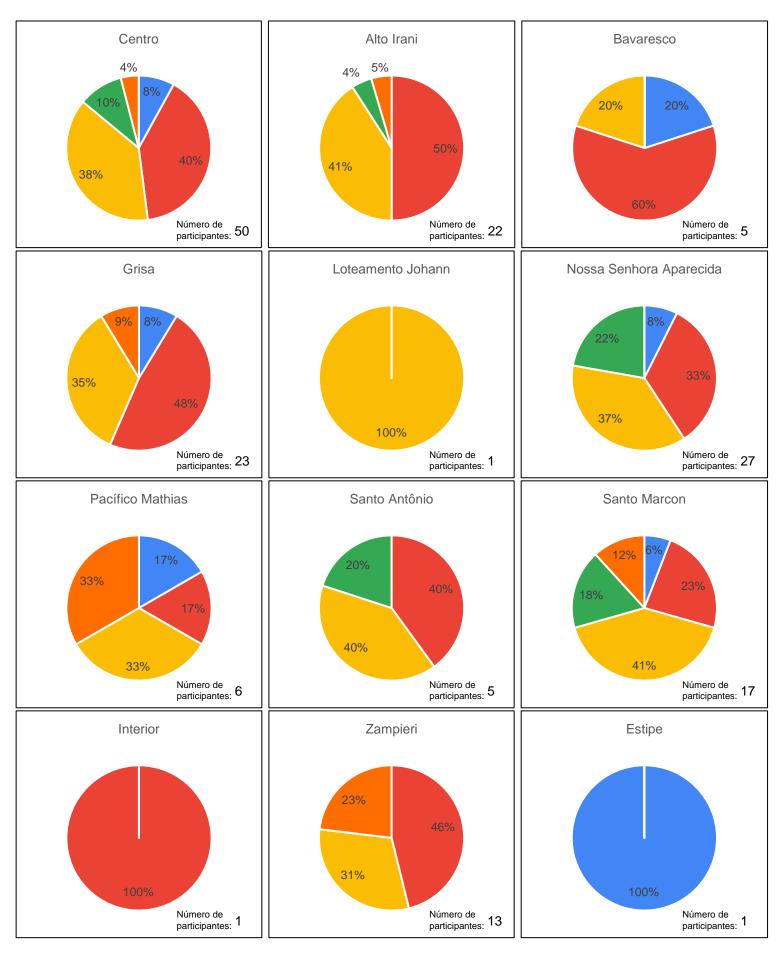
Quanto a satisfação quanto as orientações de disposição do lixo para coleta, 38,01% dos participantes consideraram esse serviço como muito bom ou bom, 43,27% avaliaram como regular, e os outros 18,71% consideraram esse serviço como ruim ou muito ruim.

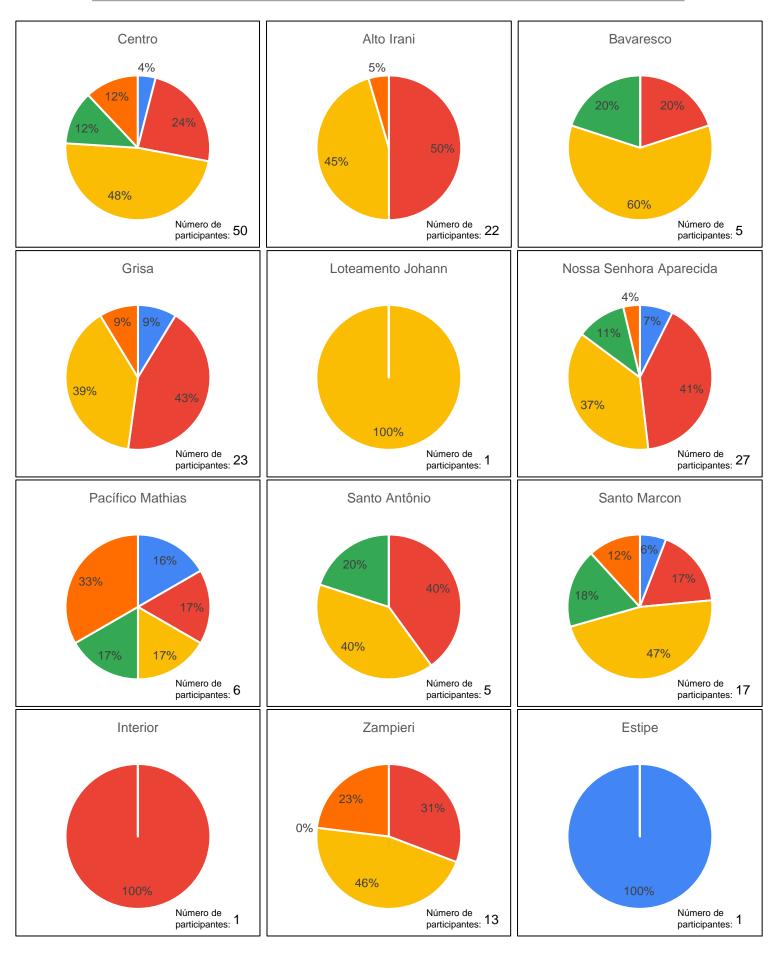
Quanto a satisfação geral em relação ao serviço de coleta de recicláveis 53,80% informaram estar satisfeitos e 46,20% informaram não estar satisfeitos com o serviço prestado.

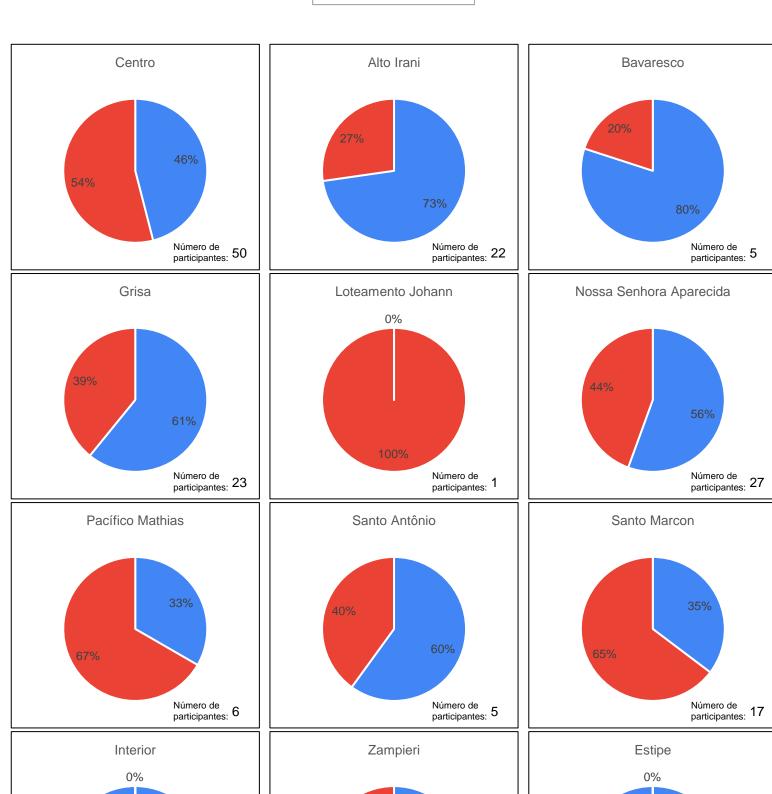
Ainda em relação aos resíduos recicláveis, havia uma pergunta questionando os participantes da pesquisa se, caso fossem disponibilizados locais (pontos de entrega voluntária) para descarte de resíduos recicláveis (papel, plásticos, vidro e metais) nos bairros, estes estariam dispostos a levar os seus recicláveis até esses locais. 86,55% das pessoas responderam positivamente, indicando que estariam dispostos a levar seus resíduos aos pontos de entrega voluntária, apenas 13,45% das pessoas sinalizaram não estar dispostas a isso.

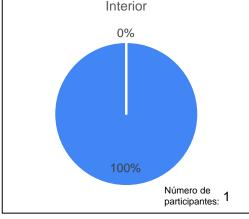

Os resultados da pesquisa segmentados por bairro ou localidade são apresentados na sequência.

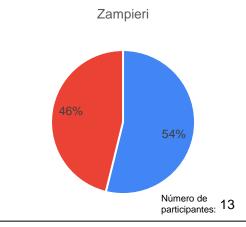
Coleta de resíduos recicláveis Atendimento às reclamações(%)

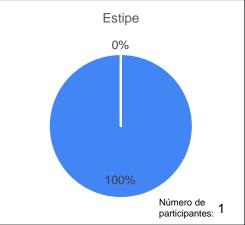

Coleta de resíduos recicláveis Cumprimento e frequência do calendário de coleta(%)

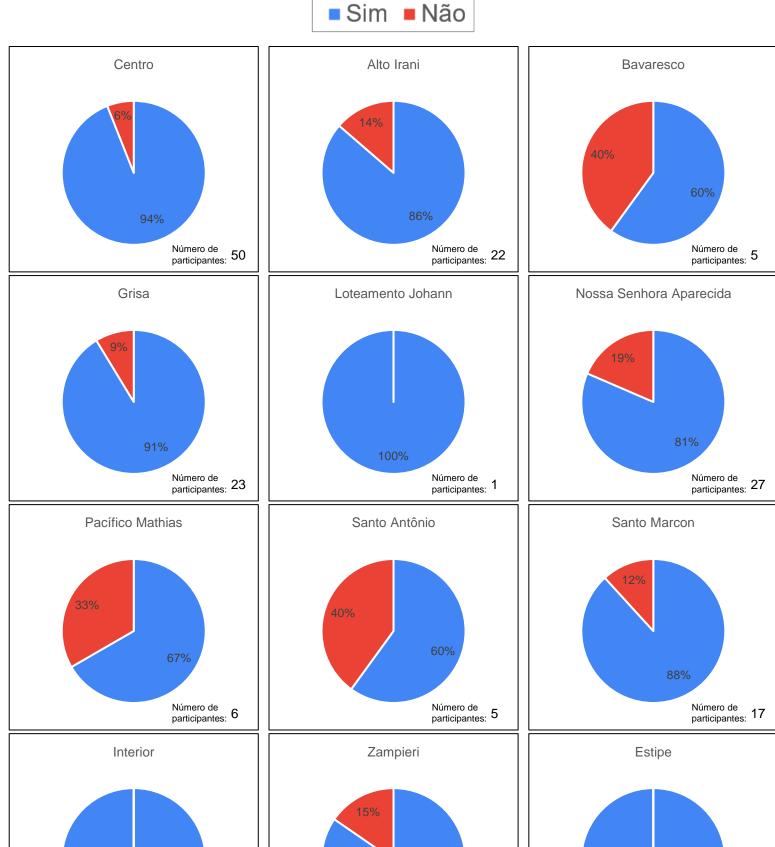

Coleta de resíduos recicláveis Resíduos pós coleta de lixo (%)


Coleta de resíduos recicláveis Orientações de disposição do lixo para coleta(%)






Você está satisfeito com a coleta de resíduos recicláveis? (%)



Caso fossem disponibilizados locais (pontos de entrega voluntária) para descarte de resíduos recicláveis (papel, plásticos, vidro e metais) no seu bairro, você estaria dispostos a levar os seus recicláveis até esses locais? (%)

Número de

participantes: 13

Número de

participantes: 1

100%

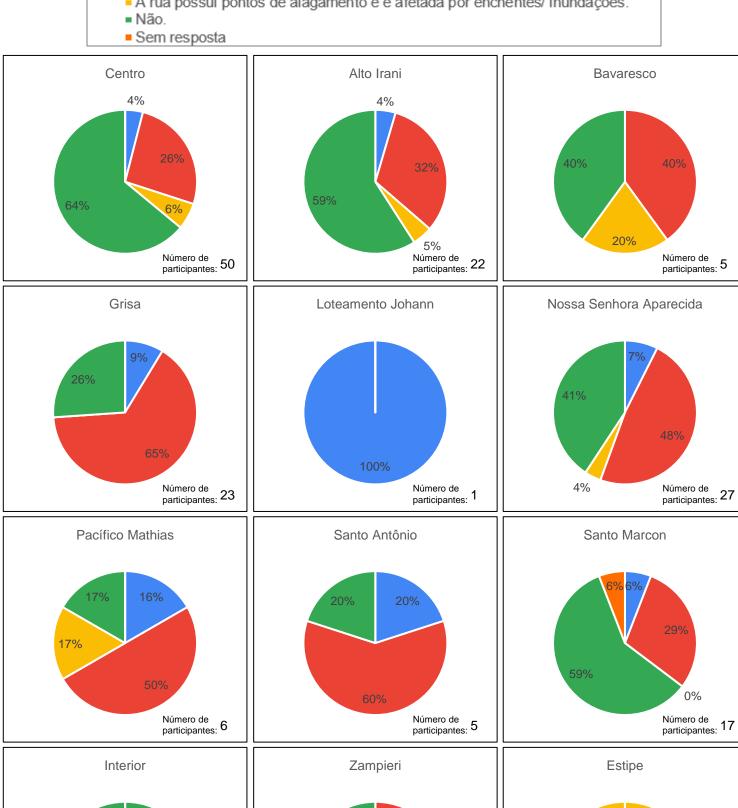
Número de

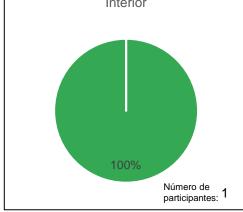
participantes: 1

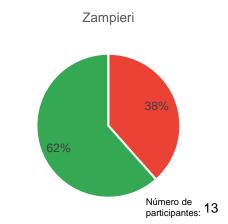
DRENAGEM URBANA

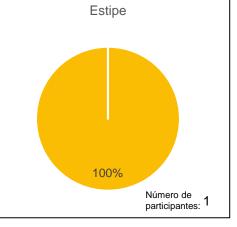
DRENAGEM URBANA

A primeira pergunta do questionário de drenagem urbana buscou identificar ruas que não contavam com sistema de drenagem urbana. Segundo o levantamento, 56,14% dos participantes informaram a existência de dispositivos de drenagem pluvial nas ruas onde se encontram suas residências, os outros 43,86% informaram a ausência destes dispositivos.

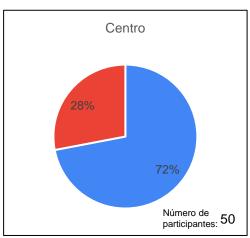

A segunda pergunta tinha como objetivo a identificação de potenciais áreas problemas onde há ocorrência de eventos de alagamentos, enchentes e/ou inundações. De acordo com as informações fornecidas, 11 pessoas informaram a ocorrência de eventos de enchente ou inundação nas ruas onde vivem, 38,60% relatou a existência de pontos de alagamento na via, 4,68% indicaram a existência de pontos de alagamento e de eventos de enchente ou inundação, 49,71% informaram não haver a ocorrência desses problemas em suas ruas, e 0,58% não forneceu informações nesse tópico.

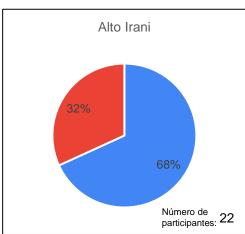

Em relação ao nível de satisfação em relação aos serviços de drenagem urbana, apenas 38,60% informaram estar satisfeitos e 61,40% relataram não estar satisfeitos com os serviços.

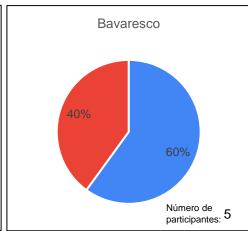

Os resultados da pesquisa segmentados por bairro ou localidade são apresentados na sequência.

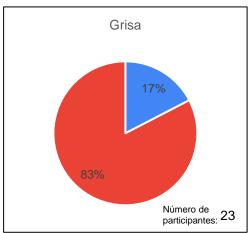

A sua rua possui pontos de alagamento ou é afetada por enchentes/inundações (elevação do nível dos cursos d'água)? (%)

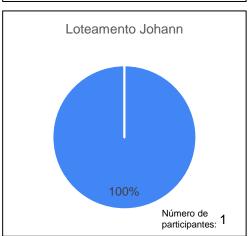
- Sim, é afetada por enchentes/ inundações.
- Sim, possui pontos de alagamento.
- A rua possui pontos de alagamento e é afetada por enchentes/ inundações.

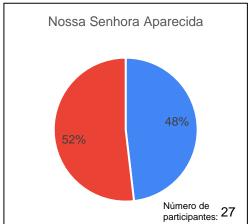


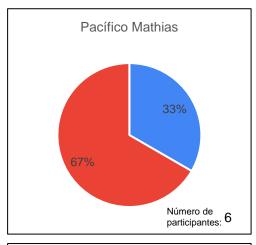


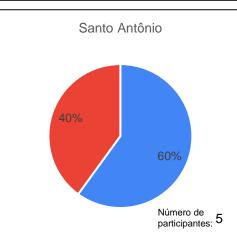


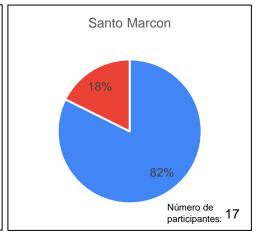

A sua rua possui sistema de drenagem (sarjeta, boca de lobo e/ou tubulação subterrânea)? (%)

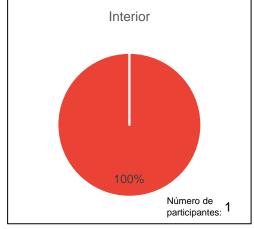


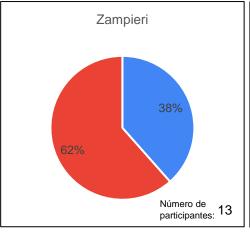


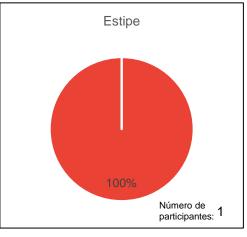


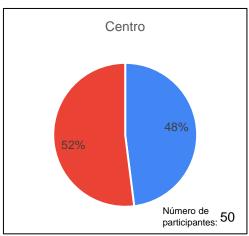




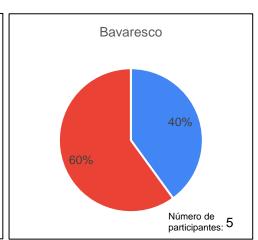


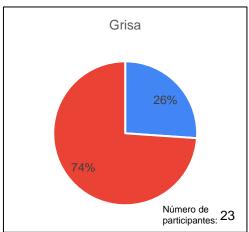


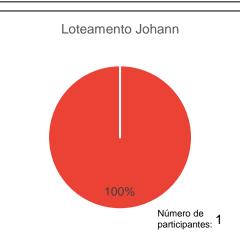


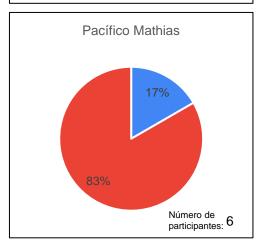


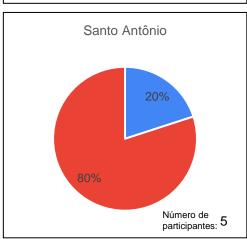


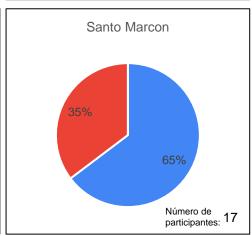


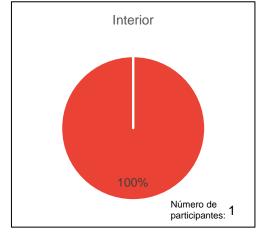

Você está satisfeito com os serviços de Drenagem urbana? (%)

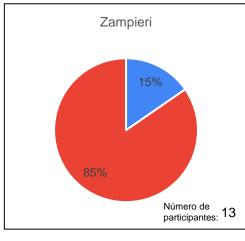


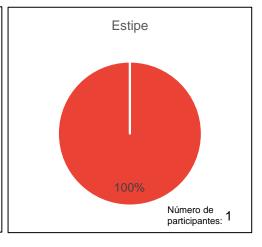












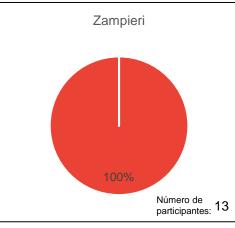
ESGOTAMENTO SANITÁRIO

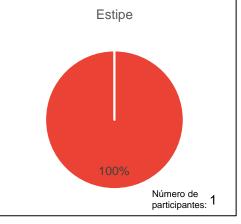
ESGOTAMENTO SANITÁRIO

A primeira pergunta do questionário de esgotamento sanitário foi para entender como era tratado o esgoto produzido em cada residência do município. Segundo o levantamento, 90,06% dos participantes informaram que em suas residências o esgoto produzido era tratado através de fossa séptica, 4,09% informaram que a residência onde viviam era atendida por sistema de coleta e tratamento de efluentes público, 4,09% indicaram que o esgoto não era tratado sendo destinado para a rede de drenagem pluvial ou diretamente para cursos d'água, por fim 1,75% não souberam responder o destino do esgoto produzido em suas residências.

A segunda pergunta foi direcionada apenas às pessoas que informaram utilizar fossa séptica/tanque séptico como tratamento na primeira pergunta e tinha como intuito entender se esses sistemas passavam por limpeza regular ou não, e em caso negativo, entender o porquê da não realização da limpeza. De acordo com o levantamento, 79,22% dos participantes que informaram se utilizar de tanque séptico para tratamento dos seus esgotos realizavam a limpeza regular dessas unidades, 13,64% informou que não sabia que a limpeza dessas unidades era necessária, 2,60% tinham dificuldade para solicitar o serviço de limpeza prestado pelo município, outros 4,55% não informaram se realizavam a limpeza ou não.

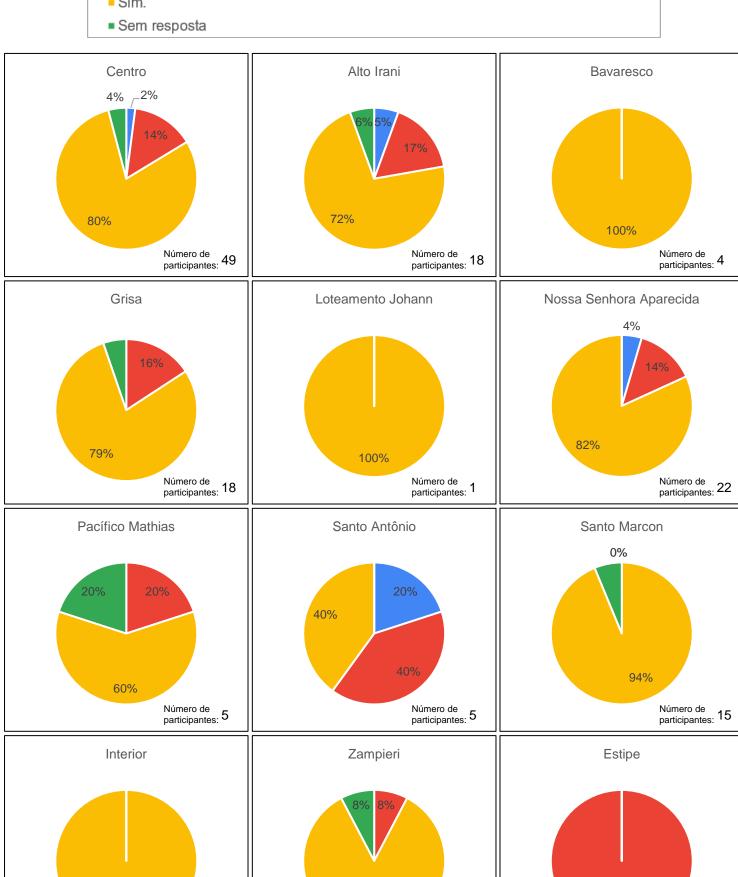
Em relação aos resultados apresentados acima cabe destacar dois pontos. Primeiro, ao analisar os dados por bairro, que serão apresentados nas próximas páginas, verificou-se que houve uma falha metodológica ao não especificar que a opção "fossa séptica/tanque séptico" se referia a sistema individual implantado na residência. Isso possivelmente confundiu os moradores dos Bairros Santo Antônio e Alto Irani, que são parcialmente atendidos por sistemas de coleta e tratamento de efluentes públicos que se utilizam de tanques sépticos para tratamento dos efluentes coletados, provavelmente induzindo os moradores desses dois bairros a assinalar a opção "fossa séptica/tanque séptico" ao invés de atendimento por sistema público.


Outro ponto a se destacar foi que moradores de dois bairros não atendidos por sistema de coleta e tratamento de efluentes públicos assinalaram essa opção, indicando possivelmente que estes lançam seus efluentes na rede de drenagem pluvial, mas acreditam estar lançando na rede coletora de esgoto.


Como é tratado o esgoto sanitário produzido em sua casa? (%)

- A minha residência é atendida por sistema de coleta e tratamento de efluentes público.
- Fossa séptica/tanque séptico.
- Não sei
- Não tem tratamento, é lançado diretamente em um curso d'água que passa próximo a minha casa.

Número de participantes: 1


Você realiza a limpeza da sua fossa séptica regularmente? (Apenas para quem selecionou fossa séptica na questão anterior)

- Não, pois não consigo solicitar o serviço de limpeza de fossa séptica no município.
- Não, não sabia que era necessário.
- Sim.

100%

Número de

participantes: 13

84%

Número de

participantes: 13

Número de

participantes: 1

Anexo 01 Formulário

1º REVISÃO DO PLANO MUNICIPAL DE SANEAMENTO BÁSICO

PESQUISA DE SATISFAÇÃO DOS SERVIÇOS DE SANEAMENTO BÁSICO -IRANI

*Obrigatório

Rua: *
Sua resposta
Bairro *
Sua resposta
ABASTECIMENTO DE ÁGUA POTÁVEL
Quem presta o serviço de abastecimento de água para sua residência? *
CASAN.
Solução Própria (poço, nascente).
Outras Soluções Coletivas.

Como você avalia	a os serviços p	orestados?	*		
	Muito bom	Bom	Regular	Ruim	Muito ruim
Atendimento às reclamações	0	0	0	0	0
Cobranças e Faturas	0	0	0	0	0
Qualidade da água	0	0	0	0	0
Regularidade e Continuidade no Abastecimento	0	0	0	0	0
Você está satisfei Sim.	ito com o serv	riço abaste	cimento de ág	ua? *	
○ Não.					
Comente o que achar necessário:					
Sua resposta					

1

RESÍDUOS SÓLIDOS URBANOS (LIXO)

Coleta convenc	ional de lixo *				
	Muito bom	Bom	Regular	Ruim	Muito ruim
Atendimento às reclamações	0	0	0	0	0
Cumprimento e frequência do calendário de coleta	0	0	0	0	0
Resíduos pós coleta de lixo	0	0	0	0	0
Orientações de disposição do lixo para coleta	0	0	0	0	0
Você está satisf	eito com o ser	viço de cole	eta convencior	ıal de resídı	uos? *
Sim. Não.					

Coleta de resídu	os recicláveis ³	k			
	Muito bom	Bom	Regular	Ruim	Muito ruim
Atendimento às reclamações	0	0	0	0	0
Cumprimento e frequência do calendário de coleta	0	0	0	0	0
Resíduos pós coleta de lixo	0	0	0	0	0
Orientações de disposição do lixo para coleta	0	0	0	0	0
Você está satisfe O Sim. Não.	eito com a cole	eta de resíd	uos recicláveis	5 ? *	
Caso fossem dis de resíduos recide estaria dispostos Sim. Não.	cláveis (papel,	plásticos, v	vidro e metais)	no seu bai	

Comente o que achar necessário:
Sua resposta
DRENAGEM URBANA
A sua rua possui sistema de drenagem (sarjeta, boca de lobo e/ou tubulação subterrânea)? *
O Sim.
Não.
A sua rua possui pontos de alagamento ou é afetada por enchentes/inundações (elevação do nível dos cursos d'água)?
INUNDAÇÃO ENCHENTE SITUAÇÃO NORMAL
Enchente ou cheia é o aumento temporário do nível d'água no canal de drenagem devido ao aumento da vazão do rio, atingindo a cota máxima do canal, porém sem transbordamento.
Inundação é o transbordamento das águas de um curso d'água, atingindo as áreas marginais (planície de inundação ou área de várzea).
Alagamento é o acúmulo de água nas ruas e nos perímetros urbanos por problemas no sistema de drenagem urbana.
Sim, possui pontos de alagamento.
Sim, é afetada por enchentes/ inundações.
☐ Não.

Sim.	
○ Não	
Coment	e o que achar necessário:
Sua respo	osta
ESGOTA	AMENTO SANITÁRIO
Como é	tratado o esgoto sanitário produzido em sua casa?
O Foss	sa séptica/tanque séptico.
O Não	tem tratamento, é lançado diretamente na tubulação de drenagem da rua.
()	tem tratamento, é lançado diretamente em um curso d'água que passa próximo a ha casa.
O A mi	inha residência é atendida por sistema de coleta e tratamento de efluentes lico.
Outr	·o:

Sim.

selecionou fossa séptica na questão anterior).

Não, não sabia que era necessário.
Não, pois não consigo solicitar o serviço de limpeza de fossa séptica no município.
Comente o que achar necessário:
Sua resposta

Realização:

Enviar

Nunca envie senhas pelo Formulários Google.

Este conteúdo não foi criado nem aprovado pelo Google. <u>Denunciar abuso</u> - <u>Termos de Serviço</u> - <u>Política de</u>
<u>Privacidade</u>

Google Formulários

Anexo 02

Resposta ofício CASAN - CT/D-1387/2020

CT/D - 1387

Florianópolis, 3 de setembro de 2020.

Excelentíssimo Senhor Sivio Antônio Leme de Neves Prefeito Municipal de Irani Rua Eilirio de Gregori, nº 207 – Centro 89680-000 Irani - SC

Senhor Prefeito,

Com os nossos cordiais cumprimentos, e em atenção ao Ofício nº 059/2020, em que o Município requisita informações para revisão do Plano Municipal de Saneamento Básico - PMSB, apresentamos abaixo e em anexo as informações requeridas:

1 - Sistema de Abastecimento de Água

- Anexo 1 Cadastro de rede de água;
- Anexo 2 Cadastro de equipamentos;
- Anexo 3 Relação de Ativos;
- Anexo 4 Dados operacionais (BADOP 2018 2019);
- Anexo 5 Comercial Ocorrências no SAA, Evolução do número de ligações/economias por categoria, Histograma, Pedidos de ligações, quadro de hidrometria;
- Anexo 6 Análises realizadas para controle de qualidade da água;
- Anexo 7 Licenciamento e outorga de direito de uso.

Quanto às informações de número de funcionários, cargo, função e equipamentos, informamos que a CASAN mantém uma estrutura de pessoal, veículos e equipamentos dimensionada para suprir as demandas de operação, manutenção, expansão, projetos, controle de qualidade e gestão em todos os municípios sob sua responsabilidade. Este formato de gestão permite otimizar os recursos humanos, materiais e equipamentos utilizados na prestação do serviço, possibilitando o atendimento equânime a todos os municípios.

Para melhor entendimento exemplificamos:

- Gestão operacional (responsabilidade técnica, operação, manutenção hidráulica/ mecânica/ elétrica, ampliação, projetos e obras): a equipe é dimensionada para atender todos os municípios conveniados, sendo distribuída entre a Matriz, Superintendências e Agências;
- Controle de qualidade: as estruturas laboratoriais e equipes técnicas são dimensionadas para atender todos os municípios conveniados, sendo distribuída entre a Matriz e Superintendências;

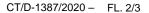
CT/D-1387/2020 - FL. 1/3

2020/025669

- Gestão administrativa (RH, licitações, almoxarifado): a equipe é dimensionada para atender todos os municípios conveniados, sendo distribuída entre Matriz e Superintendências;
- Gestão financeira (faturamento, arrecadação, contabilidade, entre outros): a equipe é dimensionada para atender todos os municípios conveniados, sendo distribuída entre Matriz e Superintendências.

Nos quadros abaixo apresentamos as receitas e despesas com a prestação dos serviços nos últimos 2 anos:

Quadro 1 - 2018

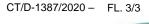

Especificação	Valor (R\$)
DESPESAS DE PESSOAL	601.197,11
DESPESAS DE MATERIAL	57.501,84
SERVIÇOS DE TERCEIROS	430.306,41
DESPESAS GERAIS	225.515,39
DEPRECIAÇÕES, PROVISÕES E AMORTIZAÇÕES	49.140,39
DESPESAS FINANCEIRAS	256.907,06
DESPESAS FISCAIS TRIBUTÁRIAS E PROVISÕES	28.791,17
DESPESAS NÃO OPERACIONAIS	77,35
IMPOSTOS DE RENDA E CONTRIBUIÇÃO SOCIAL DIFERIDOS	-139.067,45
TOTAL RECEITA	2.030.071,42
TOTAL DESPESAS	1.510.369,27

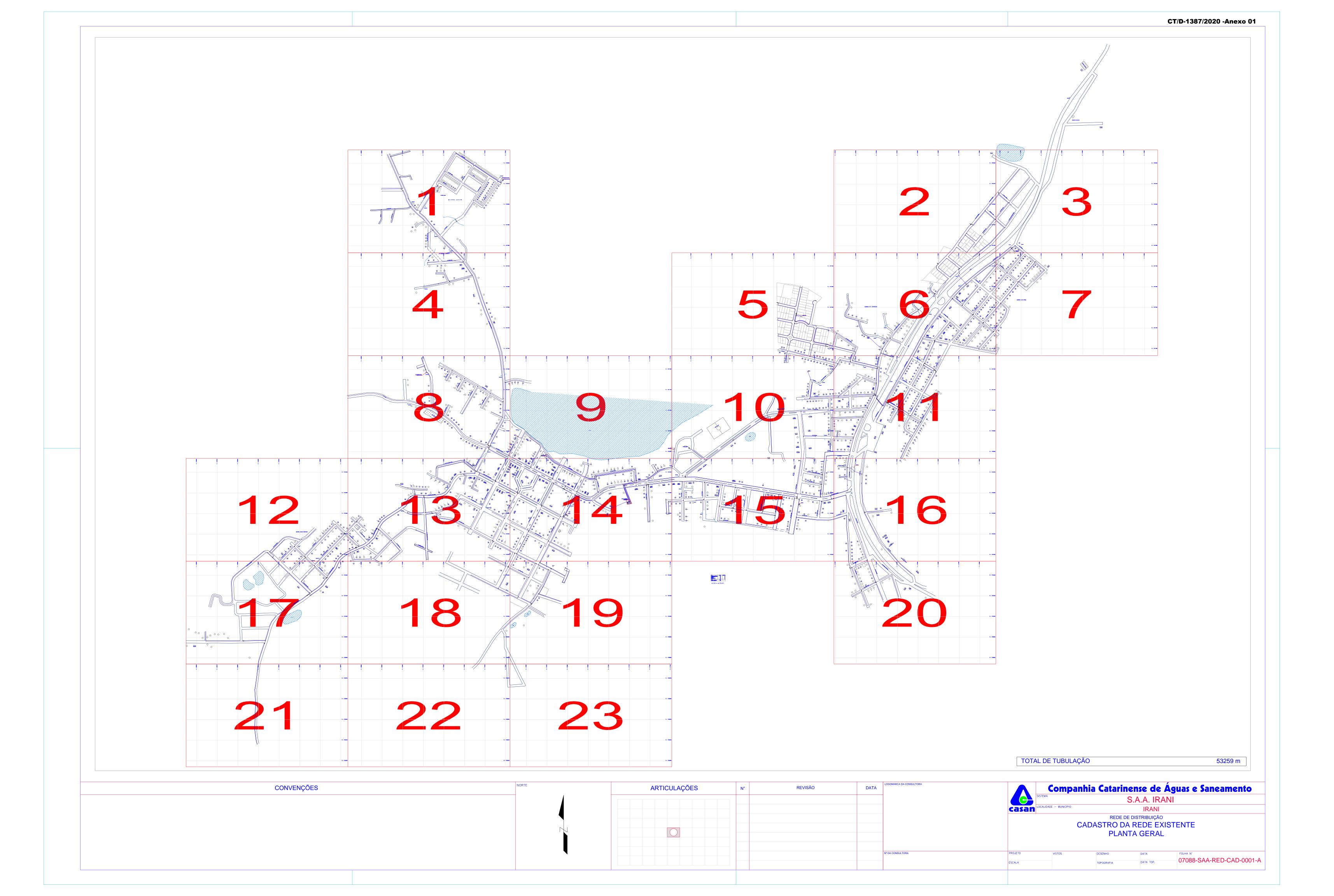
Quadro 2 - 2019

Especificação	Valor (R\$)
DESPESAS DE PESSOAL	700.170,96
DESPESAS DE MATERIAL	60.139,86
SERVIÇOS DE TERCEIROS	430.923,29
DESPESAS GERAIS	308.203,87
DEPRECIAÇÕES, PROVISÕES E AMORTIZAÇÕES	49.979,22
DESPESAS FINANCEIRAS	178.661,36
DESPESAS FISCAIS TRIBUTÁRIAS E PROVISÕES	102.162,01
DESPESAS NÃO OPERACIONAIS	61,22
IMPOSTOS DE RENDA E CONTRIBUIÇÃO SOCIAL DIFERIDOS	22.026,51
TOTAL RECEITA	2.105.374,48
TOTAL DESPESAS	1.852.328,30

2 - Sistemas de Esgotamento Sanitário

No momento, ainda não há informações a serem prestadas. O Plano Municipal de Saneamento Básico norteará as ações a serem planejadas e implantadas.




Por fim, colocamos a equipe técnica da Gerência de Relações com o Poder Concedente à disposição para quaisquer esclarecimentos, contato; (48) 3221,5263 e

(48) 3221.5238, reiterando protestos de estima e consideração.
Respeitosamente,

Eng.ª ROBERTA MAAS DOS ANJOS Diretora-Presidente

CAC/GCR/JVS

FORMULÁRIO DE CADASTRO DE EQUIPAMENTOS ELETROMECÂNICOS

Sistema:	Irani	MOTOR
Unidade do Sistema:	Erat Cohab	Marca: WEG
Endereço:		Modelo/Carcaça: F56H
Coord. Geográficas:		Nº Série:
Conta EE Nº:	203205073	Ano Fabricação: 1994
Medidor EE Nº:	A1311515	Potência(cv): 2,0
Nº FU:	711011010	Velocidade(rpm): 3510
Local da Instalação:	Bairro Cohab	Tensão(V): 110/220
_	RO DE COMANDO	Corrente(A): 24/12
Fabricante:	NO DE COMPANDO	
	DIRETA	
Tipo da Partida:		
Contactores K1:	3TF40 SIEMENS	Rendimento(%):
Contactores K2:		Cos Ø (%):
Contactores K3:	071140 01514510	Rolamento D: 6204 Z
Contactores Auxil:	3TH40 SIEMENS	Rolamento T: 6203 Z
Relé sobrecarga:	WEG 14-17 A	IP (A):
Relé de tempo:		IP/IN: 8,0
Relé de nível:		Obs:
Relé falta de fase:		TRANSFORMADOR
Proteção Geral:	DISJ. SOPRANO 20 A	Marca:
Proteção Equip:	FUZ. DZ 20 A	Ano Fabricação:
Voltímetro:		Potência(KVA):
Amperímetro:		Classe Tensão:
Sinalizadores:		Tensão Secundário:
Horímetro:		Nº:
Tipo Comando:	TIMER	DISJUNTOR
TP:		Marca: ELETROMAR
TC:		Ano Fabricação:
Automatizado por:		Faixa de Ajuste: FIXA
Obs:		Corrente(A): 40
Outros:	***************************************	CAPACITOR DO BARRAMENTO
	ВОМВА	Marca:
Tipo:	HORIZONTAL	Potência(KVAr):
Marca:	KSB (HIDROBLOC)	Corrente(A):
Modelo:	C2000	Célula:
Nº Série:	296	Contactor:
Ano Fabricação:		Obs:
Vazão(m³/h):		
Potência(cv):		CAPACITOR DA CARGA Marca:
` '		
Alt.Manométr(mca):	0500	Potência(KVAr):
Velocidade(rpm):	3500	Corrente(A):
Rotor:		Célula:
Sucção(mm):		Contactor:
Recalque(mm):		Obs:
Acoplamento:	***************************************	POÇO
Obs:		Prof. poço (m):
OUTRA	AS INFORMAÇÕES	Prof. Bomba (m):
Outros:		NE (m):
		ND (m):
		Eletrodo Superior (m):
		Eletrodo Inferior (m):
		Diâmetro Edutor (pol):

Sistema:	Irani	MOTOR	7
Unidade do Sistema:	Erat Elevado R1	Marca: WEG X CJTO	3
Endereço:	R. Ivo Silveira	Modelo/Carcaça: B56	
Coord. Geográficas:		Nº Série:	
Conta EE Nº:	50279505	Ano Fabricação: 1996	
Medidor EE Nº:	B1351814	Potência(cv): 2,0	
№ FU:		Velocidade(rpm): 3415	
Local da Instalação:	ETA	Tensão(V): 220/380	
	RO DE COMANDO	Corrente(A): 6,0/3,5	
Fabricante:	AUTOMATIC	Fator de Serviço: 1,2	
Tipo da Partida:	DIRETA	Nº Fases: 3,0	-1
Contactores K1:	CW7 WEG	Rendimento(%):	
Contactores K2:		Cos Ø (%):	
Contactores K3:		Rolamento D: 6204 Z	
Contactores Auxil:		Rolamento T: 6203 Z	
Relé sobrecarga:	WEG 2,8/4A	IP (A):	_ 1
Relé de tempo:	11202,047	IP/IN: 6,5	9.5
Relé de nível:		Obs: IN=2,4	
Relé falta de fase:	FF-AS IMPEL	TRANSFORMADOR	11 11
Proteção Geral:	DISJ. 40 A	Marca:	4
Proteção Geral. Proteção Equip:	FUZ. DZ 10 A	Ano Fabricação:	
Voltímetro:			
	KRON 0-500 A	Potência(KVA): Classe Tensão:	
Amperimetro:	DH COEL		
Sinalizadores: Horímetro:		Tensão Secundário:	uuu
Tipo Comando:	BÓIA ELETRODO	DISJUNTOR	┥
l -	BOIA ELETRODO		C
TP: TC:		Marca:	- N @ 121
		Ano Fabricação:	
Automatizado por: Obs:		Faixa de Ajuste: Corrente(A):	
Outros:		CAPACITOR DO BARRAMENTO	
out ou	BOMBA	Marca:	
Tipo:	HORIZONTAL (MONOBLOCO)	Potência(KVAr):	
Marca:	MARK	Corrente(A):	
Modelo:	DLP6	Célula:	
Nº Série:	96042543/96042544	Contactor:	
Ano Fabricação:	300+25+3/300+25+4	Obs:	
Vazão(m³/h):	27,9 M³/H	CAPACITOR DA CARGA	=
Potência(cv):	2,0	Marca:	
Alt.Manométr(mca):	19	Potência(KVAr):	
Velocidade(rpm):	3500	Corrente(A):	
Rotor:	3300	Célula:	
Sucção(mm):	100	Contactor:	
Recalque(mm):	100 100	Obs:	
Acoplamento:		POÇO	
Obs:	2 CJTO	Prof. poço (m):	C
	AS INFORMAÇÕES	Prof. Bomba (m):	-1
	AS INFORMAÇÕES		
Outros:		NE (m):	-1
		ND (m):	-1
		Eletrodo Superior (m):	
		Eletrodo Inferior (m):	
Data Atualização	21/07/2003	Diâmetro Edutor (pol):	-1
Data Atualização:	21/01/2003	Levantado por: CLEOMAR/PAULO/DEMARCHI	_

Sistema:	Irani		MOTOR	
	***************************************			_
Unidade do Sistema:	Poço P3	Marca:	CRI	
Endereço:	R. Osório Vargas	Modelo/Carcaça:	W6A-150 6VR	
Coord. Geográficas:		Nº Série:	1.151.708.227	
Conta EE Nº:	21569605	Ano Fabricação:		
Medidor EE Nº:	PO044197	Potência(cv):	15,0	
Nº FU:		Velocidade(rpm):	3450	
Local da Instalação:	Centro	Tensão(V):	222/380	
	O DE COMANDO	Corrente(A):	52/30	
Fabricante:		Fator de Serviço:	1.15	
Tipo da Partida:	DIRETA	Nº Fases:	3,0	
Contactores K1:	3TF44 SIEMENS	Rendimento(%):		
Contactores K2:		Cos Ø (%):		
Contactores K3:		Rolamento D:		
Contactores Auxil:	3TB42 SIEMENS	Rolamento T:		
Relé sobrecarga:	WEG 30-46 A	IP (A):		
Relé de tempo:	7PU00 0-60 S	IP/IN:		
Relé de nível:	MPN-1 DIGIMEC	Obs:		The second second
Relé falta de fase:	MPF DIGIMEC	TRANS	FORMADOR	
Proteção Geral:	DISJ. 50 A ELETROMAR	Marca:		
Proteção Equip:	FUZ. NH00 63 A	Ano Fabricação:		1 6 × 17
Voltímetro:	INSTRUMENT 0-500 V	Potência(KVA):	,	
Amperímetro:	INSTRUMENT 0-100 A	Classe Tensão:		
Sinalizadores:		Tensão Secundário:		
Horímetro:	PLHM DIGIMEC	Nº:		
Tipo Comando:	TIMER/BOIA	DIS	SJUNTOR	
TP:		Marca:	GE	
TC:	SIEMENS 100-5 A	Ano Fabricação:		
Automatizado por:		Faixa de Ajuste:	FIXA	
Obs:		Corrente(A):	50	
Outros:	***************************************	CAPACITOR	DO BARRAMENTO	
	BOMBA	Marca:		
Tipo:	SUBMERSA	Potência(KVAr):		
Marca:	CRI	Corrente(A):		
Modelo:	S6S - 14	Célula:		
Nº Série:	055-101332	Contactor:		
Ano Fabricação:		Obs:		
Vazão(m³/h):	14 E 22		OR DA CARGA	
Potência(cv):	15,0	Marca:		
Alt.Manométr(mca):	170	Potência(KVAr):	·	
Velocidade(rpm):	3450	Corrente(A):		
Rotor:	0400	Célula:		
Sucção(mm):	***************************************	Contactor:		· <mark> </mark>
Recalque(mm):		Obs:		
Acoplamento:			POÇO	_
Obs:		Prof. poço (m):		⊣
	S INFORMAÇÕES	Prof. Bomba (m):	72	
	A SUBSTITUIR 12 BARRAS		4	
Outros: PRECISA	A SUDSTITUIR 12 BARRAS	NE (m):		
40.0400	AC DE 2"	ND (m):	46	
12 BARR	AS DE 3"	Eletrodo Superior (m):	66	
		Eletrodo Inferior (m):	72	
Data Atri-11 ~	00/00/0000	Diâmetro Edutor (pol):		-
Data Atualização:	20/08/2020	Levantado por:	PAULO/ ADEMIR/ LUIZ	

Sistema:	Irani		MOTOR	1
Unidade do Sistema:	Erat R2 ETA	Marca:	WEG/WEG	1
Endereço:	R. Ivo Silveira	Modelo/Carcaça:	JM132M/132S	1
Coord. Geográficas:		Nº Série:	AL12928/AH66180	
Conta EE Nº:	50279505	- Ano Fabricação:	1997/1996	Name of the
Medidor EE Nº:	B1351814	Potência(cv):	12,5/10	1
№ FU:		Velocidade(rpm):	3510/3510	
Local da Instalação:	Centro	Tensão(V):	380/660 / 220/380	45
QUAD	PRO DE COMANDO	Corrente(A):	17,4/10 / 25/14,5	
Fabricante:	AUTOMATIC	Fator de Serviço:	1,15/1,15	
Tipo da Partida:	DIRETA	Nº Fases:	3,0/3,0	
Contactores K1:	3TF43 SIEMENS	Rendimento(%):	87,5/85,8	
Contactores K2:		Cos Ø (%):	0,89/0,90	1
Contactores K3:		Rolamento D:	6308Z/6308Z	
Contactores Auxil:	CAW04 WEG	Rolamento T:	6207Z/6207Z	
Relé sobrecarga:	3UA52 16-25 SIEMENS	IP (A):	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1
Relé de tempo:		IP/IN:	8,6/7,5	
Relé de nível:		Obs:	IN=14,5	
Relé falta de fase:	FF-AS IMPER	-	SFORMADOR	
Proteção Geral:	DISJ. 40 A	Marca:		-
Proteção Equip:	FUZ. DZ 35 A	Ano Fabricação:		
Voltímetro:	KRON 0-500 V	Potência(KVA):		
Amperímetro:	intervence of the second	Classe Tensão:		1
Sinalizadores:		Tensão Secundário:		1
Horímetro:	DH COEL	No:		
Tipo Comando:	RÁDIO	-	SJUNTOR	1
TP:		Marca:	ELETROMAR	
TC:		Ano Fabricação:		1
Automatizado por:	VERSÃO	Faixa de Ajuste:	FIXA	
Obs:	VEI 107 10	Corrente(A):	50	
Outros:	***************************************		R DO BARRAMENTO	
	BOMBA	Marca:		
Tipo:	HORIZONTAL (MONOBLOCO)	Potência(KVAr):		A Charles
Marca:	KSB/ABS	Corrente(A):		
Modelo:	40/160 / 32-200	Célula:		1
Nº Série:	OP292779 / 9934	Contactor:		1
Ano Fabricação:	1998	Obs:		
Vazão(m³/h):		CARACI	TOR DA CARGA	1000
Potência(cv):		CAI ACI	TON DA GANGA	
	/10	Marca:	TON DA GANGA	
Alt.Manométr(mca):	/10 56			
Alt.Manométr(mca): Velocidade(rpm):		Marca:		
		Marca: Potência(KVAr):		
Velocidade(rpm):	56	Marca: Potência(KVAr): Corrente(A):		
Velocidade(rpm): Rotor:		Marca: Potência(KVAr): Corrente(A): Célula:		
Velocidade(rpm): Rotor: Sucção(mm):	56 174/185 100	Marca: Potência(KVAr): Corrente(A): Célula: Contactor:	POÇO	
Velocidade(rpm): Rotor: Sucção(mm): Recalque(mm):	56 174/185 100	Marca: Potência(KVAr): Corrente(A): Célula: Contactor:		
Velocidade(rpm): Rotor: Sucção(mm): Recalque(mm): Acoplamento: Obs:	56 174/185 100 75	Marca: Potência(KVAr): Corrente(A): Célula: Contactor: Obs:		
Velocidade(rpm): Rotor: Sucção(mm): Recalque(mm): Acoplamento: Obs:	56 174/185 100 75 2 CJTO AS INFORMAÇÕES	Marca: Potência(KVAr): Corrente(A): Célula: Contactor: Obs: Prof. poço (m):		
Velocidade(rpm): Rotor: Sucção(mm): Recalque(mm): Acoplamento: Obs:	56 174/185 100 75 2 CJTO	Marca: Potência(KVAr): Corrente(A): Célula: Contactor: Obs: Prof. poço (m): Prof. Bomba (m): NE (m):		
Velocidade(rpm): Rotor: Sucção(mm): Recalque(mm): Acoplamento: Obs:	56 174/185 100 75 2 CJTO AS INFORMAÇÕES Sucção negativa e	Marca: Potência(KVAr): Corrente(A): Célula: Contactor: Obs: Prof. poço (m): Prof. Bomba (m): NE (m): ND (m):	POÇO	
Velocidade(rpm): Rotor: Sucção(mm): Recalque(mm): Acoplamento: Obs:	56 174/185 100 75 2 CJTO AS INFORMAÇÕES Sucção negativa e	Marca: Potência(KVAr): Corrente(A): Célula: Contactor: Obs: Prof. poço (m): Prof. Bomba (m): NE (m): ND (m): Eletrodo Superior (r	POÇO	
Velocidade(rpm): Rotor: Sucção(mm): Recalque(mm): Acoplamento: Obs:	56 174/185 100 75 2 CJTO AS INFORMAÇÕES Sucção negativa e	Marca: Potência(KVAr): Corrente(A): Célula: Contactor: Obs: Prof. poço (m): Prof. Bomba (m): NE (m): ND (m):	POÇO	

Sistema:	Irani	M	IOTOR
Unidade do Sistema:	Poço P2	Marca:	LEÂO
Endereço:	R. José Fasolo	Modelo/Carcaça:	MB R28A-07710/015
Coord. Geográficas:		Nº Série:	19G8H-25-00240j
Conta EE Nº:	50293338	Ano Fabricação:	
Medidor EE Nº:	B0666328	Potência(cv):	15cv
№ FU:		Velocidade(rpm):	3500
Local da Instalação:	Centro	Tensão(V):	380
	RO DE COMANDO	Corrente(A):	25
Fabricante:		Fator de Serviço:	1,15
Tipo da Partida:	DIRETA	Nº Fases:	3,0
Contactores K1:	3TB42	Rendimento(%):	
Contactores K2:		Cos Ø (%):	
Contactores K3:		Rolamento D:	
Contactores Auxil:		Rolamento T:	
Relé sobrecarga:	3UA52 SIEMENS 16-25 A	IP (A):	
Relé de tempo:	00/102 012W2140 10 20 /	IP/IN:	
Relé de nível:	SIEMENS 220V	II /IIV. Obs:	
Relé falta de fase:	COEL 380V		FORMADOR
Proteção Geral:	FUZ. DZ 25 A	Marca:	. C.MINDON
Proteção Equip:	1 U.L. U.L ZU A	Ano Fabricação:	
Voltímetro:		Potência(KVA):	
Amperímetro:		Classe Tensão:	
Sinalizadores:		Tensão Secundário:	
Sinanzadores: Horímetro:	COEL 1/100	Nº:	
Tipo Comando:	RADIO		JUNTOR
TP:	RADIO	Marca:	
TC:			ELETROMAR
	VERSÃO	Ano Fabricação: Faixa de Ajuste:	
Automatizado por: Obs:	VERSAU	Corrente(A):	FIXA 50
Outros:			DO BARRAMENTO
Outros.	BOMBA	Marca:	DO BARRAWIENTO
Tino			
Tipo:	SUBMERSA LEÂO	Potência(KVAr):	
Marca: Modelo:		Corrente(A): Célula:	
Modelo. Nº Série:	R28A - 07	Contactor:	
Ano Fabricação:	1908425000240J	Obs:	
Vazão(m³/h):	20 / 36		OR DA CARGA
* * *			OR DA CARGA
Potência(cv):	15,0	Marca:	
Alt.Manométr(mca):	107 / 68	Potência(KVAr):	
Velocidade(rpm):	3500	Corrente(A):	
Rotor:	0.1	Célula:	
Sucção(mm):	3"	Contactor:	
Recalque(mm):		Obs:	2000
Acoplamento:			POÇO
Obs:	S INFORMAÇÕES	Prof. poço (m):	60mt
	AS INFORMAÇÕES	Prof. Bomba (m):	60mt
	nstalar 10 barras 25mm pvc	NE (m):	5
do nivel.		ND (m):	42
	Q= 23m3/h	Eletrodo Superior (m)	
	H= 90M	Eletrodo Inferior (m):	59mt
		Diâmetro Edutor (pol)	
Data Atualização:	13/01/2020	Levantado por:	Paulo/ Ademir / Luiz

Sistema:	Irani	MOTOR	
Unidade do Sistema:	Poço P1	Marca:	
Endereço:	Próx. Gin. Esportes	Modelo/Carcaça:	
Coord. Geográficas:		Nº Série:	
Conta EE Nº:	50299026	Ano Fabricação:	
Medidor EE Nº:	B0988678	Potência(cv): 12,2	
№ FU:		Velocidade(rpm):	
Local da Instalação:	Centro	Tensão(V): 380	
QUAD	RO DE COMANDO	Corrente(A):	
Fabricante:		Fator de Serviço:	
Tipo da Partida:	DIRETA	Nº Fases:	
Contactores K1:	3TF43 SIEMENS	Rendimento(%):	
Contactores K2:		Cos Ø (%):	
Contactores K3:		Rolamento D:	
Contactores Auxil:	CW7 WEG	Rolamento T:	
Relé sobrecarga:	RB25 WEST 16-25 A	IP (A):	
Relé de tempo:		IP/IN:	
Relé de nível:	PN COEL	Obs: IN=24,5	
Relé falta de fase:	3UG04 SIEMENS	TRANSFORMADOR	
Proteção Geral:	DISJ. 50 A	Marca:	1
Proteção Equip:	FUZ. DZ 35 A	Ano Fabricação:	
Voltímetro:	KRON 0-500 V	Potência(KVA):	
Amperímetro:	KRON 0-500 A	Classe Tensão:	
Sinalizadores:	KKON 0 300 A	Tensão Secundário:	
Horímetro:	DH COEL	Nº:	
Tipo Comando:	TIMER	DISJUNTOR	
TP:		Marca: SOPRANO	
TC:	KRON 50-5 A	Ano Fabricação:	
Automatizado por:	KKON 30-3 A	Faixa de Ajuste: FIXA	
Obs:		Corrente(A): 50	
Outros:	***************************************	CAPACITOR DO BARRAMENT	.
outros.	BOMBA	Marca:	-
Tine			
Tipo:	SUBMERSA	Potência(KVAr):	
Marca: Modelo:	VAMBRO VBUP-65-7E	Corrente(A):	
Nº Série:	VBUF-03-7E	Contactor:	
Ano Fabricação:		Obs:	
Vazão(m³/h):		CAPACITOR DA CARGA	1
Potência(cv):	40LID	Marca:	
Alt.Manométr(mca):	10HP		
	***************************************	Potência(KVAr):	
Velocidade(rpm): Rotor:		Corrente(A): Célula:	

Sucção(mm):		Contactor:	
Recalque(mm):		Obs:	
Acoplamento:		Prof. noor (m):	
Obs:	AS INCODMAÇÕES	Prof. poço (m):	
	AS INFORMAÇÕES	Prof. Bomba (m): 60	
Outros:		NE (m): 21	
		ND (m): 38	
		Eletrodo Superior (m): 50	
		Eletrodo Inferior (m): 60	
-		Diâmetro Edutor (pol): 2	
Data Atualização:	30/08/2016	Levantado por: PAULO/IVAR	

Tombamento	Denominação de imobilizado 1	Denominação de imobilizado 2	Nº de série	Centro custo	Descrição Centro	Iní.dpr.no	Otalncorp. Moeda	Aquisição I	Depreciação V	'alor Atual Classe
103437.000 102550.000	CENTRAL DE AUTOMACAO COMPLETA - M. INFINIUM CJTO MOTO BOMBA SUB., MOD.	POCO P4 710/017/38TR+R28A-08-FF, M. LEAO NS 223041215	223041215	401540011 401540011	IRANI CAP	01/05/2016 01/01/2016	02/05/2016 BRL 04/01/2016 BRL	4.262,00 4.483.50	-1.811,35 -2.054.94	2.450,65 14185100 2.428.56 14185100
048477.000 049725.000	CJTO MOTO BOMBA SUBMERSA TRIFASICA 18,0 HP, MOD CJTO MOTO BOMBA SUBMERSA TRIFASICA 25,0HP, MOD.	. VBSP 613.08.180.Y, M. VANBRO	223041213	401540011 401540011 401540011	IRANI CAP IRANI CAP	01/07/2014 01/11/2014	11/07/2014 BRL 01/11/2014 BRL	5.500,00 5.499,99	-3.330,99 -3.162,45	2.169,01 14185100 2.337,54 14185100
109481.000 044317.000	MACROMEDIDOR MECANICO, WOLTMANN DN 80MM MOTOBOMBA SUBMERSA 610/011/38TR+R20-10 FF	MOD. H4000, M. ELSTER, COR AZUL HIDROSTATICO M.LEAO NS.40730512	J19NA00138	401540011 401540011	IRANI CAP	01/07/2019 01/07/2012	01/07/2019 BRL 02/07/2012 BRL	1.129,08 3.506,84	-1.129,08 -2.834,54	0,00 14190000 672,30 14185100
044325.000 033547.000 120362.000	MOTOBOMBA SUBMERSA 710/017/38TR+R28-08 FF MOTOBOMBA SUBMERSIVEL M. VANBRO 3500 RPM N/S29 PAINEL DE COMANDO ELETRICO C/INV. DE FREQ.	HIDROSTATICO M.LEAO NS.39370512 I DIM: 60X40X100		401540011 401540011 401540011	IRANI CAP IRANI CAP IRANI CAP	01/07/2012 01/01/2005 02/01/2017	02/07/2012 BRL 14/01/2005 BRL 02/01/2017 BRL	4.650,35 2.297,00 0,01	-3.758,92 -2.297,00 -0,01	891,43 14185100 0,00 14185100 0,00 14185100
120363.000 120372.000	PAINEL DE COMANDO ELETRICO, DIM: 30X10X25 PAINEL DE COMANDO ELETRICO, DIM: 50X20X60	1 MODS. 1 MODS.		401540011 401540011	IRANI CAP IRANI CAP	02/01/2017 02/01/2017	02/01/2017 BRL 02/01/2017 BRL	0,01 0,01	-0,01 -0,01	0,00 14185100 0,00 14185100
061454.000 063731.000 120371.000	POCO COM PROFUNDIDADE DE 100.00 METROS POCO COM PROFUNDIDADE DE 84.00 METROS QUADRO DE FORCA, DIM: 60X25X100 M. AUTOMATIC			401540011 401540011 401540011	IRANI CAP IRANI CAP IRANI CAP	01/06/1995 01/06/1995 02/01/2017	01/06/1995 BRL 01/06/1995 BRL 02/01/2017 BRL	4.702,34 8.887,41 0,01	-4.702,34 -8.887,41 -0,01	0,00 14180200 0,00 14180200 0,00 14185100
051444.000 050629.000	TERRENO C/300,00 M2 RUA OSORIO DE OLIVEIRA VARGA TERRENO COM 300.00 M2 RUA JOSE CAROLLO-L/PINHEIR			401540011 401540011	IRANI CAP IRANI CAP	01/01/2012 01/01/2012	13/12/2005 BRL 01/06/1995 BRL	20.000,00 3.927,92	-3.433,17 -673,99	16.566,83 14180100 3.253,93 14180100
051064.000 068481.000 068480.000	TERRENO COM 375.00 M2 AV. GOV. IVO SILVEIRA S/N EQUIPAMENTOS POCO PROFUNDO RECALQUE POCO PROFUNDO			401540011 401540013 401540013	IRANI CAP IRANI AAB/ERAB IRANI AAB/ERAB	01/01/2012 01/03/1997 01/03/1997	01/06/1995 BRL 01/03/1997 BRL 01/03/1997 BRL	4.525,55 5.607,60 7.779.28	-776,77 -5.607,60 -7.286.38	3.748,78 14180100 0,00 14185100 492.90 14180600
061681.000 061682.000	REDE DE ADUCAO AGUA BRUTA EM FOFO COM 75 MM DE REDE DE ADUCAO AGUA BRUTA EM PVC COM 75 MM DE I			401540013 401540013	IRANI AAB/ERAB IRANI AAB/ERAB	01/06/1995 01/06/1995	01/06/1995 BRL 01/06/1995 BRL	10.247.20 11.396,93	-5.859.71 -5.972,00	4.387.49 14180600 5.424,93 14180600
100120.000 100121.000 109080.000	BOMBA CENT. HOR. MONOBLOCO 8CV. MOD. MEGABLOC BOMBA CENT. HOR. MONOBLOCO 8CV, MOD. MEGABLOC BOMBA DOSADORA DIAFRAGMA 10L/H 3BAR 800 EML TER	80-50-200 GG, M. KSB		401540015 401540015 401540015	IRANI ETA IRANI ETA	01/01/2015 01/01/2015	16/12/2014 BRL 16/12/2014 BRL	3.190.98 3.190,98 1.460.73	-1.795.34 -1.795,34	1.395.64 14185100 1.395,64 14185100
044778.000 044779.000	BOMBA DOSADORA ELETROMAGNETICA DE DIAFRAGMA BOMBA DOSADORA ELETROMAGNETICA DE DIAFRAGMA	2BAR DLX MA/AD 05-07 PVDF M.ETA		401540015 401540015 401540015	IRANI ETA IRANI ETA IRANI ETA	01/06/2019 01/11/2012 01/11/2012	07/06/2019 BRL 12/11/2012 BRL 12/11/2012 BRL	604,00 604.00	-170.42 -467,97 -467.97	1.290.31 14185200 136.03 14185200 136.03 14185200
044780.000 120369.000	BOMBA DOSADORA ELETROMAGNETICA DE DIAFRAGMA CADEIRA GIRATORIA SEM BRACO REF.N054 RODFLEX			401540015 401540015	IRANI ETA IRANI ETA	01/11/2012 01/01/2017	12/11/2012 BRL 12/02/1992 BRL	604,00 40.66	-467,97 -40.66	136,03 14185200 0.00 14181200
061586.000 105589.000 034319.000	CASA DE QUIMICA COM DESINFECCAO - CQ1 COM AREA COLORIMETRO - MEDIDOR PORTATIL DE CAMPO E COLORIMETRO P/FLUOR EM AGUAS MOD.DL-FL M. DEL L.	LABORATORIO. MOD. DM-CL. M. DIGIMED	0504	401540015 401540015 401540015	IRANI ETA IRANI ETA IRANI ETA	01/06/1995 01/03/2017 01/01/2017	01/06/1995 BRL 01/03/2017 BRL 12/07/2005 BRL	5.019,31 2.763.80 569,00	-2.870,82 -944.30 -569,00	2.148,49 14180400 1.819.50 14185300 0,00 14185300
120364.000 120367.000	MACROMEDIDOR DE VAZAO M. ROSEMOUNT MOD. 87120 MAQUINA ELETRICA DE CORTAR GRAMA MC 35-1 M. TRAI		01-TM-J058	401540015 401540015	IRANI ETA IRANI ETA	02/01/2017 01/01/2017	02/01/2017 BRL 29/10/2001 BRL	0,01 266,05	-0,01 -266,05	0,00 14181000 0,00 14190000
120370.000 120366.000 120365.000	MESA P/MAQUINA REF 070 - GRITSCH MOTOBOMBA CENTRIFUGA, CAP: NT, POT. 10 CV MOTOBOMBA CENTRIFUGA. CAP: NT. POT. 12.5 CV	M. STARMAC MOD. 32200 M. KSB MOD. MEGABLOC 80-50-200		401540015 401540015 401540015	IRANI ETA IRANI ETA IRANI ETA	01/01/2017 02/01/2017 02/01/2017	31/07/1978 BRL 02/01/2017 BRL 02/01/2017 BRL	121,82 0,01 0.01	-121,82 -0,01 -0.01	0,00 14181200 0,00 14185100 0.00 14185100
120368.000 046001.000	QUADRO DE FORCA, DIM: 60X25X100 M. AUTOMATIC ROCADEIRA MOTOR A GASOLINA MOD.FS160 M.STIHL			401540015 401540015	IRANI ETA IRANI ETA	02/01/2017 01/03/2013	02/01/2017 BRL 06/03/2013 BRL	0,01 1.535,00	-0,01 -1.138,40	0,00 14185100 396,60 14185100
046449.000 104458.000 061587.000	SISTEMA DE CONTROLE SAA EM TELECOMANDO TANQUE POLIPROPILENO 150 LITROS, M. UNION CASA DE BOMBAS COM AREA DE 35.51 M2			401540015 401540015 401540021	IRANI ETA IRANI ETA IRANI RES	01/08/2013 01/11/2016 01/06/1995	05/08/2013 BRL 14/11/2016 BRL 01/06/1995 BRL	5.116,80 2.359,94 12.420,61	-3.581,76 -354,00 -7.103,27	1.535,04 14185100 2.005,94 14182700 5.317,34 14180400
109495.000 066628.000	MACROMEDIDOR MECANICO, WOLTMANN DN 200MM RESERVATORIO ELEVADO 20 M3	MOD. H4000, M. ELSTER, COR AZUL	18W732135	401540021 401540021	IRANI RES IRANI RES	01/07/2019 01/01/1997	01/07/2019 BRL 30/01/1997 BRL	4.680,02 13.674,14	-507,00 -12.899,18	4.173,02 14181000 774,96 14180400
061585.000 127085.000 061584.000	RESERVATORIO ELEVADO R2 COM VOLUME DE 40.00 M3 RESERVATORIO INOX - 200 M3 RESREVATORIO R1 ELEVADO COM VOLUME DE 40.00 M3	RUA ALVO DALLAGO - GARGETTI		401540021 401540021 401540021	IRANI RES IRANI RES IRANI RES	01/06/1995 01/01/2020 01/06/1995	01/06/1995 BRL 01/01/2020 BRL 01/06/1995 BRI	19.518,34 243.900,00 8.893,21	-11.160,91 -4.878,00 -5.084,12	8.357,43 14180400 239.022,00 14182700 3.809,09 14180400
050481.000 051065.000	TERRENO COM 381.00 M2 R.JOAO MARIA-L/J.MARIA ROSA TERRENO COM 400.00 M2 AV. GOV. IVO SILVEIRA S/N	1		401540021 401540021	IRANI RES IRANI RES	01/01/2012 01/01/2012	01/06/1995 BRL 01/06/1995 BRL	2.359,39 4.821,36	-404,92 -827,90	1.954,47 14180100 3.993,46 14180100
051063.000 066631.000 066632.000	TERRENO COM 900.00 M2 AV. GOV. IVO SILVEIRA S/N 1.039 M DE REDE EM PVC 50 MM 1.350 M DE REDE EM PVC 75 MM			401540021 401540023 401540023	IRANI RES IRANI RED AG IRANI RED AG	01/01/2012 01/01/1997 01/01/1997	01/06/1995 BRL 30/01/1997 BRL 30/01/1997 BRI	10.045,58 16.248,22 21.109.50	-1.724,37 -15.327,33 -19.914.44	8.321,21 14180100 920,89 14180600 1.195.06 14180600
066629.000 066630.000	322 M DE REDE EM PVC 32 MM 410 M DE REDE EM PVC 40 MM			401540023 401540023	IRANI RED AG IRANI RED AG	01/01/1997 01/01/1997	30/01/1997 BRL 30/01/1997 BRL	5.036,99 6.413.39	-4.751,57 -6.050.45	285,42 14180600 362.94 14180600
043569.000 077198.000	BOMBA MONOBLOCO BC 92S GA 2CV V=10M3H M.SCHNE EQUIPAMENTOS OBRA INST.PERIODO 02/01 A 31/12/16			401540023 401540023	IRANI RED AG IRANI RED AG	01/03/2012 01/06/2017	14/03/2012 BRL 31/05/2017 BRL	945,00 1.822.00	-795,62 -576.96	149,38 14185100 1.245.04 14185100
072611.000 066627.000 068264.000	EQUIPAMENTOS PARA OBRAS INSTALADOS NO PERIODO ESTACAO DE RECALQUE DE AGUA TRATADA EES EXTENCAO DE REDE NO PERIODO DE 01/07/98 A 31/12/98	02/01/00 A 31/12/00		401540023 401540023 401540023	IRANI RED AG IRANI RED AG IRANI RED AG	01/03/2007 01/01/1997 01/12/1998	02/03/2007 BRL 30/01/1997 BRL 31/12/1998 BRL	2.720,00 2.769.07 4.351,18	-2.720,00 -2.612.09 -3.770,23	0,00 14185100 156.98 14180400 580,95 14180600
069470.000 072610.000	EXTENCAO DE REDES NO PERIODO DE 02/01/00 A EXTENCAO DE REDES NO PERIODO DE 02/01/06 A 31/12/	30/06/00 06		401540023 401540023	IRANI RED AG IRANI RED AG	01/07/2000 01/03/2007	03/07/2000 BRL 02/03/2007 BRL	453.49 16.414,98	-364.00 -8.809,74	89.49 14180600 7.605,24 14180600
073920.000 074318.000 074846.000	EXTENCAO DE REDES NO PERIODO DE 02/01/09 A EXTENCAO DE REDES NO PERIODO DE 02/01/10 A EXTENCAO DE REDES NO PERIODO DE 02/01/11 A	31/12/09 31/12/10 31/12/11		401540023 401540023 401540023	IRANI RED AG IRANI RED AG IRANI RED AG	01/04/2010 01/04/2011 01/04/2012	01/04/2010 BRL 01/04/2011 BRL 02/04/2012 BRL	6.282.82 2.193,12 16.708.10	-2.596.70 -818,72 -5.569.19	3.686.12 14180600 1.374,40 14180600 11.138.91 14180600
072168.000 065584.000	EXTENCAO DE REDES NO PERIODO DE 03/01/05 A EXTENSAO DE REDE NO PERIODO DE 01.07.95 A 31.12.95	31/12/05		401540023 401540023	IRANI RED AG IRANI RED AG	01/01/2006 01/12/1995	03/01/2006 BRL 31/12/1995 BRL	4.132,56 23,69	-2.411,23 -23,63	1.721,33 14180600 0,06 14180400
066398.000 075054.000 075997.000	EXTENSAO DE REDE NO PERIODO DE 01/01/96 A 31/12/96 EXTENSAO DE REDES NO PERIODO DE 02/01/12 A EXTENSÃO DE REDES NO PERIODO DE 02/01/14 A	31/12/12 31/12/14		401540023 401540023 401540023	IRANI RED AG IRANI RED AG IRANI RED AG	01/12/1996 01/04/2013 01/05/2015	31/12/1996 BRL 01/04/2013 BRL 01/05/2015 BRL	7.057,18 35.599,15 3.432.59	-6.679,91 -10.442,31 -720.81	377,27 14180600 25.156,84 14180600 2.711.78 14180600
076504.000 075625.000	EXTENSÃO DE REDES NO PERIODO DE 02/01/15 A EXTENSÃO DE REDES NO PERIODO DE 02/01/2013 A	31/12/15 31/12/2013		401540023 401540023	IRANI RED AG IRANI RED AG	02/05/2016 01/04/2014	02/05/2016 BRL 01/04/2014 BRL	11.930,39 7.102,02	-2.028,18 -1.799,10	9.902,21 14180600 5.302,92 14180600
077196.000 065052.000 107542.000	EXTENSÃO DE REDES PERIODO DE 02/01 A 31/12/16 EXTENSÃO DE REDES REALIZADAS NO PERIODO DE 02.0 GEOFONE ELETRONICO, COR PRETO, MOD. ECO200	1 M. SANESOLUT		401540023 401540023 401540023	IRANI RED AG IRANI RED AG IRANI RED AG	01/06/2017 01/07/1995 01/10/2018	31/05/2017 BRL 01/07/1995 BRL 01/10/2018 BRL	2.114,11 35,52 7.023,80	-267,78 -35,52 -1.287,70	1.846,33 14180600 0,00 14180600 5.736,10 14185900
101380.000 077197.000	GEOFONE ELETRONICO, MOD. XLT-17, M. FISHER NS HIDROMETROS INSTALADOS - PERIODO 02/01 31/12/16	051503652	051503652	401540023 401540023 401540023	IRANI RED AG IRANI RED AG	01/01/2017 01/06/2017	01/07/2015 BRL 31/05/2017 BRL	5.699,63 4.492,26	-2.897,32 -1.422,56	2.802,31 14185900 3.069,70 14180900
065585.000 066819.000	HIDROMETROS INSTALADOS NO PERIODO DE 01.07.95 A HIDROMETROS INSTALADOS NO PERIODO DE 01/01/97 A	30/06/97		401540023 401540023	IRANI RED AG IRANI RED AG	01/12/1995 01/07/1997	31/12/1995 BRL 01/07/1997 BRL 02/01/2001 BRL	425,69 3.150,40	-425,69 -3.150,40	0,00 14180900 0,00 14180900
069774.000 067316.000 068262.000	HIDROMETROS INSTALADOS NO PERIODO DE 01/07/00 A HIDROMETROS INSTALADOS NO PERIODO DE 01/07/97 A HIDROMETROS INSTALADOS NO PERIODO DE 01/07/98 A	30/09/97		401540023 401540023 401540023	IRANI RED AG IRANI RED AG IRANI RED AG	01/01/2001 01/09/1997 01/12/1998	30/09/1997 BRL 31/12/1998 BRL	487,00 4.855,40 4.460,00	-487,00 -4.855,40 -4.460,00	0,00 14180900 0,00 14180900 0,00 14180900
069153.000 065051.000	HIDROMETROS INSTALADOS NO PERIODO DE 01/07/99 A HIDROMETROS INSTALADOS NO PERIODO DE 02.01.95 A	31/12/99		401540023 401540023	IRANI RED AG IRANI RED AG	01/01/2000 01/07/1995	02/01/2000 BRL 01/07/1995 BRL	2.082,00 12.486,07	-2.082,00 -12.486,07	0,00 14180900 0,00 14180900
069468.000 072608.000 074606.000	HIDROMETROS INSTALADOS NO PERIODO DE 02/01/00 A HIDROMETROS INSTALADOS NO PERIODO DE 02/01/06 A HIDROMETROS INSTALADOS NO PERIODO DE 02/01/11 A	31/12/06		401540023 401540023 401540023	IRANI RED AG IRANI RED AG IRANI RED AG	01/07/2000 01/03/2007 01/04/2012	03/07/2000 BRL 02/03/2007 BRL 02/04/2012 BRL	428,40 5.499,30 3.192,58	-428,40 -5.499,30 -2.660,27	0,00 14180900 0,00 14180900 532.31 14180900
075217.000 076138.000	HIDROMETROS INSTALADOS NO PERIODO DE 02/01/12 A HIDROMETROS INSTALADOS NO PERIODO DE 02/01/14 A	31/12/14		401540023 401540023	IRANI RED AG IRANI RED AG	01/04/2013 01/05/2015	01/04/2013 BRL 01/05/2015 BRL	35.267.46 5.027,72	-25.862.97 -2.639,56	9.404.49 14180900 2.388,16 14180900
076655.000 075776.000 071615.000	HIDROMETROS INSTALADOS NO PERIODO DE 02/01/15 A HIDROMETROS INSTALADOS NO PERIODO DE 02/01/2013 HIDROMETROS INSTALADOS NO PERIODO DE 03/01/04 A	. 31/12/2013		401540023 401540023 401540023	IRANI RED AG IRANI RED AG IRANI RED AG	02/05/2016 01/04/2014 01/01/2005	02/05/2016 BRL 01/04/2014 BRL 03/01/2005 BRL	6.848.20 3.295,14 369.40	-2.910.49 -2.086,92 -369.40	3.937.71 14180900 1.208,22 14180900 0.00 14180900
072166.000	HIDROMETROS INSTALADOS NO PERIODO DE 03/01/05 A IRANI - PAR - ÁGUA	31/12/05		401540023 401540023	IRANI RED AG IRANI RED AG	01/01/2006 01/08/2016	03/01/2006 BRL	1.693,00 0.00	-1.693,00 0.00	0,00 14180900 0.00 16120000
066633.000 067619.000 065583.000	LIGACOES DOMICILIARES LIGACOES DOMICILIARES NO PERIODO DE 01/10/97 A LIGACOES PREDIAIS NO PERIODO DE 01.07.95 A 31.12.9	30/12/97		401540023 401540023 401540023	IRANI RED AG IRANI RED AG IRANI RED AG	01/01/1997 01/12/1997 01/12/1995	30/01/1997 BRL 30/12/1997 BRL 31/12/1995 BRL	2.528,81 329.29 615.49	-2.528,81 -329.29 -615.49	0,00 14180700 0.00 14180700 0.00 14180700
070888.000 071216.000	LIGAÇOES PREDIAIS NO PERIODO DE 01/01/02 A LIGAÇOES PREDIAIS NO PERIODO DE 01/01/03 A	31/12/02 31/12/03		401540023 401540023	IRANI RED AG IRANI RED AG	01/01/2003 01/01/2004	02/01/2003 BRL 02/01/2004 BRL	1.170.80 341,59	-1.029.59 -282,76	141.21 14180700 58,83 14180700
066399.000 066818.000 069775.000	LIGACOES PREDIAIS NO PERIODO DE 01/01/96 A 31/12/9 LIGACOES PREDIAIS NO PERIODO DE 01/01/97 A LIGACOES PREDIAIS NO PERIODO DE 01/07/00 A	30/06/97 31/12/00		401540023 401540023 401540023	IRANI RED AG IRANI RED AG IRANI RED AG	01/12/1996 01/07/1997 01/01/2001	31/12/1996 BRL 01/07/1997 BRL 02/01/2001 BRL	1.561,66 458,85 841,96	-1.561,66 -458,85 -824.76	0,00 14180700 0,00 14180700 17,20 14180700
070592.000 068263.000	LIGACOES PREDIAIS NO PERIODO DE 01/07/01 A LIGACOES PREDIAIS NO PERIODO DE 01/07/98 A	31/12/01 31/12/98		401540023 401540023	IRANI RED AG IRANI RED AG	01/01/2002 01/12/1998	02/01/2002 BRL 31/12/1998 BRL	491,21 640,19	-456,97 -640,19	34,24 14180700 0,00 14180700
069154.000 067946.000	LIGAÇOES PREDIAIS NO PERIODO DE 01/07/99 A LIGAÇOES PREDIAIS NO PERIODO DE 02/01 A 30/06/98 LIGAÇOES PREDIAIS NO PERIODO DE 02/01/00 A	31/12/99 30/06/00		401540023 401540023 401540023	IRANI RED AG IRANI RED AG	01/01/2000 01/07/1998 01/07/2000	02/01/2000 BRL 01/07/1998 BRL 03/07/2000 BRI	555,33 468,16 1 174 13	-555,33 -468,16	0.00 14180700 0.00 14180700 0.00 14180700
069469.000 070200.000 072609.000	LIGAÇOES PREDIAIS NO PERIODO DE 02/01/01 A LIGAÇOES PREDIAIS NO PERIODO DE 02/01/06 A	30/06/01 31/12/06		401540023 401540023 401540023	IRANI RED AG IRANI RED AG IRANI RED AG	01/07/2000 01/07/2001 01/03/2007	03/07/2000 BRL 02/07/2001 BRL 02/03/2007 BRL	1.174,13 430,18 366,24	-1.174,13 -410,05 -246,10	0,00 14180700 20,13 14180700 120,14 14180700
073509.000 068679.000 072167.000	LIGACOES PREDIAIS NO PERIODO DE 02/01/08 A LIGACOES PREDIAIS NO PERIODO DE 02/01/99 A LIGACOES PREDIAIS NO PERIODO DE 03/01/05 A	31/12/08 30/06/99 31/12/05		401540023 401540023 401540023	IRANI RED AG IRANI RED AG IRANI RED AG	01/03/2009 01/07/1999 01/01/2006	02/03/2009 BRL 01/07/1999 BRL 03/01/2006 BRI	1.072,05 856,78 467,20	-612,21 -856,78 -341.07	459,84 14180700 0,00 14180700 126,13 14180700
065053.000 070887.000	LIGAÇOES REALIZADAS NO PERIODO DE 02.01.95 A 30.06 MACRO MEDIDORES INSTALADOS NO PERIODO DE 01/01/			401540023 401540023	IRANI RED AG IRANI RED AG	01/07/1995 01/01/2003	01/07/1995 BRL 02/01/2003 BRL	451,36 5.189,30	-451,36 -5.189,30	0.00 14180700 0.00 14181000
077527.000 120360.000	MICROMEDIÇÃO - PROJETO GECON MOTOBOMBA CENTRIFUGA, POT. 2.0 CV	M. KSC MOD. HIDROBLOC C2000		401540023 401540023	IRANI RED AG IRANI RED AG	01/11/2017 02/01/2017	01/11/2017 BRL 02/01/2017 BRL	18.830,57 0,01	-5.178,41 -0,01	13.652,16 14180900 0,00 14185100
120361.000 099998.163 060357.000	QUADRO DE FORCA, DIM: 40X20X60 REDE DE DISTRIBUICAO REDE DE DISTRIBUICAO - No DE HIDROMETROS: 413			401540023 401540023 401540023	IRANI RED AG IRANI RED AG IRANI RED AG	02/01/2017 01/05/2013 01/06/1995	02/01/2017 BRL 01/05/2013 BRL 01/06/1995 BRL	0,01 109.620,95 15.172,37	-0,01 -18.818,19 -7.486,67	0,00 14185100 90.802,76 14180601 7.685,70 14180900
060130.000 061686.000	REDE DE DISTRIBUICAO - No DE LIG: 822 REDE DE DISTRIBUICAO EM PVC COM 32 MM DE DIAM CO			401540023 401540023	IRANI RED AG IRANI RED AG	01/06/1995 01/06/1995	01/06/1995 BRL 01/06/1995 BRL	44.833,63 46.698.94	-22.124,42 -23.042.93	22.709,21 14180700 23.656.01 14180600
061685.000 061684.000 061683.000	REDE DE DISTRIBUICAO EM PVC COM 40 MM DE DIAM CO REDE DE DISTRIBUICAO EM PVC COM 50 MM DE DIAM CO REDE DE DISTRIBUICAO EM PVC COM 75 MM DE DIAM CO	9 5995.00 M 9 3180.00 M - No DE LIG: 822		401540023 401540023 401540023	IRANI RED AG IRANI RED AG IRANI RED AG	01/06/1995 01/06/1995 01/06/1995	01/06/1995 BRL 01/06/1995 BRL 01/06/1995 BRL	84.897,81 74.358.25 53.903,94	-41.893,53 -36.690.57 -26.600,06	43.004,28 14180600 37.667.68 14180600 27.303,88 14180600
076756.000 077927.000	VALVULAS E HIDRANTES INSTALADOS NO PERIODO DE EXTENSAO DE REDES NO PER. DE 02/01/17 A 31/12/17			401540023 401540025	IRANI RED AG IRANI RAM AG	02/05/2016 01/06/2018	02/05/2016 BRL 31/05/2018 BRL	3.448.18 2.082,19	-1.465.48 -180,45	1.982.70 14182400 1.901,74 14180600
078774.000 077194.000 078278.000	EXTENSÃO DE REDES NO PERIODO 02/01/19 A 31/12/19 EXTENSÃO DE REDES PERIODO DE 02/01 A 31/12/16 EXTENSÃO DE REDES PERIODO DE 02/01/18 A 31/12/18			401540025 401540025 401540025	IRANI RAM AG IRANI RAM AG IRANI RAM AG	01/03/2020 01/06/2017 01/03/2019	29/02/2020 BRL 31/05/2017 BRL 28/02/2019 BRL	8.725.55 3.501,16 7.261.41	-145.43 -443,48 -411.48	8.580.12 14180600 3.057,68 14180600 6.849.93 14180600
077928.000 078956.000	HIDROMETROS INST. NO PER. DE 02/01/17 A 31/12/17 HIDROMETROS INST. NO PERIODO 02/01/19 A 31/12/19			401540025 401540025	IRANI RAM AG IRANI RAM AG	01/06/2018 01/03/2020	31/05/2018 BRL 29/02/2020 BRL	4.566,21 31.666.31	-989,34 -1.319.43	3.576,87 14180900 30.346.88 14180900
077195.000	HIDROMETROS INSTALADOS - PERIODO 02/01 31/12/16 IRANI - LIG - ÁGUA ARMARIO C/2 PORTAS COR CINZA M. PREMIER			401540025 401540025 401540061	IRANI RAM AG IRANI RAM AG IRANI ADM	01/06/2017 01/09/2016 01/05/2001	31/05/2017 BRL 30/09/2016 BRL 02/05/2001 BRL	2.734,20 37.451,04 200,00	-865,84 0,00 -200,00	1.868,36 14180900 37.451,04 16120000 0,00 15190000
120357.000 030434.000	ARMARIO DE IMBUIA 9681 CIMO ARQUIVO DE ACO C/4 GAVETAS M. CELI			401540061 401540061	IRANI ADM IRANI ADM	01/12/1974 01/05/2001	03/12/1974 BRL 02/05/2001 BRL	530,52 113,90	-530,52 -113,90	0,00 15181200 0,00 15190000
108803.000 030374.000 030375.000	BEBEDOURO, MOD. JATO KARINA K40i CADEIRA FIXA S/BRAÇOS M. MOVELAR CADEIRA FIXA S/BRAÇOS M. MOVELAR		2582	401540061 401540061 401540061	IRANI ADM IRANI ADM IRANI ADM	01/04/2019 01/05/2001 01/05/2001	05/04/2019 BRL 30/05/2001 BRL 30/05/2001 BRL	876,80 28,20 28,20	-876,80 -28,20 -28,20	0,00 15190000 0,00 15190000 0,00 15190000
030376.000 120359.000	CADEIRA FIXA S/BRAÇOS M. MOVELAR CADEIRA GIRATORIA C/BRACOS P/DIGITADOR			401540061 401540061	IRANI ADM IRANI ADM	01/05/2001 01/10/2007	30/05/2001 BRL 05/10/2007 BRL	28,20 380,61	-28,20 -380,61	0,00 15190000 0,00 15181200
030460.000 024197.000 101294.000	CADEIRA GIRATORIA S/BRAÇOS M. MOVELAR GEOFONE MECANICO GEOFONE MECANICO EM BRONZE MOD. GM-01 M.MECAL			401540061 401540061 401540061	IRANI ADM IRANI ADM IRANI ADM	01/05/2001 01/05/1998 01/07/2015	02/05/2001 BRL 26/05/1998 BRL 17/06/2015 BRL	192,00 320,00 1,200,00	-192,00 -320,00 -614.67	0,00 15190000 0,00 15190000 585.33 15185100
047802.000 120355.000	MACRO MEDIDOR HIDROMETRO WOLTMANNN MODELO L MAQ. DE CALCULAR ELETRONICA MOD. 2275 N 914583 M/	. M.NB-AVS		401540061 401540061	IRANI ADM IRANI ADM	01/01/2017 01/01/1992	14/01/2014 BRL 14/01/1992 BRL	1.112,78 248,26	-728,62 -248,26	384,16 15181000 0,00 15181200
120356.000 046946.000 030287.000	MAQUINA DE ESCREVER MANUAL MOD. 1742/4221 SERIE MEDIDOR NIVEL DE AGUA BATERIA 9V CABO 100MT M.HS MESA EM CEREJEIRA C/3 GAVETAS	HIDRO		401540061 401540061 401540061	IRANI ADM IRANI ADM IRANI ADM	01/01/1992 01/12/2013 01/05/2001	14/01/1992 BRL 25/11/2013 BRL 30/05/2001 BRL	450,56 2.172,77 126,52	-450,56 -1.466,71 -126,52	0,00 15181200 706,06 15185100 0,00 15190000
030330.000 120358.000	MESA EM CEREJEIRA P/MAQUINA DE ESCREVER MESA P/MICROCOMPUTADOR 060X120 TUBO 30X50			401540061 401540061	IRANI ADM IRANI ADM	01/05/2001 01/12/2003	30/05/2001 BRL 31/12/2003 BRL	52,82 100,00	-52,82 -100,00	0,00 15190000 0,00 15190000
036588.000 036312.000 036397.000	MICROCOMPUTADOR HP DC5750 MT SERIE BRB70908YR MONITOR HP LCD L156V DE 15 MONITOR HP LCD L1940T DE 19		BRB70908YR BRC64590QF CNC702226B	401540061 401540061 401540061	IRANI ADM IRANI ADM IRANI ADM	01/03/2007 01/03/2007 01/03/2007	12/03/2007 BRL 12/03/2007 BRL 12/03/2007 BRL	3.651,74 550,99 1.321,51	-3.651,74 -550,99 -1.321,51	0,00 15181303 0,00 15181302 0.00 15181302
025789.000 025788.000	SIST.SINALIZ.REMOTA NIV/RESERVATORIO/EST.RECALQU SISTEMA SINALIZ.REMOTA NIVEL RESERVATORIO V/RADI	(401540061 401540061	IRANI ADM IRANI ADM	01/01/2017 01/01/2017	01/12/1998 BRL 01/12/1998 BRL	10.545,00 6.750.00	-10.545,00 -6.750.00	0,00 15185600 0.00 15185600
045140.000 31.07.2020	THIN CLIENT	M.INIT, MOD.135	1351212000098	401540061	IRANI ADM	01/12/2012	06/12/2012 BRL BRL	1.466,63 1.340.052.63	-1.466,63 -537.471.22	0,00 15181303 802.581.41

COMPANHIA CATARINENSE DE ÁGUAS E SANEAMENTO Data: 26/08/2020

Superintendência: 4 - OESTE Agência: 596 - IRANI Período: 01/2018 à 12/2018
Agência Regional: 69 - AR - CONCÓRDIA Localidade: 1 - IRANI Período Consolidado até: 06/2020

DISCRIMINAÇÃO	Janeiro	Fevereiro	Março	Abril	Maio	Junho	Julho	Agosto	Setembro	Outubro	Novembro	Dezembro	RESULTADO
POPULAÇÃO TOTAL MUNICÍPIO (hab)	10.331	10.337	10.344	10.350	10.357	10.364	10.370	10.377	10.383	10.390	10.397	10.403	10.403
POPULAÇÃO URBANA (hab)	7.320	7.326	7.333	7.339	7.346	7.353	7.359	7.366	7.372	7.379	7.386	7.392	7.392
POPULAÇÃO RURAL (hab)	3.011	3.011	3.011	3.011	3.011	3.011	3.011	3.011	3.011	3.011	3.011	3.011	3.011
POPULAÇÃO TOTAL ATENDIDA AGUA/CASAN	8.172	8.165	8.188	8.204	8.224	8.247	8.208	8.218	8.244	8.257	8.280	8.293	8.293
POPULAÇÃO URB. ATENDIDA ÁGUA/CASAN (hab)	7.320	7.326	7.333	7.339	7.346	7.353	7.359	7.366	7.372	7.379	7.386	7.392	7.392
CONSUMO PER CAPITA (I/hab X dia)	143,68	144,60	137,84	137,92	138,06	139,32	138,85	137,67	136,74	134,08	138,85	149,55	139,76
VAZÃO DO SISTEMA (m³/h)	68,11	72,03	72,96	70,81	72,88	68,80	69,23	68,80	68,34	68,31	66,41	66,45	69,42
VAZÃO DO SISTEMA (I/s)	18,92	20,01	20,27	19,67	20,24	19,11	19,23	19,11	18,98	18,98	18,45	18,46	19,28
PERÍODO DE FUNCION. MENSAL DA ETA (h/mês)	534,66	459,10	479,72	479,56	483,09	501,11	510,51	509,94	495,14	502,60	519,53	578,92	504,49
PERÍODO DE FUNCION. DIÁRIO DA ETA (h/dia)	17,24	16,39	15,47	15,98	15,58	16,70	16,46	16,44	16,50	16,21	17,31	18,67	16,57
VOLUME CAPTADO (m³)	36.415	33.069	35.001	33.957	35.209	34.476	35.341	35.084	33.839	34.335	34.501	38.469	419.696
VOLUME PROCESSO (m³)													
VOLUME PRODUZIDO (m³)	36.415	33.069	35.001	33.957	35.209	34.476	35.341	35.084	33.839	34.335	34.501	38.469	419.696
VOLUME EXPORTADO PARA SAAs CASAN (m³)													
VOLUME IMPORTADO DE SAAs CASAN (m³)													
VOL. EXPORT. PARA SAAs MUNICIPALIZADOS (m³)													
VOL. IMPORT. DE SAAs MUNICIPALIZADOS (m³)													
VOLUME OPERACIONAL (m³)													
VOLUME ESPECIAL (m³)	15	10	12	10	10	6	10	10	19	14	10	20	146
VOLUME DISPONIBILIZADO (m³)	36.400	33.059	34.989	33.947	35.199	34.470	35.331	35.074	33.820	34.321	34.491	38.449	419.550
VOLUME DE PERDAS (m³)	11.033	8.517	11.942	8.147	11.023	10.272	11.558	10.966	7.674	10.691	9.714	11.395	122.932
VOLUME DE MACROMEDIDO (m³)	36.415	33.069	35.001	33.957	35.209	34.476	35.341	35.084	33.839	34.335	34.501	38.469	419.696
LIGAÇÕES - COM HIDRÔMETRO	2.427	2.425	2.430	2.435	2.439	2.447	2.438	2.441	2.448	2.446	2.451	2.452	2.452
TOTAL	2.427	2.425	2.430	2.435	2.439	2.447	2.438	2.441	2.448	2.446	2.451	2.452	2.452
ECONOMIAS - RESIDENCIAIS	2.499	2.497	2.504	2.509	2.515	2.522	2.510	2.513	2.521	2.525	2.532	2.536	2.536
TOTAL	2.749	2.748	2.756	2.761	2.769	2.777	2.767	2.771	2.783	2.792	2.798	2.802	2.802
REDE DISTRIBUIÇÃO - AMPLIAÇÃO NO MÊS (m)				852	390								1.242
INCORPORAÇÃO NO MÊS(m)		56				2.452							2.508
RETIRADA/ABANDONADA (m)				200	200								400
TOTAL ACUMULADO (m)	48.250	48.306	48.306	48.958	49.148	51.600	51.600	51.600	51.600	51.600	51.600	51.600	51.600
VOLUME MICROMEDIDO (m³)	24.275	23.877	22.333	24.677	23.652	23.549	22.657	22.763	25.024	22.803	24.149	26.049	285.808
VOLUME CRITICADO (m³)	1.092	665	714	1.123	524	649	1.116	1.345	1.122	827	628	1.005	10.810
VOLUME UTILIZADO (m³)	25.367	24.542	23.047	25.800	24.176	24.198	23.773	24.108	26.146	23.630	24.777	27.054	296.618
VOLUME FATURAMENTO TOTAL (m³)	32.490	31.742	31.105	32.737	31.828	32.034	32.137	32.149	33.406	31.964	32.509	33.920	388.021
PERDAS DE FATURAMENTO (m³)	3.910	1.317	3.884	1.210	3.371	2.436	3.194	2.925	414	2.357	1.982	4.529	31.529
INDICE DE ATENDIMENTO TOTAL ÁGUA/CASAN	79,10	78,98	79,15	79,26	79,40	79,57	79,15	79,19	79,39	79,47	79,63	79,71	79,71
INDICE DE ATENDIMENTO URBANO ÁGUA/CASAN	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
ÍNDICE DE HIDROMETRAÇÃO (%)	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
INDICE DE MACROMEDIÇÃO(%)	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
ÍNDICE DE PERDAS TOTAIS (%)	30,31	25,76	34,13	23,99	31,31	29,79	32,71	31,26	22,69	31,15	28,16	29,63	29,24
ÍNDICE DE PERDAS TOTAIS (IPL) (I/lig.dia)	146,64	125,43	158,52	111,52	145,78	139,92	152,92	144,91	104,49	140,99	132,10	149,91	137,76
ÍNDICE DE PERDAS DE FATURAMENTO (%)	10,74	3,98	11,10	3,56	9,57	7,06	9,04	8,33	1,22	6,86	5,74	11,77	7,41
ÍNDICE DE FATURAMENTO (%)	89,25	96,01	88,89	96,43	90,42	92,93	90,95	91,66	98,77	93,13	94,25	88,22	92,57
REDE/LIGAÇÃO(m/lig)	19,88	19,92	19,87	20,10	20,15	21,08	21,16	21,13	21,07	21,09	21,05	21,04	21,04
VOLUME DISPONIBILIZADO/ECONOMIA (m³/econ.)	13,24	12,03	12,69	12,29	12,71	12,41	12,76	12,65	12,15	12,29	12,32	13,72	12,60
CONSUMO MÉDIO DIÁRIO (l/s)	13,59	13,66	13,06	13,09	13,14	13,29	13,19	13,09	13,04	12,81	13,30	14,35	13,30
CONSUMO MÁXIMO DIÁRIO (l/s)	16,30	16,39	15,67	15,70	15,76	15,94	15,82	15,70	15,64	15,37	15,96	17,22	15,95
RESERVAÇÃO NECESSÁRIA (m³)	470,00	472,00	451,00	452,00	454,00	459,00	456,00	452,00	451,00	443,00	460,00	496,00	459,66

COMPANHIA CATARINENSE DE ÁGUAS E SANEAMENTO Sistema BADOP

Data: 26/08/2020

casan RELATÓRIO OPERACIONAL MENSAL DE ÁGUA

 Superintendência:
 4 - OESTE
 Agência:
 596 - IRANI
 Período:
 01/2019
 à
 12/2019

Agência Regional: 69 - AR - CONCÓRDIA Localidade: 1 - IRANI Período Consolidado até: 06/2020

DISCRIMINAÇÃO	Janeiro	Fevereiro	Março	Abril	Maio	Junho	Julho	Agosto	Setembro	Outubro	Novembro	Dezembro	RESULTADO
POPULAÇÃO TOTAL MUNICÍPIO (hab)	10.392	10.399	10.407	10.415	10.422	10.430	10.437	10.445	10.452	10.459	10.467	10.474	10.474
POPULAÇÃO URBANA (hab)	7.383	7.391	7.400	7.408	7.416	7.424	7.432	7.440	7.449	7.457	7.465	7.473	7.473
POPULAÇÃO RURAL (hab)	3.009	3.008	3.007	3.007	3.006	3.006	3.005	3.005	3.003	3.002	3.002	3.001	3.001
POPULAÇÃO TOTAL ATENDIDA AGUA/CASAN	8.325	8.368	8.378	8.397	8.404	8.404	8.424	8.404	8.424	8.440	8.440	8.473	8.473
POPULAÇÃO URB. ATENDIDA ÁGUA/CASAN (hab)	7.383	7.391	7.400	7.408	7.416	7.424	7.432	7.440	7.449	7.457	7.465	7.473	7.473
CONSUMO PER CAPITA (I/hab X dia)	150,43	151,69	152,88	141,67	138,96	140,48	139,71	144,43	148,61	143,50	146,09	144,62	145,25
VAZÃO DO SISTEMA (m³/h)	66,62	67,27	67,63	69,68	69,79	69,45	69,42	67,90	66,58	67,46	67,67	66,85	68,02
VAZÃO DO SISTEMA (l/s)	18,51	18,69	18,79	19,36	19,39	19,29	19,28	18,86	18,49	18,74	18,80	18,57	18,89
PERÍODO DE FUNCION. MENSAL DA ETA (h/mês)	582,88	528,50	587,21	512,47	518,78	510,46	525,73	554,47	564,57	556,74	546,89	568,68	546,44
PERÍODO DE FUNCION. DIÁRIO DA ETA (h/dia)	18,80	18,87	18,94	17,08	16,73	17,01	16,95	17,88	18,81	17,95	18,22	18,34	17,96
VOLUME CAPTADO (m³)	38.833	35.553	39.716	35.710	36.208	35.453	36.497	37.647	37.587	37.556	37.010	38.017	445.787
VOLUME PROCESSO (m³)													
VOLUME PRODUZIDO (m³)	38.833	35.553	39.716	35.710	36.208	35.453	36.497	37.647	37.587	37.556	37.010	38.017	445.787
VOLUME EXPORTADO PARA SAAs CASAN (m³)													
VOLUME IMPORTADO DE SAAs CASAN (m³)													
VOL. EXPORT. PARA SAAs MUNICIPALIZADOS (m³)													
VOL. IMPORT. DE SAAs MUNICIPALIZADOS (m³)													
VOLUME OPERACIONAL (m³)													
VOLUME ESPECIAL (m³)	10	10	10	21	4	33	12	19	30	10	18	30	207
VOLUME DISPONIBILIZADO (m³)	38.823	35.543	39.706	35.689	36.204	35.420	36.485	37.628	37.557	37.546	36.992	37.987	445.580
VOLUME DE PERDAS (m³)	12.040	9.116	16.326	10.807	12.067	10.026	12.957	13.743	11.501	12.851	11.040	11.036	143.510
VOLUME DE MACROMEDIDO (m³)	38.833	35.553	39.716	35.710	36.208	35.453	36.497	37.647	37.587	37.556	37.010	38.017	445.787
LIGAÇÕES - COM HIDRÔMETRO	2.460	2.470	2.467	2.470	2.467	2.468	2.472	2.466	2.471	2.477	2.477	2.481	2.481
TOTAL	2.460	2.470	2.467	2.470	2.467	2.468	2.472	2.467	2.471	2.477	2.477	2.481	2.481
ECONOMIAS - RESIDENCIAIS	2.546	2.559	2.562	2.568	2.570	2.570	2.576	2.570	2.576	2.581	2.581	2.591	2.591
TOTAL	2.813	2.827	2.829	2.833	2.835	2.835	2.841	2.833	2.841	2.846	2.846	2.856	2.856
REDE DISTRIBUIÇÃO - AMPLIAÇÃO NO MÊS (m)				200								96	296
INCORPORAÇÃO NO MÊS(m)				192	300	380			60			282	1.214
RETIRADA/ABANDONADA (m)				200								40	240
TOTAL ACUMULADO (m)	51.600	51.600	51.600	51.792	52.092	52.472	52.472	52.472	52.532	52.532	52.532	52.870	52.870
VOLUME MICROMEDIDO (m³)	25.857	25.729	22.707	24.525	23.510	24.792	23.051	23.386	25.690	24.086	25.389	26.272	294.994
VOLUME CRITICADO (m³)	926	698	673	357	627	602	477	499	366	609	563	679	7.076
VOLUME UTILIZADO (m³)	26.783	26.427	23.380	24.882	24.137	25.394	23.528	23.885	26.056	24.695	25.952	26.951	302.070
VOLUME FATURAMENTO TOTAL (m³)	33.789	33.581	32.070	32.941	32.664	33.150	32.094	32.094	33.370	32.645	33.563	34.145	396.106
PERDAS DE FATURAMENTO (m³)	5.034	1.962	7.636	2.748	3.540	2.270	4.391	5.534	4.187	4.901	3.429	3.842	49.474
INDICE DE ATENDIMENTO TOTAL ÁGUA/CASAN	80,10	80,46	80,50	80,62	80,63	80,57	80,71	80,45	80,59	80,69	80,63	80,89	80,89
INDICE DE ATENDIMENTO URBANO ÁGUA/CASAN	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
ÍNDICE DE HIDROMETRAÇÃO (%)	100,00	100,00	100,00	100,00	100,00	100,00	100,00	99,95	100,00	100,00	100,00	100,00	100,00
INDICE DE MACROMEDIÇÃO(%)	100,00	100,00	100,00	100,00	100,00	100.00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
ÍNDICE DE PERDAS TOTAIS (%)	31,01	25,64	41,11	30,28	33,33	28,30	35,51	36,52	30,62	34,22	29,84	29,05	32,11
ÍNDICE DE PERDAS TOTAIS (IPL) (I/lig.dia)	157.88	131,81	213,47	145,84	157,78	135,41	169,08	179.70	155.14	167,35	148,56	143.49	158.79
ÍNDICE DE PERDAS DE FATURAMENTO (%)	12,96	5,52	19,23	7,69	9,77	6,40	12,03	14,70	11,14	13,05	9,26	10,11	10,98
ÍNDICE DE FATURAMENTO (%)	87,03	94,47	80,76	92,30	90,22	93,59	87,96	85,29	88,85	86,94	90,73	89,88	89,00
REDE/LIGAÇÃO(m/lig)	20,97	20,89	20,91	20,96	21,11	21,26	21,22	21,26	21,25	21,20	21,20	21,30	21,30
VOLUME DISPONIBILIZADO/ECONOMIA (m³/econ.)	13,80	12,57	14,03	12,59	12,77	12,49	12,84	13,28	13,21	13,19	12,99	13,30	13,08
CONSUMO MÉDIO DIÁRIO (I/s)	14,49	14,69	14,03	13.76	13,51	13.66	13,62	14.04	14,48	14,01	14,27	14,18	14,12
CONSUMO MÁXIMO DIÁRIO (I/s)	17,38	17,62	17,78	16,51	16,21	16,39	16,34	16,84	17,37	16,81	17,12	17,01	16,94
RESERVAÇÃO NECESSÁRIA (m³)	501,00	508,00	512,00	476,00	467,00	472,00	471,00	485,00	500,00	484,00	493,00	490,00	488.25
NEOLINA (III)	301,00	300,00	312,00	470,00	407,00	412,00	47 1,00	+00,00	300,00	+0+,00	490,00	430,00	+00,23

	NM_CATEG_CONSI	•	Total	Co	mercial	Inc	lustrial	P	ública	Res	idencial
NM_AGENCIA	DT_MES_ANO_FAT	Ligações	Economias Água								
IRANI	01/01/2017	2.384	2.687	108	195	1	2	48	53	2.227	2.437
IRANI	01/02/2017	2.391	2.697	108	195	1	2	48	53	2.234	2.447
IRANI	01/03/2017	2.391	2.698	109	196	1	2	48	53	2.233	2.447
IRANI	01/04/2017	2.392	2.703	109	195	1	2	48	53	2.234	2.453
IRANI	01/05/2017	2.395	2.704	109	195	1	2	48	53	2.237	2.454
IRANI	01/06/2017	2.398	2.707	110	195	1	2	49	54	2.238	2.456
IRANI	01/07/2017	2.397	2.705	112	196	1	2	49	54	2.235	2.453
IRANI	01/08/2017	2.402	2.713	113	196	1	2	47	52	2.241	2.463
IRANI	01/09/2017	2.413	2.725	113	196	1	2	47	52	2.252	2.475
IRANI	01/10/2017	2.421	2.733	114	196	1	2	47	52	2.259	2.483
IRANI	01/11/2017	2.416	2.732	114	196	1	2	47	52	2.254	2.482
IRANI	01/12/2017	2.420	2.740	113	195	1	2	47	52	2.259	2.491
IRANI	01/01/2018	2.427	2.749	114	196	1	2	47	52	2.265	2.499
IRANI	01/02/2018	2.425	2.748	116	198	1	2	45	51	2.263	2.497
IRANI	01/03/2018	2.430	2.756	116	198	1	2	47	52	2.266	2.504
IRANI	01/04/2018	2.435	2.761	116	198	1	2	47	52	2.271	2.509
IRANI	01/05/2018	2.439	2.769	117	200	1	2	47	52	2.274	2.515
IRANI	01/06/2018	2.447	2.777	118	201	1	2	47	52	2.281	2.522
IRANI	01/07/2018	2.438	2.767	117	202	1	2	48	53	2.272	2.510
IRANI	01/08/2018	2.441	2.771	117	202	1	2	49	54	2.274	2.513
IRANI	01/09/2018	2.448	2.783	119	206	1	2	50	54	2.278	2.521
IRANI	01/10/2018	2.446	2.792	119	210	1	2	51	55	2.275	2.525
IRANI	01/11/2018	2.451	2.798	119	209	1	2	51	55	2.280	2.532
IRANI	01/12/2018	2.452	2.802	118	209	1	2	51	55	2.282	2.536
IRANI	01/01/2019	2.460	2.813	119	210	1	2	51	55	2.289	2.546
IRANI	01/02/2019	2.470	2.827	119	211	1	2	51	55	2.299	2.559
IRANI	01/03/2019	2.467	2.829	118	210	1	2	51	55	2.297	2.562
IRANI	01/04/2019	2.470	2.833	117	209	1	2	50	54	2.302	2.568
IRANI	01/05/2019	2.467	2.835	116	208	1	2	51	55	2.299	2.570
IRANI	01/06/2019	2.468	2.835	116	208	1	2	51	55	2.300	2.570
IRANI	01/07/2019	2.472	2.841	116	208	1	2	51	55	2.304	2.576
IRANI	01/08/2019	2.467	2.833	115	206	1	2	51	55	2.300	2.570
IRANI	01/09/2019	2.471	2.841	116	208	1	2	51	55	2.303	2.576
IRANI	01/10/2019	2.477	2.846	116	208	1	2	51	55	2.309	2.581
IRANI	01/11/2019	2.477	2.846	116	208	1	2	51	55	2.309	2.581
IRANI	01/12/2019	2.481	2.856	116	208	1	2	51	55	2.313	2.591

Relatório de Histograma de Volume Medido por Economia

01/01/2018										
FAIXA			RES_SOCIAL_E CONOMIA	RES_SOCIAL_V OLUME	COMERCIAL_EC ONOMIAS	COMERCIAL_V OLUME		INDUSTRIAL_V OLUME	PUBLICA_ECON OMIAS	PUBLICA_VOLU ME
0	81	0	5	0	8	0			4	0
1	80	79	4	4	15	15			6	6
2	65	129	4	8	8	15			6	12
3	99	295	2	6	13	39			2	6
4	140	558	1	4	12	47			4	16
5	114	566,6666667	5	25	17	84	1	4,333333333	5	24
6	183	1090,5	3	18	8	47,5			1	6
7	176	1222,833333	2	14	16	109,1666667				
8	242	1906,714286	2	16	18	141,2857143				
9	217	1932,964286	2	18	12	105,0357143				
10	236	2335,25	4	40	11	109,5			3	29,25
11	192	2092,634615	1	11	9	97,36538462			6	66
12	132	1576,666667	2	24	11	129,3333333			1	12
13	112	1448,1	2	26	6	76,9			2	26
14	74	1032,5			5	69,5	1	14	1	14
15	64	957			5	75			1	15
16	66	1050,9			3	47,1			1	16
17	49	831,9			5	84,1			1	17
18	27	486								
19	31	588,3333333			4	75,66666667				
20	16	319,5			1	19,5			1	20
21	15	315			2	42				
22	15	329			1	22				
23	10	228,5			1	22,5				
24	3	72				,-				
25	3	75			2	50				
26	5	130			1	26			1	26
27	2	54			'	20			1	27
28	-								'	
29	4	116								
30	2	60								
31	3	93							1	31
32	0	30							'	01
33										
34										
			4	05						
35	1	36	1	35					1	26
36 37		00							1	36
	1	20								
38	1	38								
39		140								
40	1	40								
41	1									
42	1									
43	1.									
44	1	44			1	44				
45	1								1	45
46										
47										
48										
49										

50		I						 -
51								
52								
53							1	53
54								
55								
56								
57								
58								
59								
60								
61								-
62								
63								
64								
65								
66						 	1	66
67								
68								
69				1	69			
70								
71								
72								
73								
74								
75								
76								
77								
78								
79								
80								
81								
82								
83								
84								
85								
86								
87								
88								
89						 		
90								
91								
92								
93								
94								
95								
96								
97								
98								
99								
100								
101								
	1	214						
		412						
01/02/2018		714						
01/02/2018								

	RES_NORMAL_ ECONOMI	RES_NORMAL_ VOLUME	RES_SOCIAL_E CONOMIA			COMERCIAL_V OLUME	INDUSTRIAL_E CONOMIA	INDUSTRIAL_V OLUME	PUBLICA_ECON OMIAS	PUBLICA_VOLU ME
0	71	0	4	0	8	0			6	0
1	80	80	8	8	10	10			4	4
2	69	137,6666667	4	8	16	30,33333333			5	10
3	105	313	1	3	13	39			2	6
4	149	590,5	3	12	9	34,5			5	20
5	136	677,5	3	15	9	44,5			3	15
6	187	1115,166667	4	24	16	93,5	1	5,333333333	1	6
7	218	1511,5			17	115,5			1	7
8	209	1659,642857	3	24	16	125,3571429				
9	196	1750	1	9	8	70,5			2	17,5
10	254	2524,638095	1	10	15	146,3619048			3	30
11	156	1702,666667	2	22	14	152,3333333			3	33
12	155	1849,224359	2	24	8	92,77564103			1	12
13	103	1332	2	26	7	90			1	13
14	79	1098,133333			6	82,86666667			1	14
15	79	1182,5			4	59,5	1	15	1	15
16	53	844,2			5	78,8				
17	37	629			2	33			2	34
18	31	554,1			5	87,9				
19	18	341,5	1	19	1	18,5			1	19
20	21	419,5			1	19,5				
21	10	210			1	21				
22	12	263			1	22				
23	9	207			2	46				
24	7	168								
25	2	50								
26	3	78							2	51
27	2	54								
28	1	28	1	28					1	28
29									3	87
30	3	90			1	30				
31	1	31								
32	2	64							1	32
33	1	33			1	33				
34										
35	1	35							1	35
36	1	36								
37										
38										
39										
40										
41										
42										
43										
44										
45										
46										
47										
48										
49										
50									1	50
51										
52										
53										

le.	1	1				ı	1	ı	ı	
54										
55	1	55								
56										
57										
58	1	58			1	58				
59										
60										
61										
62										
63										
64										
65										
66										
67										
68										
69										
70										
71										
72					1	72				
73										
74										
75										
76										
77										
78										
79										
80										
81										
82			1	1					1	82
83										
84										
84 85										
84 85 86										
84 85										
84 85 86										
84 85 86 87										
84 85 86 87 88										
84 85 86 87 88										
84 85 86 87 88 89										
84 85 86 87 88 89 90 91										
84 85 86 87 88 89 90 91 92										
84 85 86 87 88 89 90 91 92 93										
84 85 86 87 88 89 90 91 92 93 94										
84 85 86 87 88 89 90 91 92 93 94										
84 85 86 87 88 89 90 91 92 93 94 95 96										
84 85 86 87 88 89 90 91 92 93 94 95 96										
84 85 86 87 88 89 90 91 92 93 94 95 96 97										
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98										
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99										
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98										
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 01/03/2018 FAIXA	RES_NORMAL_ ECONOMI	RES_NORMAL_ VOLUME	RES_SOCIAL_E CONOMIA	RES_SOCIAL_V OLUME	COMERCIAL_EC ONOMIAS	COMERCIAL_V OLUME	INDUSTRIAL_E CONOMIA	INDUSTRIAL_V OLUME	PUBLICA_ECON	
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 01/03/2018 FAIXA	ECONOMI	RES_NORMAL_ VOLUME	CONOMIA	RES_SOCIAL_V OLUME	ONOMIAS	COMERCIAL_V OLUME	INDUSTRIAL_E CONOMIA	INDUSTRIAL_V OLUME	PUBLICA_ECON OMIAS	PUBLICA_VOLU
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 01/03/2018 FAIXA	ECONOMI 81	VOLUME	CONOMIA 4	OLUME	ONOMIAS 7	OLUME	INDUSTRIAL_E CONOMIA	OLUME	PUBLICA_ECON OMIAS	PUBLICA_VOLU ME
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 01/03/2018 FAIXA	ECONOMI 81 77	VOLUME 0	CONOMIA 4 3	OLUME 0	ONOMIAS 7 23	OLUME 0	INDUSTRIAL_E CONOMIA	OLUME	PUBLICA_ECON OMIAS 5 5	PUBLICA_VOLU ME
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 01/03/2018 FAIXA	81 77 94	VOLUME 0 75,83333333 188	CONOMIA 4 3	OLUME 0 3	ONOMIAS 7 23 8	0 21,16666667 16	INDUSTRIAL_E CONOMIA	OLUME	PUBLICA_ECON OMIAS 5 5 3	PUBLICA_VOLU ME 0 5
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 01/03/2018 FAIXA 0 1	81 77 94	VOLUME 0 75,83333333	CONOMIA 4 3	OLUME 0 3	7 23 8 10	0 21,16666667	INDUSTRIAL_E CONOMIA	OLUME	PUBLICA_ECON OMIAS 5 5 3	PUBLICA_VOLU ME 0 5 6

5	194	963,5	5	25	16	78,83333333	1	4,666666667	4	20
	184					113,5	'	+,00000000	1	6
	233					107,8333333			2	14
	248					123,6904762			2	14
		2140,783333	3			106,2166667				00
			0						3	26
			3			108,8333333			4	39,5
	180	1962,979853				108,0201465			1	11
		1170,4		12		83,6			5	58
	82			13		76,83333333			1	13
			1	14		83	1	14	2	28
		896,9				147,1				
		640				32			3	48
		440				17			1	17
		342				18				
		302				19			1	19
		280			1	20			1	20
		251		21						
	9	197	1	22	1	22				
	6	137							1	23
		24								
25	1	25			1	25				
	2	52								
27	1	27								
28	2	56			1	28			1	28
29			1	29					2	58
30	1	30								
31	1	31								
32	2	64								
33										
34					1	34				
35										
36	1	36								
37										
38	1	38								
39										
40	1	40								
41									1	41
42										
43										
44										
45										
46										
	1	47								
48										
49										
50										
51										
52										
53										
54					1	54				
55					'	, , , , , , , , , , , , , , , , , , ,				
56										
56										
58										
59										
60									1	60

	04	Γ	1				Ι	ı	ı	ı	1
	61										
	62										
	63										
	64										
	65										
Page											
	69										
Page	70										
Page	71					1	71				
Page	72										
Page											
Page											
Page											
77 78 79 79 70 70 70 70 70 70 70 70 70 70 70 70 70											
79	76										
Page	77										
90 91 92 93 94 94 95 95 95 95 95 95	78										
90 91 92 93 94 94 95 95 95 95 95 95											
ST											
82 83 84 84 85 85 85 85 85 85											
83 84 85 86 87 87 87 87 87 87 87											
04											
S	83										
B6	84										
B6	85										
88											
B8											
89 90 91 92 93 94 95 95 96 97 97 98 99 99 99 99 99											
90 91 92 93 94 95 96 97 98 99 99 91 91 92 91 92 91 92 91 92 92											
91 92 93 94 94 95 95 96 97 98 99 90 91 91 92 91 92 92 93 94 99 91 91 91 92 92 93 94 95 95 95 95 95 95 95	89										
92 93 94 95 96 97 97 98 99 99 99 99 90 90 90	90										
93 94 95 96 97 97 98 99 99 91 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 91	91										
93 94 95 96 97 97 98 99 99 91 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 91	92										
94 95 96 97 98 99 99 99 99 91 91 91											
95 96 97 98 99 99 99 90 90 90 90											
96 97 98 99 99 99 90 90 90 90											
97 98 99 100 100 101 133 227 1 1 1 227 01/04/2018 FAIXA RES_NORMAL_ RES_NORMAL_ CONOMIA OLUME ONOMIAS OLUME CONOMIA OLUME CONOMIA OLUME CONOMIA 13 13 13 13 14 4 4 14 2 70 140 6 12 10 20 8 16 3 117 350 3 9 9 26 4 4 12 4 119 475 3 12 13 51 1 1 4 5 138 686,5 2 10 15 73,5 6 172 1019,333333 3 18 8 8 45,33333333 1 5,3333333 1 6 6 7 179 1243,166667 1 7 13 87,83333333 1 5,33333333 1 6 6 7 179 1243,166667 1 7 13 87,83333333 1 5,33333333 1 6 6 7 179 1243,166667 1 7 13 87,83333333 1 5,33333333 1 6											
98 99 100 101 1 133 1 1 133 227 1 1 127 227	96										
99 100 101 1 133 1 1 133 1 1 133 227 1 1 227 227 1 1 227 227 1 1 227 227 2 2 2 2 2 2 2	97										
100	98										
100	99										
101											
133 1 1 133 1 1 1227 1 1 133 1 1 1 1 1 1											
Paixa Res_Normal_ Res_Social_e Res_Social_v Comercial_e Comercial_v Comercial_e Industrial_v Publica_econ Publica_volume Conomia Con											
Note										1	
FAIXA RES_NORMAL RES_SOCIAL RES_SOCIAL RES_SOCIAL COMERCIAL COMERCIAL CONOMIA										1	227
ECONOMI VOLUME CONOMIA OLUME ONOMIAS OLUME CONOMIA OLUME OMIAS ME 0 68 0 4 0 10 0 4 0 1 76 76 3 3 13 13 4 4 2 70 140 6 12 10 20 8 16 3 117 350 3 9 9 26 4 12 4 119 475 3 12 13 51 1 4 5 138 686,5 2 10 15 73,5 5 5 6 172 1019,333333 3 18 8 45,333333333 1 5,333333333 1 6 7 179 1243,166667 1 7 13 87,833333333 1 5,3333333333 1 6 8 216 1707,571429 <	01/04/2018									•	
1 76 76 3 3 13 13 4 4 4 2 70 140 6 12 10 20 8 16 3 117 350 3 9 9 26 4 12 4 119 475 3 12 13 51 1 4 5 138 686,5 2 10 15 73,5 1 4 6 172 1019,333333 3 18 8 45,33333333 1 5,333333333 1 6 7 179 1243,166667 1 7 13 87,83333333 1 5,333333333 1 6 8 216 1707,571429 1 8 23 179,4285714 2 16	FAIXA	RES_NORMAL_ ECONOMI	RES_NORMAL_ VOLUME	RES_SOCIAL_E CONOMIA	RES_SOCIAL_V OLUME	COMERCIAL_EC ONOMIAS	COMERCIAL_V OLUME	INDUSTRIAL_E CONOMIA	INDUSTRIAL_V OLUME	PUBLICA_ECON OMIAS	PUBLICA_VOLU ME
1 76 76 3 3 13 13 4 4 2 70 140 6 12 10 20 8 16 3 117 350 3 9 9 26 4 12 4 119 475 3 12 13 51 1 4 5 138 686,5 2 10 15 73,5 1 4 6 172 1019,333333 3 18 8 45,33333333 1 5,333333333 1 6 7 179 1243,166667 1 7 13 87,833333333 1 5,333333333 1 6 8 216 1707,571429 1 8 23 179,4285714 2 16	0	68	0	4	0	10	0			4	0
2 70 140 6 12 10 20 8 16 3 117 350 3 9 9 26 4 12 4 119 475 3 12 13 51 1 4 5 138 686,5 2 10 15 73,5 1 7 1019,3333333 1 6 6 45,3333333333 1 5,3333333333 1 6 6 7 179 1243,166667 1 7 13 87,833333333 1 5,3333333333 1 6 6 1 7 13 87,8333333333 1 6 1 6 1 1 7 13 87,833333333 1 1 6 1 1 6 1 1 8 23 179,4285714 2 16 16						1					
3 117 350 3 9 9 26 4 12 4 119 475 3 12 13 51 1 4 5 138 686,5 2 10 15 73,5 1 1 4 6 172 1019,333333 3 18 8 45,33333333 1 5,333333333 1 6 7 179 1243,166667 1 7 13 87,833333333 1 6 6 1707,571429 1 8 23 179,4285714 2 16											
4 119 475 3 12 13 51 1 4 5 138 686,5 2 10 15 73,5 5 5 10 15 73,5 10							1				
5 138 686,5 2 10 15 73,5 6 6 172 1019,333333 3 18 8 45,33333333 1 5,333333333 1 6 7 179 1243,166667 1 7 13 87,83333333 1 6 8 216 1707,571429 1 8 23 179,4285714 2 16						1	1				
6 172 1019,333333 3 18 8 45,33333333 1 5,333333333 1 6 7 179 1243,166667 1 7 13 87,83333333 1 8 216 1707,571429 1 8 23 179,4285714 2 16	4			3	l	1				1	4
7 179 1243,166667 1 7 13 87,83333333 8 216 1707,571429 1 8 23 179,4285714 2 16	5	138	686,5	2	10	15	73,5				
7 179 1243,166667 1 7 13 87,83333333 8 8 216 1707,571429 1 8 23 179,4285714 2 16	6	172	1019,333333	3	18	8	45,33333333	1	5,333333333	1	6
8 216 1707,571429 1 8 23 179,4285714 2 16						13					
	8					1	1			2	16
9					l	l	1				
	3	200	1002,10000/	٥	J ⁴	' '	148,0000000			'	3

10	232	2302,166667	4	40	10	98,83333333			2	20
						119,2051282				44
	152	1811,428571	1	11		58,57142857				36
	126		0	26		77,2				26
	85	1187	2			97				
									1	14
	71	1059,5				59,5				10
		987,6				109,4				16
	46	781,5				67,5			1	17
		540				36				
		437				57				19
		537				20				20
		335	1	21		41			1	21
		219,5			2	43,5				
	8	184								
	5	120								
	3	75								
	5	130								
	4	108							1	27
	1	28					1	28		
	4	116							1	29
		90								
	1	31			1	31			2	62
32	1	32								
33	1	33			1	33				
34										
35	2	70								
36										
37	1	37								
38										
39										
40										
41										
42										
43										
44										
45									1	45
46										
47										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58									1	58
59										
60										
61										
62										
63										
64					1	64				
65										

								ı		ı
66										
67										
68										
69					1	69			1	69
70										
71										
72										
73										
74										
75										
76										
77										
78										
79										
80										
81										
82										
83										
84										
85										
86										
87										
88										
89										
90										
91										
92										
93										
94										
95										
96										
97										
98										
99										
100										
101										
155									1	155
177									1	177
218									1	218
01/05/2018										
	I	I	I	I · · ·	I	I · · · · · ·	I	I	I	
FAIXA	RES_NORMAL_ ECONOMI	VOLUME	RES_SOCIAL_E CONOMIA	OLUME	COMERCIAL_EC	OLUME		OLUME	PUBLICA_ECON OMIAS	ME NOLU
0	69	0	4	0	9	0			7	0
1	71	70,5	8	8	8	7,5			6	6
2	89	177	2	4	20	38			3	6
3	131	392	4	12	6	18			3	9
4	138	547	3	12	15	58			6	21
5	155	766,5	4	20	9	43,5	1	5	1	5
6	178	1059,5	1	6	13	76,5	-	-	-	-
7	237	1644,666667	1	7	20	137,3333333			2	14
8	229		2	16	14	109,6428571				
9	210	1868,547619	4	36	11	94,45238095			3	27
10	212	2103,8	3	30	10	99,2				
11	195	2128,730769	1	11	12	130,2692308			2	22
12	161	1920,166667			9	106,8333333			2	24
13	103	1332			10	128,75			1	12,25
	l	l	L			L	L		l	

14	71	990,5	1	14	8	110,5			
				14					
		854				60		3	45
		796			5	78			
		323							17
		466				53		1	18
19	26	493,3333333			4	75,66666667			
20	11	220						1	20
21	13	272							
22	3	65,5			2	43,5			
23	7	161			1	23			
24	2	48			1	24		1	24
25	2	50							
26	2	52							
27	4	107,3333333	1	27	2	52,66666667		1	27
28									
29	3	87							
30		60			1	30			
31		62							
32		32							
33	2	66				24		0	00
34						34		2	68
35					1	35			
36									
37									
38									
39									
40									
41									
42									
43									
44								1	44
45									
46									
47									
48									
49					1	49			
50									
51									
52									
53									
54									
55									
56									
57								1	57
58									
59									
60									
61									
62									
63									
64									
65									
66									
67									
68									
69									
09									

	1	1				1	1	ı	1	ı
70										
71										
72										
73									1	73
74										
75					1	75	1	75		
76										
77										
78										
79										
80										
81										
82										
83										
84										
85										
86										
87										
88										
89										
90										
91										
92										
93										
94										
95										
96										
97										
98										
99										
100										
101										407
107									1	107
114									1	114
173									1	173
01/06/2018										
FAIXA	RES_NORMAL_ ECONOMI	RES_NORMAL_ VOLUME	RES_SOCIAL_E CONOMIA	RES_SOCIAL_V OLUME	COMERCIAL_EC	COMERCIAL_V OLUME	INDUSTRIAL_E CONOMIA	INDUSTRIAL_V OLUME	PUBLICA_ECON OMIAS	PUBLICA_VOLU ME
0	82	0	4	0	7	0			3	0
1	65	65	7	7	15	15			6	6
2	99	198	3	6	14	27			3	6
3	137	408,5	3	9	11	32,5			3	9
4	140	558,5	3	12	14	55,5			1	4
5	155	766,1666667	5	25	13	62,5	1	4,333333333	2	10
6	177	1053	2	12	19	112		,	3	18
7	229		2		9	61,23809524			2	14
8	229		4	32	15	116,1666667			1	
	186		2		11					8
9						97,16666667				40
10	237		3	30	10	96,63809524			4	40
11	151	1652	1	11	11	121		40	2	22
12	149	1776,098901			3	34,9010989	1	12	5	58
13	104	1349,25			11	141,75			1	13
14	93	1297,6			7	96,4				
15	74	1102,916667			5	74,08333333				
16	51	815	1	16	7	111			2	32
17	20	340								
1										

18	19	341,5	1	1	4	71,5	<u> </u>	1	18
		321,2			5			'	10
						93,8			
		439			1	20			
		147							
		239,5			1	21,5			
23		92							
		96							
25	7	175	1	25				1	25
26	4	104			3	78		2	52
27									
28	4	112			1	28		2	56
29	1	29			1	29			
		120							
		62							
		64							
33									
34					1	34		1	34
35						- '			- '
36									
37									
38								1	38
39									
40									
41	1	41							
42								1	42
43									
44									
45									
40									
46					1	46		1	46
46					1	46		1	46
	1	48			1	46		1	46
47	1	48			1	46		1	46
47 48	1	48			1	46		1	46
47 48 49	1	48			1	46		1	46
47 48 49 50	1	48			1	46		1	46
47 48 49 50 51	1	48				46			53
47 48 49 50 51 52	1	48				46			
47 48 49 50 51 52 53	1	48				46			
47 48 49 50 51 52 53 54	1	48				46			
47 48 49 50 51 52 53 54 55	1	48				57			
47 48 49 50 51 52 53 54 55	1	48							
47 48 49 50 51 52 53 54 55 56 57	1	48							
47 48 49 50 51 52 53 54 55 56 57 58 59	1	48							
47 48 49 50 51 52 53 54 55 56 57 58 59 60	1	48							
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61	1	48							
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	1	48							
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	1	48							
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	1	48							
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	1	48							
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66	1	48							
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67		48							
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68	1	48							
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69	1	48							
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70		48							
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71	1	48							
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71	1	48							53
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71		48							

74	ı	1			I	Г	ı	I	1	I
75										
76										
77										
78										
79										
80										
81										
82										
83										
									4	0.4
84									1	84
85										
86										
87										
88										
89										
90										
91										
92										
93										
94										
95										
96										
97										
98										
99										
100										
101										
162									1	162
162 01/07/2018									1	162
01/07/2018 FAIXA	RES_NORMAL_ ECONOMI	RES_NORMAL_ VOLUME	RES_SOCIAL_E CONOMIA	RES_SOCIAL_V	COMERCIAL_EC	COMERCIAL_V	INDUSTRIAL_E CONOMIA	INDUSTRIAL_V OLUME	PUBLICA_ECON	PUBLICA_VOLU
01/07/2018 FAIXA	RES_NORMAL_ ECONOMI	RES_NORMAL_ VOLUME	RES_SOCIAL_E CONOMIA	RES_SOCIAL_V OLUME	COMERCIAL_EC ONOMIAS	COMERCIAL_V OLUME	INDUSTRIAL_E CONOMIA	INDUSTRIAL_V OLUME	PUBLICA_ECON	PUBLICA_VOLU
01/07/2018 FAIXA	ECONOMI 83	VOLUME 0	CONOMIA 4	OLUME 0	ONOMIAS 6	OLUME 0	INDUSTRIAL_E CONOMIA	INDUSTRIAL_V OLUME	PUBLICA_ECON OMIAS	PUBLICA_VOLU ME
01/07/2018 FAIXA 0	ECONOMI 83 79	0 79	CONOMIA 4 6	OLUME 0 6	ONOMIAS 6 16	0 16	INDUSTRIAL_E CONOMIA	INDUSTRIAL_V OLUME	PUBLICA_ECON OMIAS 7	PUBLICA_VOLU ME 0
01/07/2018 FAIXA 0 1 2	83 79 108	VOLUME 0 79 215,5	CONOMIA 4 6 7	0 6 14	ONOMIAS 6 16 14	0 16 26,5	INDUSTRIAL_E CONOMIA	INDUSTRIAL_V OLUME	PUBLICA_ECON OMIAS 7 2	PUBLICA_VOLU ME 0 2
01/07/2018 FAIXA 0 1 2	ECONOMI 83 79 108 142	VOLUME 0 79 215,5 424	CONOMIA 4 6 7 4	0 6 14 12	ONOMIAS 6 16 14 9	0 16 26,5 27	INDUSTRIAL_E CONOMIA	INDUSTRIAL_V OLUME	PUBLICA_ECON OMIAS 7	PUBLICA_VOLU ME 0
01/07/2018 FAIXA 0 1 2 3 4	ECONOMI 83 79 108 142	VOLUME 0 79 215,5 424 587,5	CONOMIA 4 6 7	0 6 14	ONOMIAS 6 16 14 9 18	OLUME 0 16 26,5 27 70,5	CONOMIA	OLUME	PUBLICA_ECON OMIAS 7 2 3 4	PUBLICA_VOLU ME 0 2 6
01/07/2018 FAIXA 0 1 2 3 4 5	ECONOMI 83 79 108 142 149 159	VOLUME 0 79 215,5 424 587,5 789,8333333	CONOMIA 4 6 7 4 4	0 6 14 12 16	ONOMIAS 6 16 14 9 18 14	OLUME 0 16 26,5 27 70,5 68,5	CONOMIA	INDUSTRIAL_V OLUME 4,666666667	PUBLICA_ECON OMIAS 7 2	PUBLICA_VOLU ME 0 2
01/07/2018 FAIXA 0 1 2 3 4 5	ECONOMI 83 79 108 142 149 159 203	VOLUME 0 79 215,5 424 587,5 789,83333333 1212	CONOMIA 4 6 7 4 4	0 6 14 12 16 12	ONOMIAS 6 16 14 9 18 14	OLUME 0 16 26,5 27 70,5 68,5 95	CONOMIA	OLUME	PUBLICA_ECON OMIAS 7 2 3 4	PUBLICA_VOLU ME 0 2 6 12
01/07/2018 FAIXA 0 1 2 3 4 5	ECONOMI 83 79 108 142 149 159 203 232	VOLUME 0 79 215,5 424 587,5 789,8333333 1212 1612,3333333	CONOMIA 4 6 7 4 4 2 3	0 6 14 12 16 21	ONOMIAS 6 16 14 9 18 14 16 11	OLUME 0 16 26,5 27 70,5 68,5 95 74,66666667	CONOMIA	OLUME	PUBLICA_ECON OMIAS 7 2 3 4	PUBLICA_VOLU ME 0 2 6
01/07/2018 FAIXA 0 1 2 3 4 5	ECONOMI 83 79 108 142 149 159 203 232 222	VOLUME 0 79 215,5 424 587,5 789,8333333 1212 1612,333333 1764,333333	CONOMIA 4 6 7 4 4 2 3 2	0 6 14 12 16 12 21 16	ONOMIAS 6 16 14 9 18 14	OLUME 0 16 26,5 27 70,5 68,5 95 74,66666667 101,6666667	CONOMIA	OLUME	PUBLICA_ECON OMIAS 7 2 3 4	PUBLICA_VOLU ME 0 2 6 12
01/07/2018 FAIXA 0 1 2 3 4 5 6 7	ECONOMI 83 79 108 142 149 159 203 232	VOLUME 0 79 215,5 424 587,5 789,8333333 1212 1612,333333 1764,333333	CONOMIA 4 6 7 4 4 2 3	0 6 14 12 16 21	ONOMIAS 6 16 14 9 18 14 16 11	OLUME 0 16 26,5 27 70,5 68,5 95 74,66666667	CONOMIA	OLUME	PUBLICA_ECON OMIAS 7 2 3 4	PUBLICA_VOLU ME 0 2 6 12 24
01/07/2018 FAIXA 0 1 2 3 4 5 6 7	ECONOMI 83 79 108 142 149 159 203 232 222	VOLUME 0 79 215,5 424 587,5 789,8333333 1212 1612,333333 1764,333333 1986,683333	CONOMIA 4 6 7 4 4 2 3 2	0 6 14 12 16 12 21 16	ONOMIAS 6 16 14 9 18 14 16 11 13	OLUME 0 16 26,5 27 70,5 68,5 95 74,66666667 101,6666667	CONOMIA	OLUME	PUBLICA_ECON OMIAS 7 2 3 4 5 1	PUBLICA_VOLU ME 0 2 6 12 24
01/07/2018 FAIXA 0 1 2 3 4 5 6 7 8 9	ECONOMI 83 79 108 142 149 159 203 232 222 223	VOLUME 0 79 215,5 424 587,5 789,8333333 1212 1612,333333 1764,333333 1986,683333 2023,112637	CONOMIA 4 6 7 4 4 2 3 2 5	0 6 14 12 16 12 21 16 45	ONOMIAS 6 16 14 9 18 14 16 11 13	OLUME 0 16 26,5 27 70,5 68,5 95 74,66666667 101,6666667 78,31666667	1	OLUME	PUBLICA_ECON OMIAS 7 2 3 4 5 1 1	PUBLICA_VOLU ME 0 2 6 112 24 7 8
01/07/2018 FAIXA 0 1 2 3 4 5 6 7 8 9 10	ECONOMI 83 79 108 142 149 159 203 232 222 223 204	VOLUME 0 79 215,5 424 587,5 789,8333333 1212 1612,333333 1764,333333 1986,683333 2023,112637	CONOMIA 4 6 7 4 4 2 3 2 5 2	0 0 6 14 12 16 12 21 16 45 20 33	ONOMIAS 6 16 14 9 18 14 16 11 13 9 15	OLUME 0 16 26,5 27 70,5 68,5 95 74,66666667 101,6666667 78,31666667 148,8873626	1	4,66666667	PUBLICA_ECON OMIAS 7 2 3 4 5 1 1 1 10	PUBLICA_VOLU ME 0 2 6 12 24 7 8 9 100
01/07/2018 FAIXA 0 1 2 3 4 5 6 7 8 9 10	ECONOMI 83 79 108 142 149 159 203 232 222 223 204	VOLUME 0 79 215,5 424 587,5 789,8333333 1212 1612,333333 1764,333333 1986,683333 2023,112637 1638,119048	CONOMIA 4 6 7 4 4 2 3 2 5 2 3	0	ONOMIAS 6 16 14 9 18 14 16 11 13 9 15	OLUME 0 16 26,5 27 70,5 68,5 95 74,66666667 78,31666667 148,8873626 118,8809524	1	4,66666667	PUBLICA_ECON OMIAS 7 2 3 4 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PUBLICA_VOLU ME 0 2 6 12 24 7 8 9 100
01/07/2018 FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12	ECONOMI 83 79 108 142 149 159 203 232 222 223 204 150 122	VOLUME 0 79 215,5 424 587,5 789,8333333 1212 1612,333333 1764,333333 1986,683333 2023,112637 1638,119048 1452,333333	CONOMIA 4 6 7 4 4 2 3 2 5 2 3	0	ONOMIAS 6 16 14 9 18 14 16 11 13 9 15 11	OLUME 0 16 26,5 27 70,5 68,5 95 74,66666667 101,6666667 148,8873626 118,8809524 106,6666667	1	4,666666667	PUBLICA_ECON OMIAS 7 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PUBLICA_VOLU ME 0 2 6 12 24 7 8 9 100 11
01/07/2018 FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13	ECONOMI 83 79 108 142 149 159 203 232 222 223 204 150 122	VOLUME 0 79 215,5 424 587,5 789,8333333 1212 1612,333333 1764,333333 1986,683333 2023,112637 1638,119048 1452,333333 1284,283333	CONOMIA 4 6 7 4 4 2 3 2 5 2 3	0	ONOMIAS 6 16 14 9 18 14 16 11 13 9 15 11 9 6	OLUME 0 16 26,5 27 70,5 68,5 95 74,66666667 101,6666667 148,8873626 118,8809524 106,6666667 76,96666667	1	4,666666667	PUBLICA_ECON OMIAS 7 2 3 4 5 1 1 1 1 1 1 1 1 1 1	PUBLICA_VOLU ME 0 2 6 12 7 8 9 100 11 12 38,75
01/07/2018 FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	ECONOMI 83 79 108 142 149 159 203 232 222 223 204 150 122 99 72 47	VOLUME 0 79 215,5 424 587,5 789,8333333 1212 1612,333333 1986,683333 2023,112637 1638,119048 1452,333333 1284,283333 1006 702,75	CONOMIA 4 6 7 4 4 2 3 2 5 2 3	0	ONOMIAS 6 16 14 9 18 14 16 11 13 9 15 11 9 6	OLUME 0 16 26,5 27 70,5 68,5 95 74,66666667 101,6666667 148,8873626 118,8809524 106,6666667 76,96666667 84 59,25	1	4,666666667	PUBLICA_ECON OMIAS 7 2 3 4 5 1 1 1 1 1 1 3	PUBLICA_VOLU ME 0 2 6 12 24 7 8 9 100 11 12 38,75
01/07/2018 FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	ECONOMI 83 79 108 142 149 159 203 232 222 223 204 150 122 99 72 47 36	VOLUME 0 79 215,5 424 587,5 789,8333333 1212 1612,333333 1764,333333 1986,683333 2023,112637 1638,119048 1452,333333 1284,283333 1006 702,75 572,6	CONOMIA 4 6 7 4 4 2 3 2 5 2 3	0	ONOMIAS 6 16 14 9 18 14 16 11 13 9 15 11 9 6 4 4	OLUME 0 16 26,5 27 70,5 68,5 95 74,66666667 101,6666667 148,8873626 118,8809524 106,6666667 84 59,25 62,4	1	4,666666667	PUBLICA_ECON OMIAS 7 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PUBLICA_VOLU ME 0 2 6 12 24 7 8 9 100 11 12 38,75 14
01/07/2018 FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	ECONOMI 83 79 108 142 149 159 203 232 222 223 204 150 122 99 72 47 36 24	VOLUME 0 79 215,5 424 587,5 789,8333333 1212 1612,333333 1764,333333 1986,683333 2023,112637 1638,119048 1452,333333 1284,283333 1006 702,75 572,6 406	CONOMIA 4 6 7 4 4 2 3 2 5 2 3 1	0	ONOMIAS 6 16 14 9 18 14 16 11 13 9 15 11 9 6 6 4	OLUME 0 16 26,5 27 70,5 68,5 95 74,66666667 101,6666667 148,8873626 118,8809524 106,6666667 76,96666667 84 59,25	1	4,666666667	PUBLICA_ECON OMIAS 7 2 3 4 5 1 1 1 1 10 1 1 3 1	PUBLICA_VOLU ME 0 2 6 12 24 7 8 9 100 11 12 38,75
01/07/2018 FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	ECONOMI 83 79 108 142 149 159 203 232 222 223 204 150 122 99 72 47 36 24 27	VOLUME 0 79 215,5 424 587,5 789,8333333 1212 1612,333333 1986,683333 2023,112637 1638,119048 1452,333333 1006 702,75 572,6 406 486	CONOMIA 4 6 7 4 4 2 3 2 5 2 3	0	ONOMIAS 6 16 14 9 18 14 16 11 13 9 15 11 9 6 6 4 4	OLUME 0 16 26,5 27 70,5 68,5 95 74,66666667 101,6666667 78,31666667 148,8873626 118,8809524 106,6666667 76,96666667 84 59,25 62,4 34	1	4,666666667	PUBLICA_ECON OMIAS 7 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PUBLICA_VOLU ME 0 2 6 12 24 7 8 9 100 11 12 38,75 14
01/07/2018 FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	ECONOMI 83 79 108 142 149 159 203 232 222 223 204 150 122 99 72 47 36 24 27	VOLUME 0 79 215,5 424 587,5 789,8333333 1212 1612,333333 1986,683333 2023,112637 1638,119048 1452,333333 1284,283333 1006 702,75 572,6 406 486 359,5	CONOMIA 4 6 7 4 4 2 3 2 5 2 3 1	0	ONOMIAS 6 16 14 9 18 14 16 11 13 9 15 11 9 6 4 4 2	OLUME 0 16 26,5 27 70,5 68,5 95 74,66666667 101,6666667 148,8873626 118,8809524 106,6666667 84 59,25 62,4 34 74,5	1	4,666666667	PUBLICA_ECON OMIAS 7 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PUBLICA_VOLU ME 0 2 6 12 24 7 8 9 100 11 12 38,75 14 16 17
01/07/2018 FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	ECONOMI 83 79 108 142 149 159 203 232 222 223 204 150 122 99 72 47 36 24 27 19 11	VOLUME 0 79 215,5 424 587,5 789,8333333 1212 1612,333333 1986,683333 2023,112637 1638,119048 1452,333333 1006 702,75 572,6 406 486 359,5 220	CONOMIA 4 6 7 4 4 2 3 2 5 2 3 1	0	ONOMIAS 6 16 14 9 18 14 16 11 13 9 15 11 9 6 6 4 4	OLUME 0 16 26,5 27 70,5 68,5 95 74,66666667 101,6666667 78,31666667 148,8873626 118,8809524 106,6666667 76,96666667 84 59,25 62,4 34	1	4,666666667	PUBLICA_ECON OMIAS 7 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PUBLICA_VOLU ME 0 2 6 12 24 7 8 9 100 11 12 38,75 14
01/07/2018 FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	ECONOMI 83 79 108 142 149 159 203 232 222 223 204 150 122 99 72 47 36 24 27 19 11	VOLUME 0 79 215,5 424 587,5 789,8333333 1212 1612,333333 1986,683333 2023,112637 1638,119048 1452,333333 1006 702,75 572,6 406 486 359,5 220 231	CONOMIA 4 6 7 4 4 2 3 2 5 2 3 1	0	ONOMIAS 6 16 14 9 18 14 16 11 13 9 15 11 9 6 6 4 4 2 4	OLUME 0 16 26,5 27 70,5 68,5 95 74,66666667 101,6666667 78,31666667 148,8873626 118,8809524 106,6666667 84 59,25 62,4 34 74,5 40	1	4,666666667	PUBLICA_ECON OMIAS 7 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PUBLICA_VOLU ME 0 2 6 12 24 7 8 9 100 11 12 38,75 14 16 17
01/07/2018 FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	ECONOMI 83 79 108 142 149 159 203 232 222 223 204 150 122 99 72 47 36 24 27 19 11 11 12	VOLUME 0 79 215,5 424 587,5 789,8333333 1212 1612,333333 1986,683333 2023,112637 1638,119048 1452,333333 1284,283333 1006 702,75 572,6 406 486 359,5 220 231 264	CONOMIA 4 6 7 4 4 2 3 2 5 2 3 1	0	ONOMIAS 6 16 14 9 18 14 16 11 13 9 15 11 9 6 4 4 2	OLUME 0 16 26,5 27 70,5 68,5 95 74,66666667 101,6666667 148,8873626 118,8809524 106,6666667 84 59,25 62,4 34 74,5	1	4,666666667	PUBLICA_ECON OMIAS 7 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PUBLICA_VOLU ME 0 2 6 12 24 7 8 9 100 11 12 38,75 14 16 17
01/07/2018 FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	ECONOMI 83 79 108 142 149 159 203 232 222 223 204 150 122 99 72 47 36 24 27 19 11	VOLUME 0 79 215,5 424 587,5 789,8333333 1212 1612,333333 1986,683333 2023,112637 1638,119048 1452,333333 1006 702,75 572,6 406 486 359,5 220 231	CONOMIA 4 6 7 4 4 2 3 2 5 2 3 1	0	ONOMIAS 6 16 14 9 18 14 16 11 13 9 15 11 9 6 6 4 4 2 4	OLUME 0 16 26,5 27 70,5 68,5 95 74,66666667 101,6666667 78,31666667 148,8873626 118,8809524 106,6666667 84 59,25 62,4 34 74,5 40	1	4,666666667	PUBLICA_ECON OMIAS 7 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PUBLICA_VOLU ME 0 2 6 12 24 7 8 9 100 11 12 38,75 14 16 17

24	10	238,2		2	46,8		1	24
					1			24
		124,5			49,5			
		78		1	26			
		54						
		111,33333333		2	54,66666667			
29	1	29					1	29
30								
31	3	93					1	31
32	1	32					1	32
33	2	66						
34								
35	2	70		1	35			
36								
37	1	37						
38								
39	1	39		1	39			
40				<u>'</u>			1	40
41								-
42								
							1	42
43							1	43
44								
45								
46								
47								
48								
49				1	49			
50								
51								
52								
53								
54								
55								
56	1	56					1	56
57								
58								
59								
60								
61								
62								
63							1	63
64								
65								
66								
67				1	67			
68								
69								
70								
71								
72								
73								
74								
75								
76 76								
77								
78								
79								

80 81 81 82 83 84 85 86 86 87 88 89 90 90 91 91	1	84
82 83 84 85 86 87 88 89	1	84
83 84 85 86 87 88 89 90	1	84
84 85 86 87 88 89 90	1	84
85 86 87 88 88 89 90 90 8 8 8 8 8 8 8 8 8 8 8 8	1	84
86 87 88 89 90 90 90 90 90 90 90 90 90 90 90 90 90		
87 88 89 90 90 90 90 90 90 90 90 90 90 90 90 90		
88 89 90		1
90		
90		
	+	
92		
93		
94		
95		
96		
97		
98		
99		
100		
101		
252 1 252		
396	1	396
01/08/2018		
FAIXA RES_NORMAL RES_NORMAL RES_SOCIAL_E RES_SOCIAL_V COMERCIAL_E COMERCIAL_V COMERCIAL_V COMERCIAL_V CONOMIA OLUME CONOMIA OLUME ONOMIAS	PUBLICA_ECON OMIAS	PUBLICA_VOLU ME
0 70 0 2 0 12 0	8	0
1 93 93 6 6 9 9	5	5
2 108 215 9 18 14 27		
3 134 400 3 9 14 41	3	9
4 136 541,5 3 12 4 15,5	4	16
5 156 771,25 3 15 17 81,75		I. ~
6 195 1164 2 12 12 71	2	12
	2	
6 195 1164 2 12 71 7 212 1475,333333 1 7 22 151,6666667		12
6 195 1164 2 12 12 71 7 212 1475,3333333 1 7 22 151,66666667 8 215 1702,571429 4 32 12 94,42857143	3	12
6 195 1164 2 12 12 71 7 212 1475,3333333 1 7 22 151,66666667 8 215 1702,571429 4 32 12 94,42857143 9 221 1976,166667 2 18 10 89,16666667 1 8,666666667	3	12 21 8
6 195 1164 2 12 12 71 7 212 1475,3333333 1 7 22 151,66666667 8 215 1702,571429 4 32 12 94,42857143 9 221 1976,166667 2 18 10 89,16666667 1 8,666666667 10 236 2340,058608 2 20 13 127,9413919	3 1 2	12 21 8
6 195 1164 2 12 12 71 7 212 1475,3333333 1 7 22 151,66666667 8 215 1702,571429 4 32 12 94,42857143 9 221 1976,1666667 2 18 10 89,166666667 1 8,666666667 10 236 2340,058608 2 20 13 127,9413919 11 183 1989,62381 3 33 15 162,3761905	3	12 21 8
6 195 1164 2 12 12 71 7 212 1475,3333333 1 7 22 151,66666667 8 215 1702,571429 4 32 12 94,42857143 9 221 1976,166667 2 18 10 89,16666667 1 8,666666667 10 236 2340,058608 2 20 13 127,9413919 11 183 1989,62381 3 33 15 162,3761905 12 122 1451,366667 1 12 8 94,63333333	2 2	12 21 8 20 22
6 195 1164 2 12 12 71 7 212 1475,3333333 1 7 22 151,6666667 8 215 1702,571429 4 32 12 94,42857143 9 221 1976,166667 2 18 10 89,16666667 1 8,666666667 10 236 2340,058608 2 20 13 127,9413919 1 11 183 1989,62381 3 33 15 162,3761905 1 12 122 1451,366667 1 12 8 94,63333333 1 13 97 1256,166667 1 13 7 89,833333333 1 13	3 1 2 2 2	12 21 8 20 22
6 195 1164 2 12 12 71 7 212 1475,333333 1 7 22 151,6666667 8 215 1702,571429 4 32 12 94,42857143 9 221 1976,166667 2 18 10 89,16666667 1 8,666666667 10 236 2340,058608 2 20 13 127,9413919 1 11 183 1989,62381 3 33 15 162,3761905 1 12 122 1451,366667 1 12 8 94,63333333 1 13 13 97 1256,166667 1 13 7 89,83333333 1 13 14 75 1042,583333 2 27,16666667 2 2 27,16666667 2	2 2	12 21 8 20 22
6 195 1164 2 12 12 71 7 212 1475,333333 1 7 22 151,6666667 8 215 1702,571429 4 32 12 94,42857143 9 221 1976,166667 2 18 10 89,16666667 1 8,666666667 10 236 2340,058608 2 20 13 127,9413919 1 11 183 1989,62381 3 33 15 162,3761905 1 12 122 1451,366667 1 12 8 94,63333333 1 13 13 97 1256,166667 1 13 7 89,83333333 1 13 14 75 1042,583333 2 27,16666667 2 27,16666667 1 15 63 935,35 9 131,65 1 13,65	3 1 2 2 2	12 21 8 20 22
6 195 1164 2 12 12 71 7 212 1475,333333 1 7 22 151,6666667 8 215 1702,571429 4 32 12 94,42857143 9 221 1976,166667 2 18 10 89,16666667 1 8,666666667 10 236 2340,058608 2 20 13 127,9413919 1 11 183 1989,62381 3 33 15 162,3761905 1 12 122 1451,366667 1 12 8 94,63333333 1 13 13 97 1256,166667 1 13 7 89,83333333 1 13 14 75 1042,583333 2 27,16666667 1 1 13 7 27,16666667 1 15 63 935,35 9 131,65 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <	3 1 2 2 2	12 21 8 20 22 77 27,25
6 195 1164 2 12 12 71 7 212 1475,333333 1 7 22 151,6666667 8 215 1702,571429 4 32 12 94,42857143 9 221 1976,166667 2 18 10 89,16666667 1 8,666666667 10 236 2340,058608 2 20 13 127,9413919 11 183 1989,62381 3 33 15 162,3761905 12 12 1451,366667 1 12 8 94,63333333 1 13 13 97 1256,166667 1 13 7 89,83333333 1 13 14 75 1042,583333 2 27,16666667 1 13 7 89,833333333 1 13 15 63 935,35 9 131,65 1 16 29 460,5 4 63,5 1 16 29 460,5 4 63,5 4 63,5 1 17	3 1 2 2 2	12 21 8 20 22
6 195 1164 2 12 12 71 71 71 71 72 72 72 73 73 73 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 75 74 <t< td=""><td>3 1 2 2 2 6 2</td><td>12 21 8 20 22 77 27,25</td></t<>	3 1 2 2 2 6 2	12 21 8 20 22 77 27,25
6 195 1164 2 12 12 71 7 212 1475,333333 1 7 22 151,6666667 8 215 1702,571429 4 32 12 94,42857143 9 221 1976,166667 2 18 10 89,16666667 1 8,666666667 10 236 2340,058608 2 20 13 127,9413919 11 183 1989,62381 3 33 15 162,3761905 12 12 122 1451,366667 1 12 8 94,63333333 1 13 13 13 97 1256,166667 1 13 7 89,83333333 1 13 14 75 1042,583333 2 27,16666667 1 13 13 2 27,16666667 1 13 13 13 14 75 1042,583333 1 13 13 13 14 75 1042,583333 1 13 2 27,1666667 1 13 13 13 14 14 15 <td>3 1 2 2 2 6 2</td> <td>12 21 8 20 22 77 27,25</td>	3 1 2 2 2 6 2	12 21 8 20 22 77 27,25
6 195 1164 2 12 12 71 7 212 1475,333333 1 7 22 151,6666667 8 215 1702,571429 4 32 12 94,42857143 9 221 1976,166667 2 18 10 89,16666667 1 8,666666667 10 236 2340,058608 2 20 13 127,9413919 11 183 1989,62381 3 33 15 162,3761905 12 12 1451,366667 1 12 8 94,633333333 1 13 13 14 75 1042,5833333 2 2 27,16666667 1 13 7 89,833333333 1 13 14 75 1042,5833333 2 2 27,16666667 1 13 7 89,833333333 1 13 15 63 935,35 9 131,65 1 1 2 34 34	3 1 2 2 2 6 2	12 21 8 20 22 77 27,25
6 195 1164 2 12 12 71 7 212 1475,333333 1 7 22 151,6666667 8 215 1702,571429 4 32 12 94,42857143 9 221 1976,166667 2 18 10 89,16666667 1 8,66666667 10 236 2340,058608 2 20 13 127,9413919 11 183 1989,62381 3 33 15 162,3761905 12 12 1451,366667 1 12 8 94,63333333 1 13 17 89,83333333 1 13 14 75 1042,583333 2 27,16666667 1 13 7 89,83333333 1 13 14 75 1042,583333 2 27,16666667 1 13 7 89,83333333 1 13 14 75 1042,583333 2 27,16666667 1 13 14 63,5 14	3 1 2 2 2 6 2	12 21 8 20 22 77 27,25
6 195 1164 2 12 12 71 7 212 1475,333333 1 7 22 151,6666667 8 215 1702,571429 4 32 12 94,42857143 9 221 1976,166667 2 18 10 89,16666667 1 8,666666667 10 236 2340,058608 2 20 13 127,9413919 1 11 183 1989,62381 3 33 15 162,3761905 1 12 122 1451,366667 1 12 8 94,63333333 1 13 13 97 1256,166667 1 13 7 89,833333333 1 13 14 75 1042,583333 2 27,1666667 1 13 7 89,833333333 1 13 15 63 935,35 9 131,65 1 1 1 1 1 1 </td <td>3 1 2 2 2 6 2</td> <td>12 21 8 20 22 77 27,25</td>	3 1 2 2 2 6 2	12 21 8 20 22 77 27,25
6 195 1164 2 12 12 71 7 212 1475,333333 1 7 22 151,6666667 8 215 1702,571429 4 32 12 94,42857143 9 221 1976,166667 2 18 10 89,16666667 1 8,66666667 10 236 2340,058608 2 20 13 127,9413919 11 183 1989,62381 3 33 15 162,3761905 12 12 1451,366667 1 12 8 94,63333333 1 13 14 75 1042,583333 2 2 27,16666667<	3 1 2 2 2 6 2	12 21 8 20 22 77 27,25
6 195 1164 2 12 12 71 7 212 1475,333333 1 7 22 151,6666667 8 215 1702,571429 4 32 12 94,42857143 9 221 1976,166667 2 18 10 89,16666667 1 8,66666667 10 236 2340,058608 2 20 13 127,9413919 11 183 1989,62381 3 33 15 162,3761905 12 12 1451,366667 1 12 8 94,63333333 1 13 14 75 1042,583333 1 13 7	3 1 2 2 2 6 2	12 21 8 20 22 77 27,25
6 195 1164 2 12 12 71 7 212 1475,333333 1 7 22 151,6666667 8 215 1702,571429 4 32 12 94,42857143 9 221 1976,166667 2 18 10 89,16666667 1 8,66666667 10 236 2340,059608 2 20 13 127,9413919 11 183 1989,62381 3 33 15 162,3761905 11 12 8 94,633333333 1 127,9413919 12 12 1451,366667 1 12 8 94,633333333 1 13 17 89,833333333 1 13 13 14 75 1042,583333 2 2,71,16666667 1 13 7 89,833333333 1 13 14 75 1042,583333 2 2,71,16666667 1 13 13 14 23 4 63,5 4 63,5 <td>3 1 2 2 2 6 2</td> <td>12 21 8 20 22 77 27,25</td>	3 1 2 2 2 6 2	12 21 8 20 22 77 27,25
6 195 1164 2 12 12 7 212 1475,333333 1 7 22 151,666667 1 8 215 1702,571429 4 32 12 94,42857143 9 221 1976,166667 2 18 10 89,16666667 1 8,66666667 1 8,66666667 1 8,16666667 1 8,66666667 1 12,79413919 1 11 183 1989,62381 3 33 15 162,3761905 1 12 122 1451,366667 1 12 8 94,63333333 1 13 13 13 14 75 1042,583333 2 2,7,16666667 1 13 7 89,8333333 1 13 14 75 1042,583333 2 2,7,16666667 1 13 7 89,8333333 1 13 13 14 75 1042,583333 2 2,7,16666667 1 13 4 63,5 1 13 14 </td <td>3 1 2 2 2 6 2</td> <td>12 21 8 20 22 77 27,25</td>	3 1 2 2 2 6 2	12 21 8 20 22 77 27,25
6 195 1164 2 12 12 71 7 212 1475,333333 1 7 22 151,6666667 8 215 1702,571429 4 32 12 94,42857143 9 221 1976,166667 2 18 10 89,16666667 1 8,66666667 10 236 2340,059608 2 20 13 127,9413919 8 11 183 1989,62381 3 33 15 162,3761905 1 12 122 1451,366667 1 12 8 94,633333333 1 13 13 97 1256,166667 1 13 7 89,833333333 1 13 14 75 1042,583333 2 27,16666667 1 13 7 89,833333333 1 13 15 63 935,35 9 131,65 1 1 2 34 1	3 1 2 2 2 6 2	12 21 8 20 22 77 27,25

29	1	29	ı		I		1	29
								l
30		90					1	30
31	2	61,33333333		3	91,66666667			
32								
33		66						
34	1	34					1	34
35							2	70
36								
37	1	37						
38	1	38						
39	1	39		1	39			
40								
41								
42								
43								
44								
45	1	45		1	45		1	45
46		."						
47								
48								
49								
50								
51				1	51			
52								
53	2	106						
54								
55								
56								
57							1	57
58								
59								
60				1	60			
61								
62								
63								
64								
65								
66								
67								
68								
69								
69 70								
70 71								
70 71 72								
70 71 72 73								
70 71 72 73 74								
70 71 72 73 74 75								
70 71 72 73 74 75 76								
70 71 72 73 74 75 76 77								
70 71 72 73 74 75 76 77								
70 71 72 73 74 75 76 77 78								
70 71 72 73 74 75 76 77 78 79 80								
70 71 72 73 74 75 76 77 78 79 80 81								
70 71 72 73 74 75 76 77 78 79 80 81								
70 71 72 73 74 75 76 77 78 79 80 81								

0.5	1	ı	1	ı			ı	ı	l _a	0.5
85									1	85
86										
87										
88										
89										
90									1	90
91									1	91
92										
93										
94										
95										
96										
97										
98										
99										
100										
101										
178									1	178
370									1	370
01/09/2018										
			RES_SOCIAL_E		COMERCIAL_EC	COMERCIAL_V			PUBLICA_ECON	PUBLICA_VOLU
	ECONOMI	VOLUME	CONOMIA	OLUME	ONOMIAS	OLUME	CONOMIA	OLUME	OMIAS	ME
0	72	0	6	0	4	0			6	0
1	76	76	3	3	17	17			5	5
2	90	179,5	5	10	14	26,5			3	6
3	114	339,5	2	6	10	29,5			4	12
4	122	486		24	14	55			4	16
5	149	743	3	15	11	54			2	10
6	138	821	3	13	11	65				10
				-						
7	195	1354,833333	1	7	18	124,5	1	6,666666667		
8			i							
	237	1874,119048	5	40	17	133,8809524			1	8
	204	1820,333333	2	18	17 12	104,6666667				
9		1820,333333	2							20
	204	1820,333333	2	18	12	104,6666667			2	
10	204 216	1820,333333 2148,928571	2	18	12 6	104,6666667 59,07142857			2	20
10 11	204 216 179	1820,333333 2148,928571 1952,666667	2	18	12 6 6	104,6666667 59,07142857 65,33333333			2 2 1	20
10 11 12	204 216 179 145	1820,333333 2148,928571 1952,666667 1730,488095	2	18	12 6 6 14	104,6666667 59,07142857 65,33333333 163,5119048			2 2 1	20 22 12
10 11 12 13	204 216 179 145	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75	2 6 1	18 60 11	12 6 6 14	104,6666667 59,07142857 65,33333333 163,5119048 165,0576923			2 2 1 2 2	20 22 12 26
10 11 12 13	204 216 179 145 136 97	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308	2 6 1	18 60 11	12 6 6 14 13 2	104,6666667 59,07142857 65,33333333 163,5119048 165,0576923 27,5			2 2 1 2 1 5	20 22 12 26 13,75
10 11 12 13 14 15	204 216 179 145 136 97 73 58	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75 1091,333333	2 6 1	18 60 11	12 6 6 14 13 2 4 6	104,6666667 59,07142857 65,33333333 163,5119048 165,0576923 27,5 59,66666667 94,4			2 2 1 2 1 5	20 22 12 26 13,75 75
10 11 12 13 14 15 16	204 216 179 145 136 97 73 58	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75 1091,333333 924,6 793,2	2 6 1	18 60 11	12 6 6 14 13 2 4 6	104,6666667 59,07142857 65,33333333 163,5119048 165,0576923 27,5 59,66666667 94,4 82,8			2 2 1 1 2 1 5	20 22 12 26 13,75 75
10 11 12 13 14 15 16 17	204 216 179 145 136 97 73 58 47	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75 1091,333333 924,6 793,2 521,5	2 6 1	18 60 11	12 6 6 14 13 2 4 6 5	104,6666667 59,07142857 65,33333333 163,5119048 165,0576923 27,5 59,66666667 94,4 82,8 53,5			2 2 1 2 1 5	20 22 12 26 13,75 75
10 11 12 13 14 15 16 17 18	204 216 179 145 136 97 73 58 47 29	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75 1091,333333 924,6 793,2 521,5 568,5	2 6 1	18 60 11	12 6 6 14 13 2 4 6	104,6666667 59,07142857 65,33333333 163,5119048 165,0576923 27,5 59,66666667 94,4 82,8			2 2 1 1 2 1 5	20 22 12 26 13,75 75
10 11 12 13 14 15 16 17 18	204 216 179 145 136 97 73 58 47 29 30	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75 1091,333333 924,6 793,2 521,5 568,5	2 6 1 1 1 1 1	18 60 11 14	12 6 6 14 13 2 4 6 5	104,6666667 59,07142857 65,33333333 163,5119048 165,0576923 27,5 59,66666667 94,4 82,8 53,5			2 2 1 1 2 1 5 5 2 2 1 1	20 22 12 26 13,75 75 32
10 11 12 13 14 15 16 17 18 19 20 21	204 216 179 145 136 97 73 58 47 29 30 11	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75 1091,333333 924,6 793,2 521,5 568,5 220	2 6 1 1 1 1 1 1 1 1	18 60 11 14 17	12 6 6 14 13 2 4 6 5 3 2	104,6666667 59,07142857 65,33333333 163,5119048 165,0576923 27,5 59,66666667 94,4 82,8 53,5 37,5			2 2 1 2 1 5 2	20 22 12 26 13,75 75 32
10 11 12 13 14 15 16 17 18 19 20 21	204 216 179 145 136 97 73 58 47 29 30 11	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75 1091,333333 924,6 793,2 521,5 568,5 220 189 241,66666667	2 6 1 1 1 1 1 1 1 1	18 60 11 14	12 6 6 14 13 2 4 6 5	104,6666667 59,07142857 65,33333333 163,5119048 165,0576923 27,5 59,66666667 94,4 82,8 53,5			2 2 1 2 1 5 2	20 22 12 26 13,75 75 32
10 11 12 13 14 15 16 17 18 19 20 21 22 23	204 216 179 145 136 97 73 58 47 29 30 11	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75 1091,333333 924,6 793,2 521,5 568,5 220 189 241,6666667 184	2 6 1 1 1 1 1 1 1 1	18 60 11 14 17	12 6 6 14 13 2 4 6 5 3 2	104,6666667 59,07142857 65,33333333 163,5119048 165,0576923 27,5 59,66666667 94,4 82,8 53,5 37,5			2 2 1 2 1 5 2	20 22 12 26 13,75 75 32
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	204 216 179 145 136 97 73 58 47 29 30 11	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75 1091,333333 924,6 793,2 521,5 568,5 220 189 241,6666667 184	2 6 1 1 1 1 1 1 1 1	18 60 11 14 17	12 6 6 14 13 2 4 6 5 3 2	104,6666667 59,07142857 65,33333333 163,5119048 165,0576923 27,5 59,66666667 94,4 82,8 53,5 37,5			2 2 1 2 1 5 2	20 22 12 26 13,75 75 32
10 11 12 13 14 15 16 17 18 19 20 21 22 23	204 216 179 145 136 97 73 58 47 29 30 11	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75 1091,333333 924,6 793,2 521,5 568,5 220 189 241,6666667 184	2 6 1 1 1 1 1 1 1 1	18 60 11 14 17	12 6 6 14 13 2 4 6 5 3 2	104,6666667 59,07142857 65,33333333 163,5119048 165,0576923 27,5 59,66666667 94,4 82,8 53,5 37,5 131,3333333			2 2 2 1 1 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1	20 22 12 26 13,75 75 32
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	204 216 179 145 136 97 73 58 47 29 30 11 9 11 8	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75 1091,333333 924,6 793,2 521,5 568,5 220 189 241,6666667 184	2 6 1 1 1 1 1 1 1 1	18 60 11 14 17	12 6 6 14 13 2 4 6 5 3 2	104,6666667 59,07142857 65,33333333 163,5119048 165,0576923 27,5 59,66666667 94,4 82,8 53,5 37,5			2 2 2 1 1 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1	20 22 12 26 13,75 75 32 18
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	204 216 179 145 136 97 73 58 47 29 30 11 9 11 8 2 5	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75 1091,333333 924,6 793,2 521,5 568,5 220 189 241,6666667 184 48	2 6 1 1 1 1 1 1 1 1	18 60 11 14 17	12 6 6 14 13 2 4 6 5 3 2	104,6666667 59,07142857 65,33333333 163,5119048 165,0576923 27,5 59,66666667 94,4 82,8 53,5 37,5 131,3333333			2 2 2 1 1 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1	20 22 12 26 13,75 75 32 18
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	204 216 179 145 136 97 73 58 47 29 30 11 9 11 8 2 5	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75 1091,333333 924,6 793,2 521,5 568,5 220 189 241,66666667 184 48 125	2 6 1 1 1 1 1 1 1 1	18 60 11 14 17	12 6 6 14 13 2 4 6 5 3 2	104,6666667 59,07142857 65,333333333 163,5119048 165,0576923 27,5 59,666666667 94,4 82,8 53,5 37,5 131,33333333			2 2 2 1 1 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1	20 22 12 26 13,75 75 32 18
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	204 216 179 145 136 97 73 58 47 29 30 11 9 11 8 2 5 5 2 4	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75 1091,333333 924,6 793,2 521,5 568,5 220 189 241,6666667 184 48 125 129,5	2 6 1 1 1 1 1 1 1 1	18 60 11 14 17	12 6 6 14 13 2 4 6 5 3 2	104,6666667 59,07142857 65,333333333 163,5119048 165,0576923 27,5 59,666666667 94,4 82,8 53,5 37,5 131,33333333			2 2 2 1 1 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1	20 22 12 26 13,75 75 32 18
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	204 216 179 145 136 97 73 58 47 29 30 11 9 11 8 2 5 5 2 4	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75 1091,333333 924,6 793,2 521,5 568,5 220 189 241,6666667 184 48 125 129,5 54	2 6 1 1 1 1 1 1 1 1	18 60 11 14 17	12 6 6 14 13 2 4 6 5 3 2	104,6666667 59,07142857 65,333333333 163,5119048 165,0576923 27,5 59,666666667 94,4 82,8 53,5 37,5 131,33333333			2 2 2 1 1 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1	20 22 12 26 13,75 75 32 18
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	204 216 179 145 136 97 73 58 47 29 30 11 9 11 8 2 5 5 2 4 2 3	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75 1091,333333 924,6 793,2 521,5 568,5 220 189 241,6666667 184 48 125 129,5 54 1112 58	2 6 1 1 1 1 1 1 1 1	18 60 11 14 17	12 6 6 14 13 2 4 6 5 3 2	104,6666667 59,07142857 65,33333333 163,5119048 165,0576923 27,5 59,66666667 94,4 82,8 53,5 37,5 131,3333333 75 25,5 27			2 2 2 1 1 2 2 1 1 5 2 2 1 1 1 1 1 1 1 1	20 22 12 26 13,75 75 32 18 21 22
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	204 216 179 145 136 97 73 58 47 29 30 11 9 11 8 2 5 5 2 4 2 3 2	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75 1091,333333 924,6 793,2 521,5 568,5 220 189 241,6666667 184 48 125 129,5 54 112 58 90 61,5	2 6 1 1 1 1 1 1 1 1	18 60 11 14 17	12 6 6 14 13 2 4 6 5 3 2	104,6666667 59,07142857 65,333333333 163,5119048 165,0576923 27,5 59,666666667 94,4 82,8 53,5 37,5 131,3333333 75 25,5 27			2 2 2 1 1 2 2 1 1 5 2 2 1 1 1 1 1 1 1 1	20 22 12 26 13,75 75 32 18
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	204 216 179 145 136 97 73 58 47 29 30 11 9 11 8 2 5 5 2 4 2 3 2	1820,333333 2148,928571 1952,666667 1730,488095 1753,942308 1350,75 1091,333333 924,6 793,2 521,5 568,5 220 189 241,6666667 184 48 125 129,5 54 1112 58	2 6 1 1 1 1 1 1 1 1	18 60 11 14 17	12 6 6 14 13 2 4 6 5 3 2	104,6666667 59,07142857 65,33333333 163,5119048 165,0576923 27,5 59,66666667 94,4 82,8 53,5 37,5 131,3333333 75 25,5 27			2 2 2 1 1 2 2 1 1 5 2 2 1 1 1 1 1 1 1 1	20 22 12 26 13,75 75 32 18 21 22

34	4	34		T	Ι			
	1	34						
35								
	1	36						
37								
	l	38					1	38
39	1	39		1	39			
40	1	40						
41								
42								
43								
44								
45								
46								
47							1	47
48								
49				1	49			
50				<u>'</u>	10		1	50
51								
52				1	50			
					52			
53								
54								
55							1	55
56								
57								
58								
59								
	1	60						
61								
62								
63								
64								
65							1	65
66								
67								
68								
69				1	69			
70								
71								
72								
73								
74								
75								
76								
77								
78								
79								
80								
81								
82								
83								
84								
85							1	85
86							'	
87								
88								
	1	90						
89	1	89						

91 14<											
200 19	90										
93 93 94 95 95 95 95 95 95 95	91										
95 95 96 97 97 98 98 98 98 98 98	92										
95 95 96 97 97 97 97 97 97 97	93							1	93		
96 1	94										
97 1	95										
1968 1969	96										
90 90 91 91 92 93 94 94 95 94 95 95 95 95	97										
90 90 91 91 92 93 94 94 95 94 95 95 95 95	98										
1900											
101 101											
1941 1941 1942											
141 147										1	104
147 147											
Note										1	14/
FAINA RES_NORMAL RES_NORMAL RES_SOCIAL_F RES_SOCIAL_F COMERCIAL_F COMERCIAL_V COMERCIAL_V COMMAN COMMAN		1	221								
CONOMIN VOLUME CONOMIA OLUME ONOMIAS OLUME CONOMIA OLUME OMIAS ME											
11 86 86 10 10 11 11 11 4 4 4 2 97 191 3 6 17 32 2 4 4 4 154 614.5 6 24 13 61.5 7 23 5 184 190.9 2 10 12 89.5 1 6 10 1 7 23 6 184 190.9 1 6 19 112.5 1 6 19 112.5 1 7 20 1 7 1 1 7 1 1 7 1 1 7 1 1 7 1											
2 97 191 3 6 17 32 2 4 3 127 380 4 12 10 20 9 9 5 144 61.5 6 24 13 51.5 7 28 6 189 1127.5 1 6 19 112.5 1 <td>0</td> <td>76</td> <td>0</td> <td>2</td> <td>0</td> <td>12</td> <td>0</td> <td></td> <td></td> <td>8</td> <td>0</td>	0	76	0	2	0	12	0			8	0
3 127 380 4 12 10 29 8 3 9 4 154 614,5 6 24 13 51,5 8 7 28 5 184 909,5 2 10 12 59,5 8 8 1 6 10 112,5 8 1 6 19 112,5 8 1 7 7 229 1591 3 21 21 144 9 7 7 229 1591 3 21 21 144 9 7 7 7 8 9 70,1904762 1 7,33333333 2 16 9 10 1 7 10 1 9 10 1 1 10 1 <td>1</td> <td>86</td> <td>86</td> <td>10</td> <td>10</td> <td>11</td> <td>11</td> <td></td> <td></td> <td>4</td> <td>4</td>	1	86	86	10	10	11	11			4	4
154	2	97	191	3	6	17	32			2	4
5 184 909.5 2 10 12 59.5	3	127	380	4	12	10	29			3	9
Second S	4	154	614,5	6	24	13	51,5			7	28
7 229 1591 3 21 21 144 1 7 8 257 2029,547619 4 32 9 70,11904762 1 7,333333333 2 16 9 185 1654,428671 4 36 9 79,57142867 1 9 110 219 2173 3 30 111 106 1 1 10 111 170 1853,071429 177 183,9285714 1 12 12 23,25 12 13 38,5 1 11 13 11 15 14 61 11 15 14 61<	5	184	909,5	2	10	12	59,5				
8 257 2029,547619 4 32 9 70,11904762 1 7,333333333 2 16 9 185 1654,428571 4 36 9 79,57142857 1 1 9 10 219 2173 3 30 11 108 1 1 10 11 170 1853,071429 1 17 183,0285714 1 11 1 1 1 1 12 148 1757,685897 1 12 8 94,06410256 2 22,25 32 1 13 1	6	189	1127,5	1	6	19	112,5				
9 185 1654,428571 4 36 9 79,57142857	7	229	1591	3	21	21	144			1	7
10 219 2173 3 3 30 111 108	8	257	2029,547619	4	32	9	70,11904762	1	7,333333333	2	16
11 170 1853,071429 17 183,9295714 1 11 1 11 12 183,9295714 1 11 1 11 11 11 11 11 12 22 23,25	9	185	1654,428571	4	36	9	79,57142857			1	9
12 148 1757,685987 1 12 8 94,06410256 2 23,25 13 76 983,5 3 38,5 1 1 13 14 69 961,8 8 110,2 1 15 15 61 911,1 7 103,9 1 1 15 16 37 590,5 2 32 1 15,5 4 61 17 24 407,5 1 16,5 1 1 17 18 21 376,5 5 89,5 1 1 19 20 11 20 3 60 1 19 1 19 21 9 188,5 2 41,5 1 1 20 21 9 197,5 3 65,5 1 1 1 22 9 197,5 3 65,5 1 1 26 23 6 138 1 2 1 2 1 2 26 3 78 1 3 1 2 1 2 27 1 27 1 3 1	10	219	2173	3	30	11	108			1	10
13 76 983.5 3 38.5 1 13 13 14 69 961.8 8 110.2 1 15 15 11 15 15 11 15 15 11 15 15 11 15 15 11 15 15 11 15 15 11 15 15 11 15 15 11 15 15 11 15 15 11 15 15 11 15 15 11 15 16 11 17 16 11 17 18 21 376.5 15 18 11 16 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 20 11 20 11 20 11 20 11 20 11 20 11 20 11 20 <td>11</td> <td>170</td> <td>1853,071429</td> <td></td> <td></td> <td>17</td> <td>183,9285714</td> <td>1</td> <td>11</td> <td>1</td> <td>11</td>	11	170	1853,071429			17	183,9285714	1	11	1	11
13 76 983.5 3 38.5 1 13 13 14 69 961.8 8 110.2 1 15 15 11 15 15 11 15 15 11 15 15 11 15 15 11 15 15 11 15 15 11 15 15 11 15 15 11 15 15 11 15 15 11 15 15 11 15 15 11 15 16 11 17 16 11 17 18 21 376.5 15 18 11 16 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 20 11 20 11 20 11 20 11 20 11 20 11 20 11 20 <td>12</td> <td>148</td> <td>1757,685897</td> <td>1</td> <td>12</td> <td>8</td> <td>94,06410256</td> <td></td> <td></td> <td>2</td> <td>23,25</td>	12	148	1757,685897	1	12	8	94,06410256			2	23,25
144 69 961.8 8 110.2 1 15 15 61 911.1 7 103.9 1 1 15 16 37 590.5 2 32 1 15.5 4 61 17 24 407.5 1 1 16.5 1 1 17 18 21 376.5 5 89.5 1 1 18 19 16 304 1 1 19 1 1 19 20 11 20 3 60 1 1 20 21 9 188.5 2 41.5 1 1 20 22 9 197.5 3 65.5 3 6 138 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	13	76	983,5			3	38,5				
15 61 911,1 7 103,9 1 15 16 37 590,5 2 32 1 15,5 4 61 17 24 407,5 1 16,5 1 17 18 21 376,5 5 89,5 1 18 19 16 304 1 199 1 199 1 199 20 11 220 3 60 1 1 20 21 9 188,5 2 41,5 3 60 1 20 22 9 197,5 3 65,5 3 6 3 6 1 2 4 <td>14</td> <td>69</td> <td>961,8</td> <td></td> <td></td> <td>8</td> <td>110,2</td> <td></td> <td></td> <td></td> <td></td>	14	69	961,8			8	110,2				
16 37 590.5 2 32 1 15.5 4 61 17 24 407.5 1 16.5 1 17 18 19 16 304 1 1 19 1 19 1 19 20 11 220 3 60 1 1 20 1 20 21 9 188.5 1 2 41.5 1 1 20										1	15
17				2	32						
18 21 376,5 5 89,5 1 18 19 16 304 1 19 1 19 20 11 220 3 60 1 20 21 9 188,5 2 41,5 3 65,5 3 3 22 9 197,5 3 65,5 3 3 6 23 6 138 3 65,5 3 3 4 24 3 72 3 4											
19 16 304 1 19 1 19 20 11 220 3 60 1 20 21 9 188,5 2 41,5 3 65,5 3 1 1 20 22 9 197,5 3 65,5 3 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 <td></td>											
20											
21 9 188,5 2 41,5											
22 9 197,5 3 65,5 23 6 138 3 65,5 24 3 72 3 3 25 5 125 3 1 26 27 1 27 3 1 28 29 1 28 1 28 29 30 1 30 1 30 31 1 31 31 32 33 1 32 32 33 1 1 34 34 1 34 1 35 1 35 1 34											-
23 6 138											
24 3 72 125 125 126 126 126 126 126 126 126 126 127 127 127 128 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>,-</td> <td></td> <td></td> <td></td> <td></td>						-	,-				
25 5 125 125 126 26 3 78 127 126 27 1 27 128 128 29 1 30 1 30 1 30 1 30 1 30 1 31 1 31 31 32 33 33 34 1 34 1 35 1 34											
26 3 78 1 26 27 1 27 1 28 28 1 28 1 28 29 1 30 1 30 1 31 1 31 31 1 32 32 1 32 1 32 33 1 34 1 35 1 34											
27 1 27 1 28 28 1 28 1 28 29 30 1 30 1 30 1 31 1 31 31 31 32 33 32 1 32 32 33 34 1 34 1 34 35 1 35 1 35 1 35 1 36 1 37 1 37 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1										1	26
28 1 28 29 1 30 1 30 1 30 1 30 31 1 31 31 31 32 32 1 32 33 34 1 34 34 1 35 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36										'	
29 1 30 1 30 1 30 1 30 1 30 31 1 31 32 32 32 33 32 34 1 34 34 35 1 35 1 35 1 35 1 35 1 35 1 35 1 36 35 1 35 1 36 <										1	20
30 1 30 1 30 1 30 31 31 31 31 32 32 33 34 1 34 35 1 35 1 35 1 35 3 1 35			20							1	20
31			20				00				
32 1 32							3U				
33											
34 1 34 1 35 1 35 1 35 1 35 1 35 1 35 1		1	32								
35 1 35 1 35											
										1	34
36 1 36	35	1	35			1	35				
	36									1	36

37							4	37
							1	37
	1	38						
39								
40								
41								
42							1	42
43	1	43		2	86			
44								
45								
46								
47	1	47					1	47
48								
	1	49						
50								
	1	51		2	102			
52								
53								
54							1	54
55							1	· ·
56								
57							4	50
58							1	58
59								
60							1	60
61								
62								
63								
64								
65								
66								
67								
68								
69								
70								
71								
72								
73								
74								
75								
76								
77								
78								
79								
80								
81								
82								
83								
84								
85								
86								
87								
88								
89							4	00
90							1	90
91								
92								

								•		75 - Histograma
93										
94										
95										
96										
97										
98										
99									1	99
100										
101										
107									1	107
133					1	133				
01/11/2018					<u>'</u>	1.00				
	RES_NORMAL_	RES_NORMAL_	DEC COCIAL E	DEC COCIAL V	COMERCIAL_EC	COMERCIAL V	INDUCTRIAL E	INDUSTRIAL_V	DUBLICA ECON	PUBLICA_VOLU
FAIAA	ECONOMI	VOLUME	CONOMIA	OLUME		OLUME			OMIAS	ME VOLO
0	82	0	6	0	9	0			4	0
1	61	60	6	6	14	13			7	7
2	102	204	3	6	11	22			7	14
3	129	386	1	3	13	39			4	12
4	132	526	5	20	10	38				
5	156	773	3	15	14	69			1	5
6	175	1046	3	18	9	54			2	12
7	239	1650,5	4	28	20	137,5				
8	208	1649,095238	2	16	19	148,9047619			1	8
9	205	1834,833333	3	27	10	88,16666667				
10	219	2177,25	3	30	10	97,75			2	20
11	166	1809,97619	1	11	10	108,6904762	1	10,33333333	1	11
12	137	1629,964286			9	105,2857143	1	12	4	47,75
13	109	1410,1			11	141,9			2	26
14	104	1437,262821	1	14	9	122,7371795			1	14
15	59	883,75			5	74,25			1	15
16	55	878			5	80			1	16
17	42	710,1			3	48,9				
18	37	664,5			6	107,5				
19	17	323			1	19			2	38
20	18	358,5			2	39,5				
21	7	147	1	21	1	21			5	105
22	4	88								
23	8	184			1	23				
24	8	191,5			1	23,5				
25	2	50								
26	1	26								
27	2	54								
28	2	56								
29	1	29								
30	3	90							1	30
31	1	31								
32										
33	1	33			2	66				
34	1	34								
35										
36										
37										
38									1	38
39					1	39			1	39
40										
41										

40		ı	ı	1	ı	1	ı	I	
42									
43									
44									
45									
46									
47					1	47			
48								1	48
								'	40
49									
50									
51									
52					1	52			
53									
54									
55									
56								1	56
57									
	4	50							
58	1	58							
59									
60								 1	60
61									
62									
63									
64								1	64
65									
66									
67									
68									
69								1	69
70					1	70			
70 71					1	70			
					1	70			
71 72					1	70			
71 72 73					1	70			
71 72 73 74					1	70			
71 72 73 74 75					1	70			
71 72 73 74 75 76					1	70			
71 72 73 74 75 76					1	70			
71 72 73 74 75 76 77					1	70			
71 72 73 74 75 76 77 78					1	70			
71 72 73 74 75 76 77						70			
71 72 73 74 75 76 77 78						70			
71 72 73 74 75 76 77 78 79						70			
71 72 73 74 75 76 77 78 79 80 81						70			
71 72 73 74 75 76 77 78 79 80 81 82 83						70			
71 72 73 74 75 76 77 78 79 80 81 82 83						70			
71 72 73 74 75 76 77 78 79 80 81 82 83 84						70			
71 72 73 74 75 76 77 78 79 80 81 82 83 84						70			
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85						70			
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86						70			
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85						70			
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86						70			
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87						70			
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90						70			
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91						70			
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91						70			
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93						70			
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94						70			
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94						70			
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94						70			

98										
99										
100										
101										
146									1	146
152									1	152
01/12/2018									<u> </u>	
FAIXA	RES_NORMAL_	RES NORMAL	RES_SOCIAL_E	RES SOCIAL V	COMERCIAL EC	COMERCIAL V	INDUSTRIAL_E	INDLISTRIAL V	PUBLICA_ECON	PLIBLICA VOLLI
LAIAA		VOLUME					CONOMIA	OLUME		ME
0	73	0	4	0	11	0			7	0
1	63	63	4	4	11	11			3	3
2	86	170,5	4	8	13	25,5			5	10
3	94	281,5	2	6	8	23,5			2	6
4	133	529	2	8	11	44			3	12
5	137	680	6	30	9	45			3	15
6	136	809,5	2	12	12	70,5			1	6
7	209	1451,666667	3	21	13	88,33333333				
8	221	1754,928571	4	32	15	117,0714286			2	16
9	200	1783	1	9	15	133	1	9	1	9
10	225	2231,5	2	20	15	149,5			3	30
11	198	2159,474359	1	11	11	118,525641			1	11
12	162	1927,5			13	151,5	1	12	1	12
13	109	1406,321429	3	39	5	63,42857143			2	25,25
14	105	1466,285714	1	14		27,71428571				
15	95	1421,5				103,5			1	15
16	60	959				80			1	16
17		914,5			6	101,5				
18	27	483,2				196,8			1	18
19		417							1	19
20		599,5			3	59,5				20
21	17	357			2	42				21
22		284,5 69	1	23		21,5			4	86
24		72		23	1	23				
					0	50				
25	5	125				50				
26	7	181				26				
27		81			3	81				
28		28								
29		58								
30	1	30							1	30
31		62			1	31				
32	1	32								
33	2	66							1	33
34										
35										
36										
37										
38	1	38								
39										
40										
41	1	41								
42										
43									1	43
44										
45										
46									1	46
	l	l	I	l	l					

47				T	ı			
48								
49								
50								
51								
	1	52						
53								
54				1	54			
55								
56								
57								
58								
59								
60							1	60
61								
62								
63							1	63
64								
65								<u> </u>
66								
67								
68								
69								
70								
71				1	71			
72								
73								
74								
75								
76								
77								
78								
79								
80							1	80
81								
82								
83								
84								
85								
86								
87								
88								
89								
90								
91								
92								
93								
94								
95								
96								
97								
98								
99								
100						 		
101								
159							1	159
					L		l	

The first color of the first c	258 268 A_ECON PUBLICA_VOLUME 0 6 4 6 4 25 7 8 18 20 10,75
The image is a composite of	268 A_ECON PUBLICA_VOLUME 0 6 4 6 4 25 7 8 18 20
Note	A_ECON PUBLICA_VOLUME 0 6 4 6 4 25 7 8 18 20
FAIXA RES_NORMAL RES_SOCIAL_E RES_SOCIAL_V COMERCIAL_V COMERCIAL_V COMERCIAL_V COMOMIA CONOMIA C	ME 0 6 4 6 4 25 7 8 18 20
1 84 84 5 5 15 15 6 2 70 139,5 3 6 13 24,5 2 3 101 303 5 15 7 21 2 4 114 455 2 8 10 40 1 5 136 676,5 3 15 16 77,5 5 6 163 969,5 3 18 16 95,5 7 182 1261,566667 2 14 19 130,4333333 1 8 216 1717,142857 12 94,85714286 1 9 232 2068,333333 27 13 115,6666667 2 10 225 2235,166667 3 30 6 58,83333333 2 11 173 1888 1 11 7 75,25 1 12 189 2233,113553 1 12 17 196,5531136 2 23,333333333 4	6 4 6 4 25 7 8 18 20
2 70 139,5 3 6 13 24,5 2 3 101 303 5 15 7 21 2 4 114 455 2 8 10 40 1 5 136 676,5 3 15 16 77,5 5 6 163 969,5 3 18 16 95,5 7 182 1261,566667 2 14 19 130,4333333 1 8 216 1717,142857 12 94,85714286 1 9 232 2068,333333 3 27 13 115,6666667 2 10 225 2235,166667 3 30 6 58,833333333 2 11 173 1888 1 11 7 75,25 1 12 189 2233,113553 1 12 17 196,5531136 2 23,33333333 4 13 128 1658 2 26 8 103 103 <	4 6 4 25 7 8 18 20
3 101 303 5 15 7 21 2 4 114 455 2 8 10 40 1 5 136 676,5 3 15 16 77,5 5 6 163 969,5 3 18 16 95,5 7 182 1261,566667 2 14 19 130,43333333 1 8 216 1717,142857 12 94,85714286 1 9 232 2068,3333333 3 27 13 115,6666667 2 10 225 2235,166667 3 30 6 58,83333333 2 11 173 1888 1 11 7 75,25 1 12 189 2233,113553 1 12 17 196,5531136 2 23,333333333 4 13 128 1658 2 26 8 103 103 103	6 4 25 7 8 18 20
4 114 455 2 8 10 40 1 5 136 676,5 3 15 16 77,5 5 6 163 969,5 3 18 16 95,5 1 7 182 1261,566667 2 14 19 130,43333333 1 1 8 216 1717,142857 12 94,85714286 1 1 1 9 232 2068,3333333 3 27 13 115,6666667 2 2 10 225 2235,166667 3 30 6 58,83333333 2 2 11 173 1888 1 11 7 75,25 1 1 12 189 2233,113553 1 12 17 196,5531136 2 23,33333333 4 13 128 1658 2 26 8 103 1	7 8 18 20
5 136 676,5 3 15 16 77,5 5 6 163 969,5 3 18 16 95,5 1 7 182 1261,566667 2 14 19 130,4333333 1 8 216 1717,142857 12 94,85714286 1 9 232 2068,333333 3 27 13 115,6666667 2 10 225 2235,166667 3 30 6 58,83333333 2 11 173 1888 1 11 7 75,25 1 12 189 2233,113553 1 12 17 196,5531136 2 23,33333333 4 13 128 1658 2 26 8 103 103 103	25 7 8 18 20
6 163 969,5 3 18 16 95,5 7 182 1261,566667 2 14 19 130,4333333 1 8 216 1717,142857 12 94,85714286 1 9 232 2068,333333 3 27 13 115,6666667 2 10 225 2235,166667 3 30 6 58,83333333 2 11 173 1888 1 11 7 75,25 1 12 189 2233,113553 1 12 17 196,5531136 2 23,33333333 4 13 128 1658 2 26 8 103 103	7 8 18 20
7 182 1261,566667 2 14 19 130,4333333 1 8 216 1717,142857 12 94,85714286 1 9 232 2068,333333 3 27 13 115,6666667 2 10 225 2235,166667 3 30 6 58,83333333 2 11 173 1888 1 11 7 75,25 1 12 189 2233,113553 1 12 17 196,5531136 2 23,33333333 4 13 128 1658 2 26 8 103 103 103	8 18 20
8 216 1717,142857 12 94,85714286 1 9 232 2068,333333 3 27 13 115,6666667 2 10 225 2235,166667 3 30 6 58,83333333 2 11 173 1888 1 11 7 75,25 1 12 189 2233,113553 1 12 17 196,5531136 2 23,33333333 4 13 128 1658 2 26 8 103 103	8 18 20
9 232 2068,333333 3 27 13 115,6666667 2 10 225 2235,166667 3 30 6 58,83333333 2 11 173 1888 1 11 7 75,25 1 12 189 2233,113553 1 12 17 196,5531136 2 23,33333333 4 13 128 1658 2 26 8 103 103	18
10 225 2235,166667 3 30 6 58,83333333 2 11 173 1888 1 11 7 75,25 1 12 189 2233,113553 1 12 17 196,5531136 2 23,33333333 4 13 128 1658 2 26 8 103	20
11 173 1888 1 11 7 75,25 1 12 189 2233,113553 1 12 17 196,5531136 2 23,33333333 4 13 128 1658 2 26 8 103	
12 189 2233,113553 1 12 17 196,5531136 2 23,33333333 4 13 128 1658 2 26 8 103	10.75
12 189 2233,113553 1 12 17 196,5531136 2 23,33333333 4 13 128 1658 2 26 8 103	10,75
13 128 1658 2 26 8 103	48
	69
15 62 927,5 3 44,5 1	15
16 65 1039,5 1 16 5 79,5 2	32
17 50 847,9 1 17 5 84,1	
18 44 787,6 4 70,4 1	18
19 23 437 1 1 19 1	19
20 28 558,5 1 19,5 1	20
21 6 126	
22 12 262 1 22	
23 11 253 2 46	
24 17 407	
25 7 174,3333333 3 73,66666667 3	
26 3 78	
27 3 80,5 2 53,5	
28 1 28	
29 2 58	
30 4 120 1 30	
31 1 31 1	31
32	
33	
34	
35 1 35 I	
36 2 72 1	36
37	
38 1 1	38
39	
40 1 40	
41	
42	
43 2 86 1 43	
43 2 00 1 43	
45	
46	
47	
48	
49	

50	I						
51							
52							
53							
54							
55							
56							
57							
58			1	58			
59			1	59			
60							
61							
62							
63							
64							
65							
66							
67							
68							
69							
70 71							
72							
73							
74							
75							
76							
77							
78							
79							
80							
81							
82							
83							
84							
85							
86							
87							
88							
89							
90							
91							
92							
93							
94							
95							
96							
97							
98							
99						1	99
						1	
100							
101						4	000
222							222
246							246
266						1	266
01/02/2019							

	RES_NORMAL_ ECONOMI	RES_NORMAL_ VOLUME	RES_SOCIAL_E CONOMIA			COMERCIAL_V OLUME	INDUSTRIAL_E CONOMIA	INDUSTRIAL_V OLUME	PUBLICA_ECON OMIAS	PUBLICA_VOLU ME
0	75	0	3	0	11	0			8	0
1	68	68	4	4	8	8			5	5
2	90	179	4	8	15	28			4	8
3	94	281,5	1	3		26,5			3	9
4	122	485,5	5	20		50,5			3	12
5	129	642,5	6	30	11	54,5				
6	166	989	3	18	20	117			2	12
7	193	1341,666667				150,3333333			2	14
8	241	1905,690476	2	16	6	46,30952381				
9	216	1928,304762	1	9	16	141,6952381			4	36
10	220		5	50	14	136,5833333			3	30
11	188	2054,75	1	11	8	85,25	1	11		
12	151	1783,685897			11	129,3141026				
13	132	1706,035714	3	39	6	76,46428571			2	25,5
14	107	1491,166667			7	96,83333333	1	14		
15	81	1210,916667			6	89,08333333			5	75
16	47	750			3	48			1	16
17	41	694,4	1	17	6	100,6			1	17
18	41	735,5			7	124,5			1	18
19	20	377,5			2	37,5			1	19
20	31	620			1	20			2	40
21	15	315							1	21
22	10	220								
23	11	253							1	23
24	4	96			1	24				
25	7	174,6666667			2	49,33333333				
26	7	181,5			1	25,5				
27	1	27			1	27			1	27
28	1	28								
29	3	87								
	1	30								
31	2	62			1	31				
32	1	32								
	1	33							1	33
34										
35										
36										
37										
	1	38								
39										
40										
41										
	1	42								
43		·-								
44										
	1	45							1	45
46		· -								
47										
48										
49										
50										
51									1	E1
									1	51
52										
53										

54	I	I	I		Ι					
55										
56										
57					1	57				
58										
59										
60										
61										
62										
63										
64	1	64								
65										
66										
67										
68										
69										
70										
71										
72										
73										
74										
75										
76										
77					1	77				
78										
79										
80										
81										
82										
83										
84										
85										
86	1	86								
87										
88										
89										
90										
91										
92										
93										
94										
95										
96										
97										
98										
99										
100										
101										
									1	105
105						100			1	105
129					1	129				
254									1	254
01/03/2019										
FAIXA	RES_NORMAL_ ECONOMI	RES_NORMAL_ VOLUME	RES_SOCIAL_E CONOMIA	RES_SOCIAL_V OLUME	COMERCIAL_EC ONOMIAS	COMERCIAL_V OLUME	INDUSTRIAL_E CONOMIA	INDUSTRIAL_V OLUME	PUBLICA_ECON OMIAS	PUBLICA_VOLU ME
0	127	0			20	0				0
1		69	5	5	14	14				3
			<u> </u>	ļ -	<u> </u>	l · ·			_	-

2	110	219	3	6	14	28			6	12
3	128	382,5	6		1	38,5				12
		591	5		1	39			1	4
		868,5	2		l	102,5				10
	202	1199,5	3		l	57,5			1	6
	237	1642,833333	3		1	109,1666667			<u>'</u>	0
	230		3		l	115,4642857			2	16
					l	115,8083333				27
			3		l					
		2035,416667	1	10		88,58333333		40.0000007		50
	145		2	22	1	150,6309524	1	10,66666667		22
	109	1302,5			l	106,5				12
	91	1177	2	26	l	77				13
	101	1407,5			l	41,5				14
	50	748				59	1	15		15
	46	732,2	1	16	l	46,8				32
	38	644,5			l	50,5			1	17
	26	463,6			l	34,4				
	12	228			2	38				
20	15	300								
21	6	124,8333333			4	82,16666667				
22	3	66			1	22				
23	9	206								
24	6	143,5			1	23,5				
25	1	25								
26	2	52								
27	1	27								
28										
29	1	29								
30	1	30								
31	2	62			1	31				
32	1	32								
33					1	33				
34										
	3	105								
	1	36								
37	'									
38										
39										
40										
	1	41							1	41
		41								41
42										
43										
44										
45										
46										
47										
48										
49					1	49				
50										
51									1	51
52										
53										
54										
55										
56										
57										
	L	L			L	L			L	

50	ı	1	ı	ı	г	Г	I	I	I	ı
58										
59					1	59				
60										
61										
62										
63										
64										
65										
66										
67										
68										
		00								
69	1	69								
70										
71										
72										
73										
74										
75										
76										
77										
78										
79										
80										
81										
82										
83										
84										
85										
86										
87										
88										
89										
90										
91										
92										
93										
94										
95										
96										
97										
98										
99										
100										
101										
158									1	158
01/04/2019	I		I	I			I	I	I	
FAIXA	RES_NORMAL_ ECONOMI	RES_NORMAL_ VOLUME	RES_SOCIAL_E CONOMIA	RES_SOCIAL_V OLUME	COMERCIAL_EC	COMERCIAL_V OLUME	INDUSTRIAL_E CONOMIA	INDUSTRIAL_V OLUME	PUBLICA_ECON OMIAS	PUBLICA_VOLU ME
0	96	0	5	0	10	0			8	0
	66	66	4	4	13	13			2	2
2	104	207	6	12	10	19			6	12
				1	l					
3	136	406	3	l	18	54			3	9
4	124	493,5	3	1	14	53,5			3	12
5	165	821	2	10	14	69			1	5
6	179		2	1	17	100,1666667			2	12
7	214	1482,666667	2	14	19	130,3333333			2	14
-										

8	239	1888,428571	1	8	11	86,57142857	<u> </u>		1	8
	207					114,75			3	27
	230			20		67,66987179	1	10	2	20
	152					115,9166667	1	10	2	20
11						129,5833333			4	10
	130								7	12
	119		1	13		75,83333333		4.4	/	91
	83	1158		15		69	1	14		
	71	1059,25	1	15		103,25			1	14,5
	57	909,5				31,5			1	16
	27	456,6				49,4				
		522				18			1	18
	24	452,6			6	112,4				
	18	359	1	20						
		313,3333333				61,66666667				
	9	197,5				21,5			1	22
	7	161				46				
	9	216	1	24	1	24				
	6	149								
	4	104								
		27								
	1	28								
29	1	29							1	29
30					1	30				
31	2	62			1	31				
32	1	32								
33	1	33								
34	1	34			1	34				
35					1	35				
36										
37	2	74								
38									1	38
39	1	39								
40	1	40								
41									1	41
42										
43										
44										
45										
46										
47										
48										
49									1	49
50										
51										
52										
53										
54										
55										
56									1	56
57					1	57				
58										
59										
60										
61										
62										
63										

64	I	1	1	1	ı	ı	I	I	1	1
65										
66										
67										
68									1	68
69										
70										
71										
72										
73										
74										
75										
76									1	76
77									<u> </u>	70
78										
79										
80										
81										
82									1	82
83										
84										
85										
86										
87										
88										
89										
90										
91										
92										
93										
94										
95										
96										
97										
98										
99										
100										
101										
114									1	114
149									1	149
01/05/2019					<u> </u>	<u> </u>				
FAIXA	RES_NORMAL_	RES_NORMAL_	RES_SOCIAL_E	RES SOCIAL V	COMERCIAL_EC	COMERCIAL V	INDUSTRIAL F	INDUSTRIAL V	PUBLICA_ECON	PUBLICA VOLU
7 1170 (ECONOMI	VOLUME	CONOMIA	OLUME	ONOMIAS	OLUME	CONOMIA	OLUME	OMIAS	ME
0	107	0	3	0	9	0	1	0	10	0
		84	6	6	14	14	<u>'</u>		6	6
2	95	190	3	6	9	17			3	6
3	126	374,5	3	9	15	44,5			4	12
4	154		9		17	65,33333333			3	12
5	150	741,0833333	4	20	17	82,91666667			2	10
6	221	1316			19	111				
7	217	1501,928571	1	7	12	83,07142857				
8	235	1857,333333	3	24	8	60,33333333	1	7,333333333	2	16
9	247	2193,911905	2	18	10	87,08809524			2	18
10	178	1769,75	5	50	16	157,5			1	9,75
11	168	1825,069597			12	129,9304029				
12	141		1	12	8	93,83333333				
		l		L						

14	13	105	1353,416667		6	75,58333333		<u> </u>	
15 80 MPA 10 1 5 60 1 1 15 15 15 15 15 15 15 12 12 10 15 12 14 15 12 14 15 15 14 15 15 15 15 16 15 15 15 16 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>14</td>								1	14
15 15 16 16 17 18 18 18 18 18 18 18		l							
77 88 642 2 81 81 22 3 84 81 81 81 10 17.5 81 1 10 1 10 <t< td=""><td></td><td>l</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		l							
19 485 485 1 1 7.5 1 1 1 15 15 1 1 15 15 1 1 15 15 1									
1901488801010212710<		l							
201 7 480 100 100 130 21 21 10 20 40 <th< td=""><td></td><td>l</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		l							
21 11 29 1 1 21 1 1 2 1 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
22 6 192 192 193 194 29 194 29 194 29 194 29 194 20 195 29 195 20 195 20 195 20 195 20 196 20 196								2	40
23 19 29 10 29 46,6669667 10 1 20 46,6669667 10 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 10 20 10 10 20 10 10 20 10 10 20 10 10 20 10 10 20 10 20 10 20		l							
244 248 47,3033338 1 2 48,6666667 1 2 1		l			1	22			
25 10 248 1 1 26 1 <td></td> <td>l</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>23</td>		l						1	23
28 3 78 1 1 27 1 27 1 1 27 1 27 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 1 3 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 </td <td></td> <td>l</td> <td></td> <td></td> <td>2</td> <td>46,66666667</td> <td></td> <td></td> <td></td>		l			2	46,66666667			
27 1 27 1 27 1 27 1 20 1 20 2 2 2 1 2 </td <td></td> <td>l</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		l							
88 1 88 1 9 1 9 1 20 1 2 1 2 1 1 2 1		l						4	104
30 87 9 1		l			1	27			
30 3 89 1 1 1 1 1 1 1 1 1 1 2 62 1		l						1	28
31 2 62 1		l							
32 1 1 1 1 3 1 1 1 3 1 1 1 1 3 1		l							
33 1 1 33 1 1 34 1 34 1 34 1 35 1 2 1 35 35 1 1 36 1 36		2	62				 		
944 1 1 1 1 1 1 3 1 1 3 3 3 3 1 1 3 4 3 4 3 4	32								
35 1 1 36 1 36 1 36 1 36 1 36 1 36 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 37 37 1 37	33				1	33			
36 1	34								
57 1 37 1 1 37 1	35							1	35
98 1 4 1	36								
99 1 1 1 1 1 1 1 1 1 1 1 1 4 4	37	1	37		1	37			
40 1 4	38								
41 1 42 1 4 1 41 42 1 42 1 42 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 4 1 4 4 1 4 </td <td>39</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	39								
42 1 42 1 40 1 40 1 40 1 40 1 40 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 40 1 44 1 40 1 44 1 44 1 44 1 40 1 44 44 1 40 1 40 40 40 1 44 44 1 40 1 40	40								
43 1 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 44 1 44 <th< td=""><td>41</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>41</td></th<>	41							1	41
44 1 44 1 44 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	42	1	42						
45 Image: control or contr	43								
46 Image: Control of the c	44				1	44			
47 1	45								
47 1	46								
48 Image: Control of the c									
48 Image: Control of the c	47								
50 1	47								
51 Section 1 Section 1 Section 2 Section 3 Secti	47 48								
52 1	47 48 49								
53 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 3 4 1 3 3 4	47 48								
54 56 1 1 1 57 1 1 58 1	47 48 49 50 51								
55 56 1 1 57 2 112 57 1 57 1 1 58 59 1	47 48 49 50 51 52								
56 6	47 48 49 50 51 52 53								
57 58 1 57 1 58 1 58 59 1 1 58 59 1 1 58 59 1 1 58 59 1 1 58 59 1 1 58 58 59 1 1 58 58 59 1 1 58 58 59 1 1 58 58 59 1 1 58 58 59 50 </td <td>47 48 49 50 51 52 53</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	47 48 49 50 51 52 53								
58 60 61 62 62 63 64 64 65 66 66 66 66 66 66 67 68 68 69 60<	47 48 49 50 51 52 53 54 55							2	112
59 60<	47 48 49 50 51 52 53 54 55				1	57		2	112
60 60 <td< td=""><td>47 48 49 50 51 52 53 54 55 56</td><td></td><td></td><td></td><td>1</td><td>57</td><td></td><td></td><td></td></td<>	47 48 49 50 51 52 53 54 55 56				1	57			
61 62 63 64 65 65 66 66 66 66 66 66 66 66 66 66 66	47 48 49 50 51 52 53 54 55 56 57 58				1	57			
62 62 63 63 64 64 64 65 64 65 64 65 66 66 66 67 60 <td< td=""><td>47 48 49 50 51 52 53 54 55 56 57 58 59</td><td></td><td></td><td></td><td>1</td><td>57</td><td></td><td></td><td></td></td<>	47 48 49 50 51 52 53 54 55 56 57 58 59				1	57			
63 64 65 66 67 67 68 68 68 68 68 68 68 68 68 68 68 68 68	47 48 49 50 51 52 53 54 55 56 57 58 59 60				1	57			
64 64 65 65 66 67 68 69 60<	47 48 49 50 51 52 53 54 55 56 57 58 59 60 61				1	57			
65 66 67 67 67 68 68 68 68 68 68 68 68 68 68 68 68 68	47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62				1	57			
66 67 68 69 69 60<	47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63				1	57			
67	47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64				1	57			
	47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65				1	57			
68	47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66				1	57			
	47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67				1	57			

00	I	1	1		г	г	ı	ı	ı	ı
69										
70										
71										
72										
73										
74										
75										
76										
77										
78										
79										
80										
81										
82										
83										
84										
85										
86										
87										
88										
89										
90										
91										
92										
93										
94										
95									1	95
96										
97										
98										
99										
100										
101										
157									1	157
01/06/2019										
FAIXA	DEC NORMAL	DEC NORMAL	RES_SOCIAL_E	DEC COCIAL V	COMEDCIAL FO	COMEDCIAL V	INDUSTRIAL_E	INDUCTORAL V	PUBLICA_ECON	Inunuca volu
FAIXA	ECONOMI	VOLUME	CONOMIA	OLUME	COMERCIAL_EC	OLUME		OLUME	OMIAS	ME
0	86	0	1	0	8	0			7	0
1	78	77,5	6	6	13	12,5			6	6
	91	180,5	5	10	10	19,5			3	6
3	118	351,5	3		11	32,5			2	6
4	113	449,5	7	28	13	50,5			5	20
5	158	785	4	20	16	79			4	20
6	197	1175			17	99				
7	181	1260,833333	3	21	14	96,16666667	1	7	1	7
8	242	1911,025641	1	8	17	131,974359			1	8
9	213		2	18	13	113,2642857				
	212		3		11	108,6666667				
11	181		2	22	7	75,83333333			2	22
12	143	1707,619048	1	12	10	118,3809524			2	24
13	114	1472,25	1	13	12	152,75			-	L-T
			'	10		1			1	14
14	101	1408,5			5	69,5			1	14
15	76	1136,5			4	58,5			3	45
16	52	829,5			5	79,5			5	79
17	45	763,5			4	67,5				
18	24	432			1	18	1	18	1	18
L										

19	24	454,25			3	56,75		2	38
		418,4				39,6			20
						1			
		524,3333333				82,66666667		1	21
	7	153,5			2	43,5			
	7	161	1	23					
	6	143,5			1	23,5			
		25							
		52							
	3	81						1	27
28	1	28			1	28			
29	1	29							
30	1	30							
31	2	61,5			1	30,5			
32									
33									
	3	102							
35								1	35
36					1	36			
37						-			
38									
39									
40									
41									
42									
43								1	43
44					1	44			
45									
46									
47									
48	1	48			1	48			
49									
50									
51									
52	1	52							
53									
54									
55									
56									
57								1	57
58									
59									
60									
61									
62									
63									
64									
	1	65							
	1	65							
66									0.7
67								1	67
68									
69									
70									
71									
72									
73									
74									
	<u> </u>	l	L	L					

75	1	1	1	1	I			l		
75										
76										
77										
78										
79										
80										
81										
82										
83										
84										
85										
86										
87										
88										
89										
90										
91										
92										
93										
94										
95										
96										
97										
98									1	98
99										
100									1	100
									<u>'</u>	100
101										
175									1	175
01/07/2019			•	•						
O1/07/2019 FAIXA	RES_NORMAL_ ECONOMI	RES_NORMAL_ VOLUME	RES_SOCIAL_E CONOMIA	RES_SOCIAL_V OLUME	COMERCIAL_EC	COMERCIAL_V OLUME	INDUSTRIAL_E CONOMIA		PUBLICA_ECON OMIAS	PUBLICA_VOLU ME
FAIXA	ECONOMI			OLUME						
FAIXA 0	ECONOMI 89	VOLUME 0	CONOMIA 3	OLUME	ONOMIAS	OLUME 0			OMIAS 5	ME 0
FAIXA 0 1	ECONOMI 89 91	0 91	CONOMIA 3 8	OLUME 0 8	ONOMIAS 12 9	OLUME 0 9			OMIAS 5 6	ME 0 6
FAIXA 0 1 2	89 91 105	VOLUME 0 91 210	CONOMIA 3 8	0 8 8	ONOMIAS 12 9	0 9 17			OMIAS567	0 6 14
FAIXA 0 1 2 3	89 91 105 126	VOLUME 0 91 210 374,5	CONOMIA 3 8 4	0 8 8 6	ONOMIAS 12 9 9 20	0 9 17 58,5			OMIAS 5 6 7 2	ME 0 6 14 6
FAIXA 0 1 2	91 105 126 122	VOLUME 0 91 210 374,5 483,5	CONOMIA 3 8 4 2 8	0 8 8 6 32	ONOMIAS 12 9 9 20 10	OLUME 0 9 17 58,5 38,5			OMIAS 5 6 7 2 2	ME 0 6 14 6 8
FAIXA 0 1 2 3	89 91 105 126	VOLUME 0 91 210 374,5 483,5	CONOMIA 3 8 4	0 8 8 6	ONOMIAS 12 9 9 20	0 9 17 58,5			OMIAS 5 6 7 2	ME 0 6 14 6
FAIXA 0 1 2 3 4	91 105 126 122	VOLUME 0 91 210 374,5 483,5	CONOMIA 3 8 4 2 8	0 8 8 6 32	ONOMIAS 12 9 9 20 10	OLUME 0 9 17 58,5 38,5			OMIAS 5 6 7 2 2	ME 0 6 14 6 8
FAIXA 0 1 2 3 4 5	91 105 126 122 190	VOLUME 0 91 210 374,5 483,5 941,8333333	CONOMIA 3 8 4 2 8	0 8 8 6 32	9 9 20 10 22	OLUME 0 9 17 58,5 38,5 107,1666667			OMIAS 5 6 7 2 2 2	ME 0 6 14 6 8 10 10
FAIXA 0 1 2 3 4 5	91 105 126 122 190 222	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667	CONOMIA 3 8 4 2 8	0 8 8 6 32	ONOMIAS 12 9 9 20 10 22 16	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462	CONOMIA		OMIAS 5 6 7 2 2 2 2	ME 0 6 14 6 8 10 12
FAIXA 0 1 2 3 4 5 6 7 8	ECONOMI 89 91 105 126 122 190 222 221 259	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667 2047,983333	CONOMIA 3 8 4 2 8 3 2	OLUME 0 8 8 6 32 15	ONOMIAS 12 9 9 10 22 16 17 19	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462 117,3333333 146,6833333	CONOMIA	OLUME	OMIAS 5 6 7 2 2 2 2	ME 0 6 14 6 8 10 12 7
FAIXA 0 1 2 3 4 5 6 7 8 9	ECONOMI 89 91 105 126 122 190 222 221 259 211	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667 2047,983333 1881,3333333	CONOMIA 3 8 4 2 8 3	OLUME 0 8 8 6 32 15 16 9	ONOMIAS 12 9 9 20 10 22 16 17 19 10	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462 117,3333333 146,6833333 88,66666667	CONOMIA	OLUME	OMIAS 5 6 7 2 2 2 1	ME 0 6 14 6 8 10 12 7 9
FAIXA 0 1 2 3 4 5 6 7 8 9 10	ECONOMI 89 91 105 126 122 190 222 221 259 211 216	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667 2047,983333 1881,3333333 2137,107143	CONOMIA 3 8 4 2 8 3 1 1 3	OLUME 0 8 8 6 32 15 16 9 30	ONOMIAS 12 9 9 20 10 22 16 17 19 10 8	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462 117,3333333 146,6833333 88,66666667 78,89285714	CONOMIA	OLUME	OMIAS 5 6 7 2 2 2 1 1 1	ME 0 6 14 6 8 10 12 7
FAIXA 0 1 2 3 4 5 6 7 8 9 10	ECONOMI 89 91 105 126 122 190 222 221 259 211 216	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667 2047,983333 1881,333333 2137,107143 1746,083333	CONOMIA 3 8 4 2 8 3 1 2 1 3 2	OLUME 0 8 8 6 32 15 16 9 30 22	ONOMIAS 12 9 9 20 10 22 16 17 19 10 8	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462 117,3333333 146,6833333 88,66666667 78,89285714 161,9166667	CONOMIA	OLUME	OMIAS 5 6 7 2 2 2 1 1 1 1	ME 0 6 14 6 8 10 12 7 9 10
FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12	ECONOMI 89 91 105 126 122 190 222 221 259 211 216 160 135	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667 2047,983333 1881,333333 2137,107143 1746,083333 1614,083333	CONOMIA 3 8 4 2 8 3 2 1 3 2	OLUME 0 8 8 6 32 15 16 9 30 22 24	ONOMIAS 12 9 9 20 10 22 16 17 19 10 8 15	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462 117,3333333 146,6833333 88,66666667 78,89285714 161,9166667 93,16666667	CONOMIA	OLUME	OMIAS 5 6 7 2 2 1 1 1 1 2	ME 0 6 14 6 8 10 12 7 9 10 11 23,75
FAIXA 0 1 2 3 4 5 6 7 8 9 10	ECONOMI 89 91 105 126 122 190 222 221 259 211 216 160 135	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667 2047,983333 1881,333333 2137,107143 1746,083333 1614,083333 1329	CONOMIA 3 8 4 2 8 3 1 2 1 3 2	OLUME 0 8 8 6 32 15 16 9 30 22	ONOMIAS 12 9 9 20 10 22 16 17 19 10 8	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462 117,3333333 146,6833333 88,66666667 78,89285714 161,9166667 93,16666667 51	CONOMIA	OLUME	OMIAS 5 6 7 2 2 2 1 1 1 1	ME 0 6 14 6 8 10 12 7 9 10 11 23,75 52
FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12	ECONOMI 89 91 105 126 122 190 222 221 259 211 216 160 135	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667 2047,983333 1881,333333 2137,107143 1746,083333 1614,083333	CONOMIA 3 8 4 2 8 3 2 1 3 2 2	OLUME 0 8 8 6 32 15 16 9 30 22 24	ONOMIAS 12 9 9 20 10 22 16 17 19 10 8 15	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462 117,3333333 146,6833333 88,66666667 78,89285714 161,9166667 93,16666667	CONOMIA	OLUME	OMIAS 5 6 7 2 2 1 1 1 1 2	ME 0 6 14 6 8 10 12 7 9 10 11 23,75
FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13	ECONOMI 89 91 105 126 122 190 222 221 259 211 216 160 135	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667 2047,983333 1881,333333 2137,107143 1746,083333 1614,083333 1329	CONOMIA 3 8 4 2 8 3 2 1 3 2 2	OLUME 0 8 8 6 32 15 16 9 30 22 24	ONOMIAS 12 9 9 20 10 22 16 17 19 10 8 15 8	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462 117,3333333 146,6833333 88,66666667 78,89285714 161,9166667 93,16666667 51	CONOMIA	OLUME	OMIAS 5 6 7 2 2 2 1 1 1 1 2 4	ME 0 6 14 6 8 10 12 7 9 10 11 23,75 52
FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	ECONOMI 89 91 105 126 122 190 222 221 259 211 216 160 135 103 72	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667 2047,983333 1881,333333 2137,107143 1746,083333 1614,083333 1329 1002,5	CONOMIA 3 8 4 2 8 3 2 1 3 2 2	OLUME 0 8 8 6 32 15 16 9 30 22 24	ONOMIAS 12 9 9 20 10 22 16 17 19 10 8 15 8 4	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462 117,3333333 146,6833333 88,66666667 78,89285714 161,9166667 93,16666667 51 95,5	CONOMIA	OLUME	OMIAS 5 6 7 2 2 2 1 1 1 1 2 4	ME 0 6 14 6 8 10 12 7 9 10 11 23,75 52 28
FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	ECONOMI 89 91 105 126 122 190 222 221 259 211 216 160 135 103 72 37 40	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667 2047,983333 1881,333333 2137,107143 1746,083333 1614,083333 1329 1002,5 554 639	CONOMIA 3 8 4 2 8 3 2 1 1 1	OLUME 0 8 8 6 32 15 16 9 30 22 24 13	ONOMIAS 12 9 9 20 10 22 16 17 19 10 8 4 7 2 1	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462 117,3333333 146,6833333 88,66666667 78,89285714 161,9166667 93,16666667 51 95,5 30 16	CONOMIA 1	7,333333333	OMIAS 5 6 7 2 2 2 1 1 1 1 2 4 2 1	ME 0 6 14 6 8 10 12 7 9 10 11 23,75 52 28
FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	ECONOMI 89 91 105 126 122 190 222 221 259 211 216 160 135 103 72 37 40 38	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667 2047,983333 1881,333333 2137,107143 1746,083333 1329 1002,5 554 639 638,8	CONOMIA 3 8 4 2 8 3 2 1 1 1	OLUME 0 8 8 6 32 15 16 9 30 22 24 13	ONOMIAS 12 9 9 20 10 22 16 17 19 10 8 15 8 4 7 2 1 6	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462 117,3333333 146,6833333 88,66666667 78,89285714 161,9166667 51 95,5 30 16 100,2	CONOMIA 1	OLUME	OMIAS 5 6 7 2 2 2 1 1 1 1 1 1 1 1 1 1	ME 0 6 14 6 8 10 12 7 9 10 11 23,75 52 28 15
FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	ECONOMI 89 91 105 126 122 190 222 221 259 211 216 160 135 103 72 37 40 38 27	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667 2047,983333 1881,333333 2137,107143 1746,083333 1614,083333 1329 1002,5 554 639 638,8 483,6333333	CONOMIA 3 8 4 2 8 3 2 1 1 1 1	OLUME 0 8 8 6 32 15 16 9 30 22 24 13 17 18	ONOMIAS 12 9 9 20 10 22 16 17 19 10 8 15 8 4 7 2 1 6 6	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462 117,3333333 146,6833333 88,66666667 78,89285714 161,9166667 93,16666667 51 95,5 30 16 100,2 105,3666667	CONOMIA 1	7,333333333	OMIAS 5 6 7 2 2 2 1 1 1 1 1 1 1 1 1 1	ME 0 6 14 6 8 10 12 7 9 10 11 23,75 52 28 15
FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	ECONOMI 89 91 105 126 122 190 222 221 259 211 216 160 135 103 72 37 40 38 27	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667 2047,983333 1881,333333 2137,107143 1746,083333 1614,083333 1329 1002,5 554 639 638,8 483,6333333 285	CONOMIA 3 8 4 2 8 3 2 1 1 1	OLUME 0 8 8 6 32 15 16 9 30 22 24 13	ONOMIAS 12 9 9 20 10 22 16 17 19 10 8 4 7 2 1 6 6 1	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462 117,3333333 146,6833333 88,66666667 78,89285714 161,9166667 93,16666667 51 95,5 30 16 100,2 105,3666667 19	CONOMIA 1	7,333333333	OMIAS 5 6 7 2 2 2 1 1 1 1 1 1 1 1 1 1	ME 0 6 14 6 8 10 12 7 9 10 11 23,75 52 28 15 17 18
FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	ECONOMI 89 91 105 126 122 190 222 221 259 211 216 160 135 103 72 37 40 38 27	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667 2047,983333 1881,333333 2137,107143 1746,083333 1329 1002,5 554 639 638,8 483,6333333 285 300	CONOMIA 3 8 4 2 8 3 2 1 1 1 1	OLUME 0 8 8 6 32 15 16 9 30 22 24 13 17 18	ONOMIAS 12 9 9 20 10 22 16 17 19 10 8 15 8 4 7 2 1 6 6	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462 117,3333333 146,6833333 88,66666667 78,89285714 161,9166667 93,16666667 51 95,5 30 16 100,2 105,3666667	CONOMIA 1	7,333333333	OMIAS 5 6 7 2 2 2 1 1 1 1 1 1 1 1 1 1	ME 0 6 14 6 8 10 12 7 9 10 11 23,75 52 28 15
FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	ECONOMI 89 91 105 126 122 190 222 221 259 211 216 160 135 103 72 37 40 38 27	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667 2047,983333 1881,333333 2137,107143 1746,083333 1614,083333 1329 1002,5 554 639 638,8 483,6333333 285	CONOMIA 3 8 4 2 8 3 2 1 1 1 1	OLUME 0 8 8 6 32 15 16 9 30 22 24 13 17 18	ONOMIAS 12 9 9 20 10 22 16 17 19 10 8 4 7 2 1 6 6 1	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462 117,3333333 146,6833333 88,66666667 78,89285714 161,9166667 93,16666667 51 95,5 30 16 100,2 105,3666667 19	CONOMIA 1	7,333333333	OMIAS 5 6 7 2 2 2 1 1 1 1 1 1 1 1 1 1	ME 0 6 14 6 8 10 12 7 9 10 11 23,75 52 28 15 17 18
FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	ECONOMI 89 91 105 126 122 190 222 221 259 211 216 160 135 103 72 37 40 38 27 15	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667 2047,983333 1881,333333 2137,107143 1746,083333 1329 1002,5 554 639 638,8 483,6333333 285 300	CONOMIA 3 8 4 2 8 3 2 1 1 1 1	OLUME 0 8 8 6 32 15 16 9 30 22 24 13 17 18	ONOMIAS 12 9 9 20 10 22 16 17 19 10 8 4 7 2 1 6 6 1	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462 117,3333333 146,6833333 88,66666667 78,89285714 161,9166667 93,16666667 51 95,5 30 16 100,2 105,3666667 19	CONOMIA 1	7,333333333	OMIAS 5 6 7 2 2 2 1 1 1 1 1 1 1 1 1 1	ME 0 6 14 6 8 10 12 7 9 10 11 23,75 52 28 15 17 18
FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	ECONOMI 89 91 105 126 122 190 222 221 259 211 216 160 135 103 72 37 40 38 27 15 15	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667 2047,983333 1881,333333 2137,107143 1746,083333 1614,083333 1614,083333 1629 1002,5 554 639 638,8 483,6333333 285 300 167	CONOMIA 3 8 4 2 8 3 2 1 1 1 1	OLUME 0 8 8 6 32 15 16 9 30 22 24 13 17 18	ONOMIAS 12 9 9 20 10 22 16 17 19 10 8 4 7 2 1 6 6 1 1	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462 117,3333333 146,6833333 88,66666667 78,89285714 161,9166667 93,16666667 51 95,5 30 16 100,2 105,3666667 19 20	CONOMIA 1	7,333333333	OMIAS 5 6 7 2 2 2 1 1 1 1 1 1 1 1 1 1	ME 0 6 14 6 8 10 12 7 9 10 11 23,75 52 28 15 17 18 19 20
FAIXA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	ECONOMI 89 91 105 126 122 190 222 221 259 211 216 160 135 103 72 37 40 38 27 15 15 8	VOLUME 0 91 210 374,5 483,5 941,8333333 1313,384615 1533,666667 2047,983333 2137,107143 1746,083333 1614,083333 1329 1002,5 554 639 638,8 483,6333333 285 300 167	CONOMIA 3 8 4 2 8 3 2 1 1 1 1	OLUME 0 8 8 6 32 15 16 9 30 22 24 13 17 18	ONOMIAS 12 9 9 20 10 22 16 17 19 10 8 4 7 2 1 6 6 1 1	OLUME 0 9 17 58,5 38,5 107,1666667 93,61538462 117,3333333 146,6833333 88,66666667 78,89285714 161,9166667 93,16666667 51 95,5 30 16 100,2 105,3666667 19 20	CONOMIA 1	7,333333333	OMIAS 5 6 7 2 2 2 1 1 1 1 1 1 1 1 1 1	ME 0 6 14 6 8 10 12 7 9 10 11 23,75 52 28 15 17 18 19 20

25	2	50		Γ	<u> </u>	Τ		
		78		1	26			
27	l	27						
	l	55					1	28
29	1	29						
30	1	30						
31	3	93						
32								
33	1	33		1	33			
34								
35							1	35
36	1	36						
37	'			1	37			
38				'	01			
39								
40							1	40
41								
42			 				 	
43								
44								
45								
46							1	46
47								
48							2	96
49								
50								
51								
52								
53								
54								
55								
56								
57				1	57			
58								
59								
60								
61								
62								
63								
64								
65								
66								
67								
68								
69								
70								
71								
72								
73								
74								
75								
76								
77							1	77
78								
79		l '		l				
79 80								

81					1		1			1
82										
83										
84										
85										
86									1	86
87									'	00
88										
89										
90										
91										
92										
93										
94										
95										
96										
97										
98										
99										
100										
101										
106									1	106
01/08/2019										
	RES_NORMAL_ ECONOMI	RES_NORMAL_ VOLUME	RES_SOCIAL_E CONOMIA	RES_SOCIAL_V OLUME	COMERCIAL_EC ONOMIAS	COMERCIAL_V OLUME			PUBLICA_ECON OMIAS	PUBLICA_VOLU ME
	LCONOIVII	VOLOIVIL	CONOMIA	OLOIVIL	ONOMIAS	OLOIVIL	CONOIVIIA	OLOIVIL	OWIAS	IVIL
0	81	0	4	0	10	0			5	0
1	90	89	8	8	5	5			10	10
2	100	199,5	4	8	17	33,5			4	8
3	114	339	1	3	15	44			2	6
			'		13				2	0
4		616	5	20	17	67			2	8
5	155		l'							
5	155	616 915,5	5	20	17	67			2	8
5 6 7	155 184 173 213	616 915,5	5	20	17 12 15	67 59,5			2	8
5 6 7	155 184 173	616 915,5 1027,166667 1476,807692	5 3 5	20 15 30	17 12 15	67 59,5 88,83333333	1		2 2 1	8 10 6
5 6 7	155 184 173 213	616 915,5 1027,166667 1476,807692	5 3 5	20 15 30 7	17 12 15	67 59,5 88,83333333 110,1923077	1	8	2 2 1 1 1	8 10 6
5 6 7 8	155 184 173 213 247	915,5 1027,166667 1476,807692 1959,458333	5 3 5 1	20 15 30 7	17 12 15 16 18	59,5 88,83333333 110,1923077 141,5416667	1	8	2 2 1 1 1 4	8 10 6 7
5 6 7 8 9	155 184 173 213 247 207	616 915,5 1027,166667 1476,807692 1959,458333 1848,5	5 3 5 1 2	20 15 30 7 16	17 12 15 16 18	67 59,5 88,83333333 110,1923077 141,5416667 115,5	1	8	2 2 1 1 1 4 1 1	8 10 6 7
5 6 7 8 9	155 184 173 213 247 207 239	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238	5 3 5 1 2 1	20 15 30 7 16 9	17 12 15 16 18 13	59,5 88,83333333 110,1923077 141,5416667 115,5	1	8	2 2 1 1 1 4 1 1 1	8 10 6 7 36 10
5 6 7 8 9 10	155 184 173 213 247 207 239	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238	5 3 5 1 2 1 2	20 15 30 7 16 9 20	17 12 15 16 18 13 11	67 59,5 88,83333333 110,1923077 141,5416667 115,5 109,5 149,9047619	1	8	2 2 1 1 1 4 1 1 3	8 10 6 7 36 10
5 6 7 8 9 10 11	155 184 173 213 247 207 239 196	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238 1717,166667	5 3 5 1 2 1 2 1	20 15 30 7 16 9 20 11	17 12 15 16 18 13 11 14	67 59,5 88,83333333 110,1923077 141,5416667 115,5 109,5 149,9047619 58,83333333	1	8	2 2 1 1 1 1 3 4	8 10 6 7 36 10 11
5 6 7 8 9 10 11 12	155 184 173 213 247 207 239 196 144	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238 1717,166667 1348,833333	5 3 5 1 2 1 2 1	20 15 30 7 16 9 20 11	17 12 15 16 18 13 11 14 5	59,5 88,83333333 110,1923077 141,5416667 115,5 109,5 149,9047619 58,83333333 77,16666667	1	8	2 2 1 1 1 1 3 4	8 10 6 7 36 10 11 36 49
5 6 7 8 9 10 11 12 13	155 184 173 213 247 207 239 196 144 104	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238 1717,166667 1348,833333 724	5 3 5 1 2 1 2 1	20 15 30 7 16 9 20 11	17 12 15 16 18 13 11 14 5 6	67 59,5 88,83333333 110,1923077 141,5416667 115,5 109,5 149,9047619 58,83333333 77,166666667 42	1	8	2 2 1 1 1 4 1 1 3 4 4	8 10 6 7 36 10 11 36 49
5 6 7 8 9 10 11 12 13 14	155 184 173 213 247 207 239 196 144 104 52 48	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238 1717,166667 1348,833333 724 718,25	5 3 5 1 2 1 2 1	20 15 30 7 16 9 20 11	17 12 15 16 18 13 11 14 5 6 3 4	67 59,5 88,83333333 110,1923077 141,5416667 115,5 109,5 149,9047619 58,83333333 77,16666667 42 59,75	1	8	2 2 1 1 1 1 3 4 4	8 10 6 7 36 10 11 36 49
5 6 7 8 9 10 11 12 13 14 15	155 184 173 213 247 207 239 196 144 104 52 48	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238 1717,166667 1348,833333 724 718,25 639	5 3 5 1 2 1 2 1	20 15 30 7 16 9 20 11	17 12 15 16 18 13 11 14 5 6 3 4	67 59,5 88,83333333 110,1923077 141,5416667 115,5 109,5 149,9047619 58,83333333 77,16666667 42 59,75 48		8	2 2 1 1 1 1 3 4 4	8 10 6 7 36 10 11 36 49 56
5 6 7 8 9 10 11 12 13 14 15 16	155 184 173 213 247 207 239 196 144 104 52 48 40 31	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238 1717,166667 1348,833333 724 718,25 639 524,6	5 3 5 1 2 1 2 1	20 15 30 7 16 9 20 11	17 12 15 16 18 13 11 14 5 6 3 4 3	67 59,5 88,83333333 110,1923077 141,5416667 115,5 109,5 149,9047619 58,83333333 77,166666667 42 59,75 48 98,4	1	8	2 2 1 1 1 1 3 4	8 10 6 7 36 10 11 36 49 56
5 6 7 8 9 10 11 12 13 14 15 16	155 184 173 213 247 207 239 196 144 104 52 48 40 31	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238 1717,166667 1348,833333 724 718,25 639 524,6 341	5 3 5 1 2 1 2 1	20 15 30 7 16 9 20 11	17 12 15 16 18 13 11 14 5 6 3 4 3 6	67 59,5 88,83333333 110,1923077 141,5416667 115,5 109,5 149,9047619 58,83333333 77,16666667 42 59,75 48 98,4 18	1	8	2 2 1 1 1 1 3 4	8 10 6 7 36 10 11 36 49 56
5 6 7 8 9 10 11 12 13 14 15 16 17	155 184 173 213 247 207 239 196 144 104 52 48 40 31 19	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238 1717,166667 1348,833333 724 718,25 639 524,6 341 360,66666667	5 3 5 1 2 1 2 1 2	20 15 30 7 16 9 20 11 24	17 12 15 16 18 13 11 14 5 6 3 4 3 6 1	67 59,5 88,83333333 110,1923077 141,5416667 115,5 109,5 149,9047619 58,83333333 77,166666667 42 59,75 48 98,4 18 75,333333333		8	2 2 1 1 1 1 3 4 4 4	8 10 6 7 36 10 11 36 49 56
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	155 184 173 213 247 207 239 196 144 104 52 48 40 31 19 19	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238 1717,166667 1348,833333 724 718,25 639 524,6 341 360,6666667 299,5	5 3 5 1 2 1 2 1 2	20 15 30 7 16 9 20 11 24	17 12 15 16 18 13 11 14 5 6 3 4 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	67 59,5 88,83333333 110,1923077 141,5416667 115,5 109,5 149,9047619 58,83333333 77,166666667 42 59,75 48 98,4 18 75,333333333 19,5		8	2 2 1 1 1 1 3 4 4 1 1 1	8 10 6 7 36 10 11 36 49 56 16 17
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	155 184 173 213 247 207 239 196 144 104 52 48 40 31 19 19 15 17	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238 1717,166667 1348,833333 724 718,25 639 524,6 341 360,66666667 299,5 356,5	5 3 5 1 2 1 2 1 2	20 15 30 7 16 9 20 11 24	17 12 15 16 18 13 11 14 5 6 3 4 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	67 59,5 88,83333333 110,1923077 141,5416667 115,5 109,5 149,9047619 58,83333333 77,166666667 42 59,75 48 98,4 18 75,333333333 19,5 20,5		8	2 2 1 1 1 1 3 4 4 1 1 1	8 10 6 7 36 10 11 36 49 56 16 17 21
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	155 184 173 213 247 207 239 196 144 104 52 48 40 31 19 19 15 17	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238 1717,166667 1348,833333 724 718,25 639 524,6 341 360,66666667 299,5 356,5 241,4	5 3 5 1 2 1 2 1 2	20 15 30 7 16 9 20 11 24	17 12 15 16 18 13 11 14 5 6 3 4 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	67 59,5 88,83333333 110,1923077 141,5416667 115,5 109,5 149,9047619 58,83333333 77,166666667 42 59,75 48 98,4 18 75,333333333 19,5 20,5		8	2 2 1 1 1 1 3 4 4 1 1 1	8 10 6 7 36 10 11 36 49 56 16 17 21
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	155 184 173 213 247 207 239 196 144 104 52 48 40 31 19 19 15 17 11	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238 1717,166667 1348,833333 724 718,25 639 524,6 341 360,6666667 299,5 356,5 241,4 115	5 3 5 1 2 1 2 1 2	20 15 30 7 16 9 20 11 24	17 12 15 16 18 13 11 14 5 6 3 4 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	67 59,5 88,83333333 110,1923077 141,5416667 115,5 109,5 149,9047619 58,83333333 77,166666667 42 59,75 48 98,4 18 75,333333333 19,5 20,5		8	2 2 1 1 1 1 3 4 4 1 1 1	8 10 6 7 36 10 11 36 49 56 16 17 21
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	155 184 173 213 247 207 239 196 144 104 52 48 40 31 19 19 15 17 11 5 6	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238 1717,166667 1348,833333 724 718,25 639 524,6 341 360,66666667 299,5 356,5 241,4 115	5 3 5 1 2 1 2 1 2	20 15 30 7 16 9 20 11 24	17 12 15 16 18 13 11 14 5 6 3 4 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	67 59,5 88,83333333 110,1923077 141,5416667 115,5 109,5 149,9047619 58,83333333 77,166666667 42 59,75 48 98,4 18 75,333333333 19,5 20,5 87,6		8	2 2 1 1 1 1 3 4 4 1 1 1	8 10 6 7 36 10 11 36 49 56 16 17 21
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	155 184 173 213 247 207 239 196 144 104 52 48 40 31 19 19 15 17 11 5 6	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238 1717,166667 1348,833333 724 718,25 639 524,6 341 360,6666667 299,5 356,5 241,4 115 144	5 3 5 1 2 1 2 1 2	20 15 30 7 16 9 20 11 24	17 12 15 16 18 13 11 14 5 6 3 4 3 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	67 59,5 88,83333333 110,1923077 141,5416667 115,5 109,5 149,9047619 58,83333333 77,166666667 42 59,75 48 98,4 18 75,333333333 19,5 20,5 87,6		8	2 2 1 1 1 1 3 4 4 4 1 1 1	8 10 6 7 36 10 11 36 49 56 16 17 21
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	155 184 173 213 247 207 239 196 144 104 52 48 40 31 19 19 15 17 11 5 6 7	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238 1717,166667 1348,833333 724 718,25 639 524,6 341 360,6666667 299,5 356,5 241,4 115 144	5 3 5 1 2 1 2 1 2	20 15 30 7 16 9 20 11 24	17 12 15 16 18 13 11 14 5 6 3 4 3 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	67 59,5 88,83333333 110,1923077 141,5416667 115,5 109,5 149,9047619 58,83333333 77,166666667 42 59,75 48 98,4 18 75,333333333 19,5 20,5 87,6		8	2 2 1 1 1 1 3 4 4 4 1 1 1	8 10 6 7 36 10 11 36 49 56 16 17
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	155 184 173 213 247 207 239 196 144 104 52 48 40 31 19 19 15 17 11 5 6 7 2	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238 1717,166667 1348,833333 724 718,25 639 524,6 341 360,6666667 299,5 356,5 241,4 115 144 175 52	5 3 5 1 2 1 2 1 2	20 15 30 7 16 9 20 11 24	17 12 15 16 18 13 11 14 5 6 3 4 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1	67 59,5 88,83333333 110,1923077 141,5416667 115,5 109,5 149,9047619 58,83333333 77,166666667 42 59,75 48 98,4 18 75,33333333 19,5 20,5 87,6		8	2 2 1 1 1 1 3 4 4 4 1 1 1	8 10 6 7 36 10 11 36 49 56 16 17
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	155 184 173 213 247 207 239 196 144 104 52 48 40 31 19 19 15 17 11 5 6 7 2	616 915,5 1027,166667 1476,807692 1959,458333 1848,5 2371,5 2135,095238 1717,166667 1348,833333 724 718,25 639 524,6 341 360,66666667 299,5 356,5 241,4 115 144 175 52	5 3 5 1 2 1 2 1 2 1 2 1	20 15 30 7 16 9 20 11 24 13	17 12 15 16 18 13 11 14 5 6 3 4 3 6 1 1 1 1 1 1 1 1 1 1	67 59,5 88,83333333 110,1923077 141,5416667 115,5 109,5 149,9047619 58,83333333 77,166666667 42 59,75 48 98,4 18 75,33333333 19,5 20,5 87,6		8	2 2 1 1 1 1 3 4 4 4 1 1 1	8 10 6 7 36 10 11 36 49 56 16 17

	31	3	93						
53 1 34 1 1 35 1 3 3 3 3 1 3 3 5 5 5 5 1 3 5 5 5 5 1 3 5 5 5 5 1 3 5 5 5 5 5 4 1 3 5		3	93		4	00			
54 1 94 1 1 35 1 35					1	32			
59 1 1 36 1 35 37 1 1 36 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>33</td>								1	33
50 1 50 1 50 1 1 50 1 <td></td> <td>1</td> <td>34</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1	34						
57 1								1	35
53 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 41					1	36			
60 1 40 1 40 1 40 1 40 1 40	37								
40 1 40 1 46 1 1 46 1 1 46 1 1 46 1 1 46 1 1 46 1 1 46 1 46 1 1 46 1 46 1 46 1 46 1 46 1 46 1 46 1 46 1 46 1 46 1 46 46 1 46 46 46 46 46 46 46 46 46 <	38								
41 42 43 44 45 46 47 47 48<	39								
42	40	1	40						
43	41								
43	42								
441 1 1 1 1 45 45 1 1 46 1 1 46 47 1 49 1 40 40 40 40 40 40 40 40 40 40 40									
46 1 46 1 46 1 46 46 47 48 1 46 46 47 48 1 46 48 48 49									
46 1 1 46 1 46 47 47 40 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
47 48 49 40<								1	46
48 1 49 1 49 1 49 1 49 1 49 1 49 1 49 1 1 1 1 1 1 1 1 1 1 52 1 1 52 1 1 52 1 1 52 1 52 1 1 52 1 1 52 1 1 52 1 1 52 1 1 52 1 1 52 1 1 52 1 1 52 1 1 52 1 1 52 1 1 1 52 1 1 52 1 1 1 52 1 1 1 52 1									· ·
40 1 40 0									
50 51 52 1 52 52 1 52 1 52 53 1 1 52 1 52 54 1 1 1 56 55 1 1 1 56 57 2 1 1 56 59 1		1	40						
51 1 52 1 1 52 1 1 52 1 1 52 1 1 52 1 1 52 1 1 52 1 1 52 1 1 52 1 1 52 1 1 52 1 1 52 1 1 1 52 1 1 1 52 1 1 1 52 1 1 1 52 1 1 1 52 1 1 1 1 1 1 1 1 1 1 55 55 1		'	טד						
52 1 52 1 52 53 1 1 52 1 52 54 1 1 56 55 56 1 1 56 57 1 1 56 57 56 57 56 50 <									
53 94 95 96<									
54 1 56 55 1 1 56 57 1 1 56 59 1					1	52		1	52
55 1 96 57 1 96 58 1 1 59 1 1 60 1 1 61 1 1 62 1 1 63 1 1 64 1 1 65 1 1 66 1 1 67 1 1 70 1 1 71 1 1 72 1 1 74 1 1 77 1 1 78 1 7 80 1 1 81 1 1									
56 1 56 57 3 3 59 3 3 61 4 4 62 4 4 63 5 5 66 6 6 67 6 6 68 6 6 69 70 7 72 7 7 73 7 7 76 7 1 7 78 9 1 7 80 1 1 7 80 1 1 7 81 1 1 1 7									
57 58									
58								1	56
59									
60 61 61 62 63 64 65 66 66 66 67 67 68 69 70 71 71 72 73 74 75 76 77 78 79 80 80 81 81 8 75 75 75 75 75 75 75 75 75 75 75 75 75									
61 62 63 63 64 65 66 66 67 68 69 70 70 71 71 72 73 73 74 75 76 77 78 79 80 80 81 81 8 79									
62 63 64 64 65 66 66 67 68 69 70 70 71 72 73 73 74 75 76 77 78 79 80 80 81									
63 64 65 66 66 67 68 69 70 70 71 72 73 74 75 76 77 78 78 79 80 81	61								
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81									
65 66 67 68 68 69 70 70 71 72 73 74 75 76 77 78 79 80 81	63								
66 67 68 68 69 69 70 71 71 72 73 74 75 76 77 78 79 80 81									
67 68 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 80 81 1	65								
68 69 70 71 72 73 74 75 76 77 1 78 79 80 81	66								
69 70 71 72 73 74 75 76 77 78 79 80 81	67								
70 1 71 1 72 2 73 3 74 4 75 4 76 5 77 1 78 79 80 80 81 81	68								
71 72 1 1 73 1 1 73 1 74 1 75 1 75 1 77 77 1 77 78 79 1 77 78 79 1 79	69								
72 1 1 73 1 1 74 1 75 75 1 77 77 1 77 78 79 1 77 78 79 1 79 1 79 1 1 79 1 1 79 1 1 79 1 1 1 79 1	70								
73	71								
73	72								
74									
75									
76 77 78 79 80 81									
77 1 78 1 77 78 80 80 81 81 81 8 8 8 8 8 8 8 8 8 8 8 8									
78								1	77
79 80 81									
80 81									
81									
	82								
83									
84									
85									
86	86								

87										
88										
89										
90										
91										
92										
93										
94										
95										
96										
97										
98										
99										
100										
101										
01/09/2019										
	RES_NORMAL_ ECONOMI	RES_NORMAL_ VOLUME	RES_SOCIAL_E CONOMIA		COMERCIAL_EC ONOMIAS	COMERCIAL_V OLUME			PUBLICA_ECON OMIAS	PUBLICA_VOLU ME
0	106	0	4	0	7	0			5	0
1	86	85	3	3	10	10			5	5
2	88	174	5	10	9	18			5	10
3	101	302	4	12	7	21			2	6
4	127	506,5	4	16	20	79,5			4	16
5	132	655,5	3		13	63,5			1	5
6	171	1018	3		15	88			<u>'</u>	3
7	175	1214,833333	3		15	101,1666667				
									4	00
8	189	1503	2		12	95				32
9	241	2143,711538			19	167,6217949	1	8,666666667	1	9
10	224	2223,041667				97,95833333			5	50
11	173		2	22	14	149,1571429				
12	170	2016,690476			11	129,3095238			1	12
13	149	1928,25	2	26	7	89,75			3	39
14	86	1200,5			9	125,5			6	83
15	77	1149,4	1	15	5	74,6				
16	59	942,5			8	126,5				
17	44	744,2			4	66,8			1	17
18	22	396			1	18				
19	34	644,5			3	56,5			2	38
20	16	319,5	1	20	1	19,5			1	20
21	16	336		21	1	21				
22		374			1	22				
23	8	184							1	23
24	5	120			1	24				-
	6	149			<u> </u>	- '				
26	1	26								
27	2	54								
28										
29		57,5			1	28,5				
30	3	90								
31	1	31			1	31				
32										
33										
34	1	34					1	34		
35	3	105			1	35				
36									1	36
37	1	37								
	L	<u> </u>	l	<u> </u>	<u> </u>	<u> </u>				

39 1 89 1	38		Γ		Γ	<u> </u>		T	
		1	39						
45 44 1									
44 45 46 47 47 48 48 48 48 48 48									
46 46 48<	43								
46 1 1 1 1 1 1 1 1 1 1 1 1 4 1	44								
47 1 1 4 1	45								
46 1 40 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 1 40 1 <t< td=""><td>46</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	46								
Mathematical Math	47								
According Acco	48				1	48		1	48
591 1 1 1 52 1 1 1 52 1 <td>49</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	49								
51 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 50 1 50 50 1 50 50 50 1 50 50 50 50 1 50 50 50 50 50 50 50 60	50								
52 1 42 1 63 63 1 63 63 1 63 63 63 1 63	51								
53 1 1 53 53 54 54 54 54 54 56 56 60 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>52</td> <td></td> <td></td> <td></td>					1	52			
541 1								1	53
55 1 1 1 1 1 1 1 1 1 1 1 1 5 1								'	
66 Image: Control of the c									
57 1 1 1 5 1 5 5 1 5 5 5 1 5 5 5 1 1 5 5 5 1 1 5 5 5 1 1 5 5 1 1 5 5 1 1 1 5 1									
588									
59 1								4	50
60 1 1 1 1 2 1 1 2 1 1 2 1								1	ວຽ
61									
62 1 62 83 64 65 66 67 68 68 66 66 66 66 66 66 66 67 68 68 68 69 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
63									
64								1	62
66 68 68 68 68 68 68 68									
66	64								
67	65								
69	66								
Second S	67								
70	68								
71 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 1 1 7 1 1 7 1	69								
72	70								
73	71								
74	72								
75	73								
76	74								
77 1 1 77 78 1 1 77 80 1 1 1 1 81 <	75								
78	76								
78	77							1	77
79 80 9 9 9 9 90 90	78								
80 81 92 92 92 92 92 92 92 92 92 92 92 92 92 93 93 93 94 92 93 94 <td< td=""><td>79</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	79								
81 82 83 84 85 86 87 88 89 90 91 92	80								
82 83 84 85 86 87 88 89 90 91 92	81								
83 84 9 90	82								
84 1 1 1 2 168 85 1 </td <td>83</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	83								
85 86 90 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td>168</td></td<>								2	168
86 87 90 91 92 92 90 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
87 88 90 90 91 92 90 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
88									
89 90 91 92									
90 91 92 92 90 90 90 90 90 90 90 90 90 90 90 90 90									
91 92 92									
92									
93									
	93								

94	1	I	I	I			ı	I		
95										
96										
97										
98										
99										
100										
101										
01/10/2019										
FAIXA	RES_NORMAL_	RES_NORMAL_	RES_SOCIAL_E	RES_SOCIAL_V	COMERCIAL_EC	COMERCIAL_V	INDUSTRIAL_E	INDUSTRIAL_V	PUBLICA_ECON	PUBLICA_VOLU
	ECONOMI	VOLUME	CONOMIA	OLUME	ONOMIAS	OLUME	CONOMIA	OLUME	OMIAS	ME
0	145	0	3	0	9	0			5	0
1	66	66	4	4	6	6			6	6
2	96	192	5	10	10	20			1	2
3	112	335	4	12	11	33			3	9
4		542				39				12
5		717,5				68,5				15
6		989	3		17	100				18
7		1486,833333				164,1666667				7
8		1951,416667	5	40	19	148,5833333				
9		2153,029762	2			131,9702381			2	18
10		2552,871795		30		77,12820513				10
11		1779,238095		22		118,4285714	1	10,33333333		11
12	135	1606			14	166	'	10,0000000		24
13	98	1267,8	1			141,7				25,5
14		1158	1	14		55			1	14
15		718	<u>'</u>			60			'	
16		796				32			1	16
17		629	1	17		66				17
18		413,5	<u>'</u>	' '		53,5			4	70
19	13	247	1	19	1	19			7	70
20		278,3333333	'		·	117,6666667			1	20
21		294				21				21
22		110				22			1	21
23		205			'	22	1	23	1	23
24		72					1	23		24
									1	24
25		75 78								
26										07
27		135							1	27
28		111								
29		58								
30		30								
31		93				0.1.5				
32	1	31,5			1	31,5				
33										66
34									1	34
35										
36		108			1	36				
37	1	37								
38										
39									1	39
40	1	40								
41										
42										
43										
44									1	44
-	•	•		•		•	•		•	

45	ı	ı		Γ	ı		Τ	
46								
47				1	47			
48								
49							1	49
50								
51								
52								
53								
54								
55								
56								
57								
58								
59							1	59
60								
61								
62								
63								
							1	64
64							1	64
65								
66								
67								
68								
69								
70								
71								
72								
73								
74								
75	1	75						
76								
77							1	77
78								
79								
80								
81							1	81
82								
83								
84								
84 85								
85								
85 86 87								
85 86 87 88								
85 86 87 88 89								
85 86 87 88 89								
85 86 87 88 89 90								
85 86 87 88 89 90 91								
85 86 87 88 89 90 91 92								
85 86 87 88 89 90 91 92 93								
85 86 87 88 89 90 91 92 93 94								
85 86 87 88 89 90 91 92 93 94 95								
85 86 87 88 89 90 91 92 93 94 95 96 97								
85 86 87 88 89 90 91 92 93 94 95 96								
85 86 87 88 89 90 91 92 93 94 95 96 97 98								
85 86 87 88 89 90 91 92 93 94 95 96 97 98								

101										
01/11/2019						<u> </u>				
FAIXA	RES_NORMAL_ ECONOMI	RES_NORMAL_ VOLUME	RES_SOCIAL_E CONOMIA	RES_SOCIAL_V OLUME			INDUSTRIAL_E CONOMIA	INDUSTRIAL_V OLUME	PUBLICA_ECON OMIAS	PUBLICA_VOLU ME
0	212	0	7	0	9	0			5	0
1	69	69	3	3	8	8			5	5
2	70	139	5	10	14	27			6	12
3	101	302,5	5	15	7	20,5			3	9
4	110	437			11	42			1	4
5	117	580	2	10	15	74			1	5
6	155	923,5	1	6	15	88,5			1	6
7	171	1187,5	2	14	17	115,5				
8	201	1590,6	3	24	24	186,4				
9	221	1975	4	36	4	36				
10	235	2325,482143	2	20	9	88,51785714	1	10	6	60
11	194	2118,130952			18	193,8690476			2	22
12	135	1600,012821	1	12	12	140,9871795			1	12
13	147	1893,333333	4	52	8	101,6666667			3	39
14	91	1270,5			6	83,5			5	69
15	78	1165,55	1	15	4	58,7			1	14,75
16	56	892,5			7	110,5			1	16
17	30	510			2	34			1	17
18	24	431			3	54				
19	32	603,8	2	38	5	94,2	1	19	2	38
20	29	578,5			3	59,5			1	20
21	7	147			1	21			1	21
22	14	308			2	44				
23	6	138								
24	10	239								
25	4	100								
26	1	26							1	26
27	4	107			1	27				
28	3	84			1	28				
29	3	87								
30									1	30
31	1	31								
32	3	96								
33	2	66								
34					1	34				
35	1	35							1	35
36	2	72			1	36			1	36
37										
38										
39										
40	1	40								
41	1	41								
42										
43	1	43								
44										
45										
46										
47										
48										
49										
50										
51										

52	I	I	I		<u> </u>					
53										
54										
55										
56										
57									1	57
58										
59										
60	1	60								
61										
62										
63										
64										
65										
66										
67										
68									1	68
69										-
70										
71										
72										
73										
74									1	74
75										
76										
77										
78										
79										
80										
81										
82										
83										
84										
85										
86										
87										
88										
89										
90										
91										
92										
93										
94										
95										
96										
97									2	194
98									-	107
99										
100										
101										
01/12/2019										
FAIXA	RES_NORMAL_ ECONOMI	RES_NORMAL_ VOLUME	RES_SOCIAL_E CONOMIA	RES_SOCIAL_V OLUME	COMERCIAL_EC ONOMIAS	COMERCIAL_V OLUME	INDUSTRIAL_E CONOMIA	INDUSTRIAL_V OLUME	PUBLICA_ECON OMIAS	PUBLICA_VOLU ME
0	135	0	4	0	13	0			4	0
1	62	61	7	7	8	8			5	5
2	84	167	1	2	16	31			7	14
L	l	L	l .		l	<u> </u>			l	

3	101	301	2	6	10	30			5	15
4		461	3			71			3	12
			4			63,33333333			1	5
6		875	3			76				
7	207	1431,238095				121,7619048			2	14
8	199	1578,945513	2	16		86,72115385	1	7,333333333	1	8
9	225		2	18		80,16666667			3	27
10			5	50		67,83333333				
11	179	1955,285714	1	11	15	162,7142857			2	22
12	175	2087,666667	1	12	7	83,33333333			2	24
13	123	1589,75			7	90,25				
14	119	1657,75	3	42	7	97			1	13,25
15	88	1311,5			7	103,5			1	15
16	49	780,6			4	62,4	1	16	1	16
17	45	760,5			8	134,5				
18	27	485	1	18					5	90
19	33	625,8333333			3	55,16666667				
20	24	478,2			2	38,8				
21	12	252			2	42				
22	13	285	1	22	1	22				
23	9	207			1	23			1	23
24	2	48			2	48				
25	5	124							1	25
26	5	130								
27	5	134							1	27
28	1	28								
29	4	116			1	29				
30										
31	2	62								
32	3	96			1	32				
33	1	33								
34	2	68	1	34						
35					1	35				
36									1	36
37	3	111								
38									1	38
39					1	39				
40									1	40
41										
42										
43										
44										
45										
46										
47									1	47
48										
49										
	1	50			1	50				
	1	51								
52									1	52
53										
54										
55										
56										
57										
58										

	59									
61 1										
1	61									
	62									
85 1	63									
85 1	64									
88 1	65									
67 1	66									-
888										
70 1										
71 1										
72 1	70									
73	71									
74 1	72									
	73									
76 1	74									
76 1	75									
77	76									
78	77									
80 1 81 1 81 1 1 81 1 1 81 1 1 81 1 1 1 81 1<										
81 1 81										
82 83 94 95 96 97 98 99 98 98 98 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 99 98 99 99 99 99 90 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
33						1	81			
84	82									
1	83									
366	84									
87 88 99 90 90 <t< td=""><td>85</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	85									
88	86									
88	87									
99	88									
90 91 92 92 94 95 96 96 97 97 98 98 99 99 90 100 100 101 107 116 116 125 1 1 116 116 125										
91										
92 93 94 95 96 97 98 98 99 99 90 90 90 90 90 90 90 90 90 90 90										
93 94 95 96 97 98 98 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9										
94										
95 96 97 98 99 9 1 9 1 98 99 9 1 1 1 107 116 125 1 1 125	93									
96 97 98 98 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9	94									
97 98 1 1 98 99 1 1 1 98 99 1 1 1 100 1 1 107 116 1 1 116 125 1 1 125	95									
98	96									
99	97									
99	98								1	98
100	99									
101										
107 1 1 107 1 16 1 1 116 1 125 1 1 125										
116 1 116 1 116 1 125 1 1 125 1 1 125 1 1 1 125 1 1 1 1									1	107
125										
Relatório de Histograma de Volume Medido por Economia - Gerado por: Helton Machado Kraus em 25/08/2020 10:45	125							 	1	125
	Relatório de Histog	rama de Volume	Medido por Eco	nomia - Gerado I	oor: Helton Mach	nado Kraus em 2	5/08/2020 10:45	 		

Pedidos de ligação (resumo)

CT/D-1387/2020 -Anexo 05

											Tempo	
				AS's	AS's	AS's	AS's Canceladas	AS's Executadas	AS's Executadas		Médio de	
Superintendência	Agência Regional	Agência	Protocolo	Solicitadas	Abertas	Executadas	Dentro do Prazo	Dentro do Prazo	Fora do Prazo	%	Execução	IEPA
Oeste	Concórdia	Irani		77	0	77	0	72	5	6,5%	119:22:23	93,5%

Superintendência	Agência Regional	Agência	Protocolo	AS's Solicitadas	AS's Aberta A	S's Executada A	S's Canceladas Den AS's Ex	ecutadas Dentr AS's E	xecutadas For %		Lead TimeD h I	EPA
Oeste	Concórdia	Irani	01/07/2019 14:00 008138	1	0	1	0	1	0	0,0%	68:20:00	100,0%
Oeste	Concórdia	Irani	01/08/2019 08:01 008138	1	0	1	0	1	0	0,0%	30:59:00	100,0%
Oeste	Concórdia	Irani	01/08/2019 10:58 008138	1	0	1	0	1	0	0,0%	26:42:00	100,0%
Oeste	Concórdia	Irani	01/10/2018 16:11 008138	1	0	1	0	1	0	0,0%	141:29:00	100,0%
Oeste	Concórdia	Irani	03/04/2019 08:04 008138	1	0	1	0	1	0	0,0%	24:56:00	100,0%
Oeste	Concórdia	Irani	03/06/2019 07:36 008138	1	0	1	0	1	0	0,0%	30:24:00	100,0%
Oeste	Concórdia	Irani	03/09/2018 10:28 008138	1	0	1	0	1	0	0,0%	168:47:00	100,0%
Oeste	Concórdia	Irani	03/12/2019 16:44 008138	1	0	1	0	1	0	0,0%	16:16:00	100,0%
Oeste	Concórdia	Irani	05/02/2018 08:17 008138	1	0	1	0	1	0	0,0%	48:58:00	100,0%
Oeste	Concórdia	Irani	05/09/2019 08:31 008138	1	0	1	0	1	0	0,0%	49:39:00	100,0%
Oeste	Concórdia	Irani	06/04/2018 11:14 008138	1	0	1	0	1	0	0,0%	93:26:00	100,0%
Oeste	Concórdia	Irani	06/12/2019 13:39 008138	1	0	1	0	1	0	0,0%	140:41:00	100,0%
Oeste	Concórdia	Irani	07/03/2018 09:28 008138	1	0	1	0	1	0	0,0%	197:32:00	100,0%
Oeste	Concórdia	Irani	07/03/2018 09:35 008138	1	0	1	0	1	0	0,0%	196:05:00	100,0%
Oeste	Concórdia	Irani	07/10/2019 08:09 008138	1	0	1	0	1	0	0.0%	25:21:00	100,0%
Oeste	Concórdia	Irani	08/05/2018 15:20 008138	1	0	1	0	1	0	0,0%	65:40:00	100,0%
Oeste	Concórdia	Irani	08/10/2018 09:42 008138	1	-	1	0	1	0	0,0%	29:18:00	100,0%
Oeste	Concórdia	Irani	08/11/2018 09:24 008138	1	-	1	0	1	0	0.0%	294:06:00	100,0%
Oeste	Concórdia	Irani	09/03/2018 09:42 008138	1	-	1	0	0	-	100.0%	412:48:00	0,0%
Oeste	Concórdia	Irani	09/03/2018 13:45 008138	1		1	0	1	0	0.0%	283:15:00	100,0%
Oeste	Concórdia	Irani	10/05/2018 08:21 008138	1	-	1	0	1	0	0.0%	121:24:00	100,0%
Oeste	Concórdia	Irani	10/05/2019 08:21 008138	1		1	0	1	0	0,0%	25:00:00	100,0%
Oeste				1	-	1	0	4	0	0,0%	72:00:00	100,0%
Oeste	Concórdia Concórdia	Irani Irani	10/10/2018 14:15 008138 11/03/2019 10:54 008138	1		1	0	1	0	0.0%	50:56:00	100,0%
Oeste	Concórdia	Irani	11/11/2019 08:37 008138	1		1	0	0		100,0%	365:13:00	0,0%
Oeste		Irani	11/11/2019 08:37 008138		0	1	0	4	0	0.0%	121:10:00	100,0%
Oeste	Concórdia			1		1	0	1	0	.,		
	Concórdia	Irani	12/07/2018 13:51 008138	1	-		0	1	0	0,0%	18:59:00	100,0%
Oeste	Concórdia	Irani	12/12/2018 08:00 008138		-	1	-	1	0	0,0%	30:00:00	100,0%
Oeste	Concórdia	Irani	14/11/2018 14:02 008746	1		1	0	0	-	0,0%	71:33:00	100,0%
Oeste	Concórdia	Irani	15/01/2019 08:28 008746	1	-	•	-	1		100,0%	1445:02:00	0,0%
Oeste	Concórdia	Irani	15/01/2019 11:03 008746			1	0		0	0,0%	170:57:00	100,0%
Oeste	Concórdia	Irani	16/01/2019 17:05 008746	1		1	0	1	0	0,0%	89:30:00	100,0%
Oeste	Concórdia	Irani	16/02/2018 08:00 008138	1		1	0	1	0	0,0%	25:35:00	100,0%
Oeste	Concórdia	Irani	16/07/2018 13:35 008746	1		1	0	1	0	0,0%	44:05:00	100,0%
Oeste	Concórdia	Irani	17/01/2018 08:41 008746	1		1	0	0		100,0%	653:29:00	0,0%
Oeste	Concórdia	Irani	17/01/2018 09:50 008746	1		1	0	1	0	0,0%	144:30:00	100,0%
Oeste	Concórdia	Irani	17/01/2018 13:39 008746	1		1	0	1	0	0,0%	24:11:00	100,0%
Oeste	Concórdia	Irani	17/01/2018 17:20 008746	1		1	0	1	0	0,0%	91:40:00	100,0%
Oeste	Concórdia	Irani	17/01/2019 13:30 008746	1		1	0	1	0	0,0%	144:00:00	100,0%
Oeste	Concórdia	Irani	17/12/2019 08:37 008746	1		1	0	1	0	0,0%	29:03:00	100,0%
Oeste	Concórdia	Irani	18/04/2018 15:58 008138	1	0	1	0	1	0	0,0%	17:32:00	100,0%
Oeste	Concórdia	Irani	19/09/2018 13:48 008138	1	0	1	0	1	0	0,0%	44:02:00	100,0%
Oeste	Concórdia	Irani	19/11/2018 10:47 008138	1		1	0	1	0	0,0%	167:28:00	100,0%
Oeste	Concórdia	Irani	20/11/2018 09:23 008138	1	-	1	0	1	0	0,0%	100:52:00	100,0%
Oeste	Concórdia	Irani	20/11/2018 10:12 008138	1		1	0	1	0	0,0%	27:28:00	100,0%
Oeste	Concórdia	Irani	21/01/2019 13:30 008746	1		1	0	1	0	0,0%	96:40:00	100,0%
Oeste	Concórdia	Irani	21/01/2019 13:35 008746	1	0	1	0	1	0	0,0%	97:25:00	100,0%
Oeste	Concórdia	Irani	21/11/2019 10:56 008138	1	0	1	0	1	0	0,0%	26:34:00	100,0%
Oeste	Concórdia	Irani	22/05/2019 08:17 008138	1	0	1	0	1	0	0,0%	24:53:00	100,0%

Oeste	Concórdia	Irani	22/07/2019 09:37 008138	1	0	1	0	1	0	0,0%	24:13:00	100,0%
Oeste	Concórdia	Irani	23/01/2018 13:50 008746	1	0	1	0	1	0	0,0%	92:10:00	100,0%
Oeste	Concórdia	Irani	23/04/2019 08:00 008138	1	0	1	0	1	0	0,0%	31:00:00	100,0%
Oeste	Concórdia	Irani	23/11/2018 14:09 008138	1	0	1	0	1	0	0,0%	19:51:00	100,0%
Oeste	Concórdia	Irani	24/05/2018 10:46 008138	1	0	1	0	1	0	0,0%	46:14:00	100,0%
Oeste	Concórdia	Irani	24/07/2019 09:29 008138	1	0	1	0	0	1	100,0%	454:46:00	0,0%
Oeste	Concórdia	Irani	25/04/2018 08:48 008138	1	0	1	0	1	0	0,0%	120:12:00	100,0%
Oeste	Concórdia	Irani	25/05/2018 10:37 008138	1	0	1	0	1	0	0,0%	29:33:00	100,0%
Oeste	Concórdia	Irani	25/06/2018 10:25 008138	1	0	1	0	1	0	0,0%	267:15:00	100,0%
Oeste	Concórdia	Irani	26/07/2018 08:57 008138	1	0	1	0	1	0	0,0%	29:03:00	100,0%
Oeste	Concórdia	Irani	27/02/2018 08:24 008138	1	0	1	0	1	0	0,0%	102:46:00	100,0%
Oeste	Concórdia	Irani	27/07/2018 09:13 008138	1	0	1	0	1	0	0,0%	288:27:00	100,0%
Oeste	Concórdia	Irani	27/08/2019 08:37 008138	1	0	1	0	1	0	0,0%	216:38:00	100,0%
Oeste	Concórdia	Irani	27/11/2018 08:00 008138	1	0	1	0	1	0	0,0%	29:30:00	100,0%
Oeste	Concórdia	Irani	28/01/2019 14:36 008746	1	0	1	0	1	0	0,0%	47:04:00	100,0%
Oeste	Concórdia	Irani	28/02/2018 08:00 008138	1	0	1	0	1	0	0,0%	26:00:00	100,0%
Oeste	Concórdia	Irani	28/03/2018 08:41 008138	1	0	1	0	1	0	0,0%	24:04:00	100,0%
Oeste	Concórdia	Irani	28/05/2019 13:52 008138	1	0	1	0	1	0	0,0%	20:23:00	100,0%
Oeste	Concórdia	Irani	28/05/2019 13:58 008138	1	0	1	0	1	0	0,0%	21:02:00	100,0%
Oeste	Concórdia	Irani	28/06/2019 10:12 008138	1	0	1	0	1	0	0,0%	143:28:00	100,0%
Oeste	Concórdia	Irani	29/01/2018 09:12 008138	1	0	1	0	1	0	0,0%	100:18:00	100,0%
Oeste	Concórdia	Irani	29/05/2019 11:04 008138	1	0	1	0	1	0	0,0%	166:26:00	100,0%
Oeste	Concórdia	Irani	29/06/2018 09:21 008138	1	0	1	0	1	0	0,0%	28:19:00	100,0%
Oeste	Concórdia	Irani	29/07/2019 08:30 008138	1	0	1	0	1	0	0,0%	32:20:00	100,0%
Oeste	Concórdia	Irani	29/11/2019 16:33 008138	1	0	1	0	1	0	0,0%	18:12:00	100,0%
Oeste	Concórdia	Irani	30/01/2018 08:31 008138	1	0	1	0	1	0	0,0%	24:14:00	100,0%
Oeste	Concórdia	Irani	31/01/2018 11:10 008138	1	0	1	0	1	0	0,0%	74:30:00	100,0%
Oeste	Concórdia	Irani	31/01/2019 10:22 008138	1	0	1	0	1	0	0,0%	27:53:00	100,0%

IRANI - Relatório Ocorrências SAA 2019-2020 CT/D-1387/2020 -Anexo 05

Grupo de Serviços Solicitados	Serviço Solicitado	Em Aberto Fora do Prazo	Concluídas Fora do Prazo	Qtde Pendente	Qtde Programad o	Qtde Suspenso	Qtde Executado	Qtde Cancelado	Total AS's	Média Tempo Pendente	Média Tempo Em Programaç ão	Média Tempo Em Execução
Corte Cavalete	3930 - La Corte Cav. Falta Pagamento - Cavalete		182				185	576	761	15,28 dias	0,77 dias	00:06
Corte Cavalete	3932 - La Corte Cav. Falta Pagamento - Parcelamento		10				10	8	18	15,50 dias	0,58 dias	00:07
Corte Ramal - C/Ret.Hidr	3940 - La Corte Rp. Falta Pagamento - com Ret.Hidr.						5		5		1,76 dias	00:22
Corte Ramal C/Ret.Hidr. C/ Sanção Regulam	3944 - La Corte Rp. Sancao Regul. Fraude Cav. C/Ret.Hidr.						1		1	0,63 dias	-	00:01
Deslocamento de Ramal Por Interesse Casal	3204 - La Desloc. Rp Dn Qualquer I.C.						76		76	0,60 dias	0,21 dias	00:37
Normal Unidade	3101 - La Conserto Cavalete- Danificado						8	1	9	0,52 dias	0,15 dias	00:35
Normal Unidade	3102 - La Cons. Rp Vazam. Loc. C/Asf.						2		2	0,50 dias	-	01:15
Normal Unidade	3104 - La Cons. Rp Vazam. Loc. S/Asf.		2				202	1	203	0,54 dias	0,03 dias	00:59
Normal Unidade	3110 - La Cons. Cav. P/Desgaste Peca		8				296	4	300	0,63 dias	0,50 dias	00:29
Normal Unidade	3153 - La Cons. Rp Danif. Dn 1/2" e 3/4" Loc. S/Asf.						1	1	2	0,58 dias	-	02:00
Normal Unidade	3195 - La Descarga No Cavalete Antes Hidrômetro						1		1	0,38 dias	-	00:01
Normal Unidade	3316 - La Limpeza Tampa Abrigo Padrão/Hd	7	11		7		21		28	0,65 dias	22,09 dias	00:15
Normal Unidade	3802 - La Ver. Falta Agua Cavalete		5				68	1	69	1,74 dias	0,37 dias	00:13
Normal Unidade	3804 - La Ver. Pressao/Agua Cav.						937	2	939	0,36 dias	-	00:14
Normal Unidade	3805 - La Inst. Registrador Pressão						1	1	2	0,38 dias	-	00:15
Normal Unidade	3806 - La Verificação Conserto Vazamento		6				57		57	2,12 dias	-	00:17
Normal Unidade	3902 - La Abertura/Fechamento Manual/Vala						3		3	0,92 dias	-	00:08
Normal Unidade	3912 - La Abertura/Fechamento Mecanico/Vala						13		13	0,55 dias	-	00:10
Religação Corte Cavalete	3922 - La Relig. Cav. Corte Falta Pagamento		5				179	19	198	0,77 dias	0,27 dias	00:14
Religacao Corte Cavalete	3928 - La Religa. Cav Religação Sem Cobrança						13	1	14	0,58 dias	-	00:09
Religação Corte Ramal	3924 - La Relig. Rp. Corte Falta Pagamento						14		14	0,63 dias	0,90 dias	00:29
Religação Sanção Regulamentar	3970 - La Relig. Rp. Corte Sanção Regulamentar						1		1		1,40 dias	00:35
Religacao Unidade Cancelada	3926 - La Relig. Rp. Corte Retirada Ramal		1				6		6		5,65 dias	00:48
Supressão Ligação Água	3946 - La Supressão da Ligação - I.C.						1	1	2		1,40 dias	00:10
Supressão Ligação Água	3948 - La Supressão da Ligação P.U.		8				8		8	1,25 dias	0,80 dias	00:15
Vazamento Rede	5112 - Ra Cons. Pvc Dn Ate 100mm Loc. C/Asf.						1		1	0,38 dias	-	00:40
Vazamento Rede	5114 - Ra Cons. Pvc Dn Ate 100mm Loc. S/Asf.						98	1	99	0,53 dias	0,01 dias	01:36

Anos completos instalado	Hidrômetros
0	318
1	193
3	165
4	137
5	111
6	199
7	161
8	514
9	145
10	108
14	146

Percentual de micromedição

100%

Pedido de Ligações

Tempo médio de espera 2018 6 dias, 9 horas e 52 minutos 2019 6 dias, 21 horas e 23 minutos

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PAK	1E1-	- IDE	NIIFICA	ÇAU D	J SAA								
UF	SC	N	Aunicípio					Referên	cia	de 01/01/2	2018	à 31/01/2018	
Nom	e do S	SAA		Irani Unidade I				Código	Código SAA (SisAgua)		S	S420780000002	
Instit	tuição	Resp	onsável	CASA	N								
PAR	TE II	- MO	NITORA	MENTO	D DA QUALIDA	ADE DA ÁG	U A (1-TRA T	T. DE ÁGUA E	/OU 2	-SIST. DE I	DIS	TRIBUIÇÃO)	
1 - T	RATA	AMEN	NTO DA Â	ÁGUA			`						
Nom	e da E	ETA/U	J TA ET	A Irani	Unidade I		Data de pro	eenchimento d	o relat	ório mensal	Ĺ	11/05/2018	
Resp	onsáv	el pel	as inform	ações	Felipe Antonio	Cassini	Car	go do Respons	ável	Químico			
A ET	`А оре	erou r	no mês?		X Sim Nã			a, ao marcar o ío o de resultados					
1.1 -	PONT	ГО D	Е САРТА	ÇÃO:	Superficial	X Subter	râneo						
Nom	e: Rı	ua Osc	ório de Oli	veira Va	rgas, S/N (Poço (03) - Centro	Lati	tude:		Longitue	de:		
						Amostra	ı 1	Amostra 2	A	mostra 3		Amostra 4	
Esci	herich	ia col	'i	Data da coleta					1	5/01/2018			
				E.coli/100mL						0,0			
40					Amostra	n 1	Amostra 2	An	nostra 3		Amostra 4		
	tozoár			Data da coleta									
Cry	ptospo	oridiui	n spp.	Oocistos/L									
				Oocistos/L									
Pro	tozoár.	(1)				Amostr	al	Amostra 2	A	mostra 3		Amostra 4	
	rdia sp			Data da coleta									
				Cistos/L									
			(0)			Amost	ra 1	Amostra 2	A	mostra 3		Amostra 4	
Víru	ıs enté	éricos	(2)	Data da coleta									
				UFP/10	0mL								
						Amost	ra 1	Amostra 2	A	mostra 3		Amostra 4	
Clos	rofila	(3)		Data da	coleta	Amosti	141	Alliusti a 2	A	illiusti a 3		Amostra	
Cio	Ullia	- а											
				UFP/10	UML								
						Amostra (Células/i		Amostra 2 (Células/mL)		Amostra 3 Células/mL)		Amostra 4 (Células/mL)	
					Data da coleta	(=======)	((00000000000000000000000000000000000000	
				Anabaena									
			(4)	Aphanoca	ıpsa sp.								
Ciar	nobact	térias		Aphanoth	ece sp.								
				***************************************	permopsis sp.								
				Geitlerine					-				
				Jaaginem	a sp.				-				
				Lyngbya									
			Microcys	tis sp.									

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
(0)	Raphidiopsis sp.				
(4) Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	l			1	
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	Amostra 1	Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
Cianotoxinas (5)	Data da coleta				
	Data da coleta Microcistina (µg/L)				
	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota 1: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-desi	infecção			
	Número de amostras analisadas	0			
	Percentil 95 (uT)	0			
Turbidez	Número de dados > 1,0 uT	0			
	Número de dados > 0,5 uT e ≤ 1,0 uT	0			
	Número de dados > 0,3 uT e ≤ 0,5 uT	0			
	Número de dados ≤ 0,3 uT	0			
	Saída do tratamento				
Turbidez	Número de amostras analisadas	39			
	Percentil 95 (uT)	0,52			
	Saída do tratamento				
	Número de amostras analisadas	4			
Cor	Percentil 95 (uT)	2			
	Número de dados > 15,0 uH	0			
	Número de dados ≤ 15,0 uH	4			

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento					
	Número de amostras analisadas	8				
рН	Número de dados > 9,0	0				
	Número de dados ≥6,0 e ≤ 9,0 uT	8				
	Número de dados < 6,0	0				
	Saída do tratamento					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado na Portaria GM/MS n° 635/1975	0,7				
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0				
	Valor ótimo recomendado na Portaria GM/MS nº 635/1975	0,8				
	Número de amostras analisadas	39				
Fluoreto (6)	Percentil 95 (mg/L)	1,04				
riuoreto	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L	0				
	Número de dados ≤1,5 mg/L	39				
	Referência à Portaria GM/MS nº 635/1975					
	Número de dados >[Máximo] mg/L	2				
	Número de dados ≥[Mínimo] mg/L e ≤ [Máximo] mg/L	28				
	Número de dados <[Mínimo] mg/L	9				
	Saída do tratamento					
	Número de amostras analisadas	39				
(7)	Percentil 95 (mg/L)	1,26				
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0				
,	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0				
	Número de dados $\geq 0.2 \text{ e} \leq 2.0 \text{ mg/L}$	39				
	Número de dados < 0,2mg/L	0				
	Número de amostras analisadas	0				
Desinfecção (7)	Percentil 95 (mg/L)	0				
(Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				
	Número de amostras analisadas	0				
(7)	Percentil 95 (mg/L)	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0				
	Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0				
	Número de dados ≤ 0,2 mg/L	0				

	Saída do tratamento					
California Totaia	Número de amostras analisadas	8				
Coliformes Totais	N° de amostras com presença de coliformes totais	0				
	N° de amostras com ausência de coliformes totais	8				
	Saída do tratamento					
Fashawishia sali	Número de amostras analisadas	8				
Escherichia coli	N° de amostras com presença de Escherichia coli	0				
	N° de amostras com ausência de Escherichia coli	8				

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota₂: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO										
Município / UF Irani			Data de preenchimento do relató				orio mensal	11/05/2018		
Responsável pelas ir		Felipe Antonio Ca	ssini		Cargo do res	ponsável	Químico			
O sistema de distrib água no mês ?	uição recebeu	X Sim Não						tribuição não recebeu ficam desabilitados.		
2.1 – Informações ro	elacionadas à i	nfraestrutura e às	condições	oper	acionais (por lo	ocalidade atin	gida) – Númo	ero de eventos		
Númer	SISTEMA DE DISTRIBUIÇÃO Número de eventos relacionados à infraestrutura e às condições operacionais (por localidade atingida)									
Área ou L	ocal	Reparos na Rede	Intermitê	termitências Faltas de Água Reclamações		Reclamações o	de Gosto/Odor	Reclamações na Cor		
Alto Irai	ni	0	0		0	(0	0		
Centro		3	0		0	(0	0		
Jardim Maria	a Rosa	0	0		0	(0	0		
Modesto To	ortelli	0	0		0	(0	0		
Nelson Gi	riza	1	0		0	(0	0		
Nossa Senhora A	Aparecida	2	0		0	(0	0		
Santo Antonio		0	0		0	(0	0		
Santo Marcon		1	0		0	(0	0		
Zampier	ri	4	0		0	(0	0		

	Sistema de distribuição					
(9)	Número de amostras analisadas	18				
Γurbidez	Número de dados > 5,0 uT (13)	1				
	Número de dados 5,0 uT	17				
	Sistema de distribuição					
(9)	Número de amostras analisadas	6				
Cor	Número de dados > 15,0 uH (13)	0				
	Número de dados 15,0 uH	6				
	Sistema de distribuição					
(9,12)	Número de amostras analisadas	0				
PH	Número de dados > 9,5 (13)	0				
	Número de dados ≥ 6,0 e ≤ 9,5 uT	0				
	Número de dados < 6,0 (13)	0				
	Sistema de distribuição					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado na Portaria GM/MS n° 635/1975	0,7				
	Máximo recomendado na Portaria GM /MS n° 635/1975	1,0				
	Valor ótimo recomendado na Portaria GM/MS n°635/1975	0,8				
	Número de amostras analisadas	0				
(9,10,12) F luoreto	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L ⁽¹³⁾	0				
	Número de dados ≤1,5 mg/L	0				
	Referência à Portaria GM/MS nº 635/1975					
	Número de dados >[Máximo] mg/L (13)	0				
	Número de dados ≥[Mínimo] mg/L e ≤[Máximo] mg/L	0				
	Número de dados <[Mínimo] mg/L (13)	0				
	Sistema de distribuição					
	Número de amostras analisadas	18				
Desinfecção ^(9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0				
Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0				
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	18				
	Número de dados < 0,2 mg/L (13)	0				
	Número de amostras analisadas	0				
(9,11)	Percentil 95% (mg/L)	0				
Desinfecção Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				

	Número de amostras ana	lisadas		0			
(9,11)	Percentil 95% (mg/L)			0			
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 r	ng/L		0			
,	Número de dados > 0,2 ±	≤ 1,0 mg/L		0			
	Número de dados ≤ 0,2 n	ng/L		0			
		Sist	ema de distribuição				
Coliformes Totais	Número de amostras ana			18			
Conformes Totals	N° de amostras com pres	ença de coliformes t	otais (13)	1			
	N° de amostras com ausé			17			
	Sistema de distribuição						
(9)	Número de amostras ana	lisadas	18				
Escherichia coli	N° de amostras com pres	ença de Escherichia	1				
	N° de amostras com ausê	ència de Escherichia	17				
	Sistema de distribuição						
Bactérias (9)	Número de amostras ana			4			
heterotróficas	Número de dados >500 U	JFC/100mL (13)		1			
	Número de dados <500 U	JFC/100mL	3				
		Amostra 1	Amostra 2	Amostra 3	Amostra 4		
	Data da coleta						
	Microcistina (μg/L)						
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)						
	Cilindroespermopsina (μg/L)						
	Anatoxina (μg/L)						
	Outra(s) (µg/L)						

⁽⁹⁾ Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

Parâmetro	Data da coleta	Endereço	Ações Corretivas:	Resultado
Turbidez	29/01/2018	Rua Valdecir Angelo Zampieri, 1155 - Centro - Irani	N° AS 30/01/2018 09:00 901546 Efetuado descarga de cavalete no local	8,8
Escherichia Coli	17/01/2018	Rua Menino Deus, 725 - Alto Irani - Irani	Nº AS 18/01/2018 15:06 901546 efetuado descarga no cavalete. Ocorreu falta de água devido a substituição de bomba de poço.	P
Coliformes Totais	17/01/2018	Rua Menino Deus, 725 - Alto Irani - Irani	N° AS 18/01/2018 15:05 901546 efetuado descarga no cavalete. Ocorreu falta de água devido a substituição de bomba de poço.	P
Bactérias Heterotróficas	29/01/2018	Rua Rosalino Rodrigues, 236 - Centro - Irani	N° AS 31/01/2018 16:10 901546 efetuado descarga de cavalete no local	> 500

Nota₄: O número de linhas da tabela deve ser igual ao número de análises fora do padrão (máximo de 50 linhas para cada parâmetro).

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA (SAA)

IDENTIFICAÇÃO DO	SAA								
UF SC M	unicípio Iran	İ							
Nome do SAA	Irani Unidade I		Instituição Responsáv	vel CASAN					
Mês/ano de referência	01/02/2018 à 28/02/	2018		I					
		2010							
	TRATAMENTO DA ÁGUA								
UF SC Mu	i nicípio Irani		Nome da ETA/UTA	ETA Irani U	nidade I				
Data de preenchimento	do relatório mensal	13/03/2018							
Responsável pelas inform	mações Feli	pe Antonio Cassini	Gestor Té	enico					
MONITORAMENTO I	DA QUALIDADE DE	AGUA NO PONTO DE	E CAPTAÇAO						
		Amostra 1	Amostra 2	Amostra 3	Amostra 4				
Escherichia coli	Data da coleta		08/02/2018	15/02/2018					
	E.coli/100mL		0,0	0,0					
	E.COM TOOME			······································					
Duntana fulas 1		Amostra 1	Amostra 2	Amostra 3	Amostra 4				
Protozoários ¹ - Cryptosporidium spp.	Data da coleta								
Стургозрогиний эрр.	Oocistos/L								
			Amostra 2	Amostra 3	Amostra 4				
Protozoários ¹ -			Amostra 2	Amostra 3	Amosti a 4				
Giardia spp.	Data da coleta								
	Cistos/L								
		Amostra 1	Amostra 2	Amostra 3	Amostra 4				
Vírus entéricos ²	Data da coleta								
virus entericos -									
	UFP/100mL								
		Amostra 1	Amostra 2	Amostra 3	Amostra 4				
Clorofila - a ³	Data da coleta								
	UFP/100mL								
		Amostra 1	Amostra 2	Amostra 3	Amostra 4				
		(Células/mL)	(Células/mL)	(Células/mL)	(Células/mL)				
	Data da coleta								
	Anabaena sp. Aphanocapsa sp.								
	Aphanothece sp.								
	Cylindrospermopsis sp.								
Cianobactérias	Geitlerinema sp.								
Cianobacterias	Jaaginema sp.								
	Lyngbya sp.								
	Microcystis sp.								
	Planktothrix sp.								
	Planktolyngbya sp.								
	Pseudoanabaena sp.								
	Radiocystis sp.								
	Raphidiopsis sp.								
	Synechococcus sp.								

	Synechocystis sp.				
	Tychonema sp.				
Cianobactérias	Dolichospermum sp.				
Cianobacterias	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	Total de Cianobactérias	-	-	-	_

		Amostra 1	Amostra 2	Amostra 3	Amostra 4
	Data da coleta				
	Microcistina (μg/L)				
Cianotoxinas	Saxitoxina (µg/L)				
	Cilindroespermopsina (μg/L)				
	Anatoxina (μg/L)				
	Outra(s) (µg/L)				

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Pós-filtração ou Pré-desinfecção			
Turbidez	Número de amostras analisadas	0		
	Percentil 95	0		
	Número de dados > 1,0 uT	0		
	Número de dados > 0,5 uT e ≤ 1,0 uT	0		
	Número de dados $> 0.3 \text{ uT e} \le 0.5 \text{ uT}$	0		
	Número de dados ≤ 0,3 uT	0		
Turbidez	Saída do tratamento			
	Número de amostras analisadas	36		
	Percentil 95	0,23		
	Número de dados > 5,0 uT	0		
	Número de dados ≤5,0 uT	36		
	Saída do tratamento			
	Número de amostras analisadas	4		
Cor	Percentil 95	2		
	Número de dados > 15,0 uH	0		
	Número de dados ≤ 15,0 uT	4		
рН	Saída do tratamento			
	Número de amostras analisadas	8		
	Percentil 95	6,8		
	Número de dados > 9,0	0		
	Número de dados ≥6,0 e ≤9,0 uT	8		
	Número de dados < 6,0	0		

	Saída do tratamento				
	Média das temperaturas máximas diárias(°C)	24,0			
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7			
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0			
	Valor ótimo recomendado na Portaria GM/MS n°635/1975	0,8			
	Número de amostras analisadas	36			
Fluoreto ¹	Percentil 95	1,07			
riuoreto -	Referência à Portaria GM/MS nº 2.914/2011				
	Número de dados > 1,5 mg/L	0			
	Número de dados ≤1,5 mg/L	36			
	Referência à Portaria GM/MS nº 635/1975				
	Número de dados >[Máximo] mg/L	2			
	Número de dados ≥[Mínimo] mg/L e ≤ [Máximo] mg/L	26			
	Número de dados <[Mínimo] mg/L	8			

	Saída do tratamento				
	Número de amostras analisadas		36		
	Percentil 95			1,25	
Desinfecção ² (Cloro Residual Livre)	Número de dados >5,0mg/L			0	
(,	Número de dados >2,0 e≤5,0 mg/L			0	
	Número de dados ≥ 0	,2 e ≤ 2,0 mg/L		36	
	Número de dados <0,21	mg/L		0	
		S	aída do tratamento		
Coliformes Totais	Número de amostras analisadas			8	
Comormes Totals	N° de amostras com presença de coliformes totais		totais	0	
	N° de amostras com ausência de coliformes totais		totais	8	
	Saída do tratamento				
Escherichia coli	Número de amostras analisadas			8	
Escherichia con	N° de amostras com presença de Escherichia coli			0	
	N° de amostras com ausência de Escherichia coli		coli	8	
		Amostra 1	Amostra 2	Amostra 3	Amostra 4
	Data da coleta				
	Microcistina (μg/L)				
Cianotoxinas ³	Saxitoxina (μg/L)				
	Cilindroespermopsina (µg/L)				
	Anatoxina (μg/L)				
	Outra(s) (µg/L)				

(1) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM/MS nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914/2011 é de 1,5 mg/L. (2) Caso o agente desinfetante utilizado seja cloramina ou dióxido de cloro, a tabela deve ser adaptada segundo os valores de referência para cada agente desinfetante. (3) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMPs para água tratada.

Nota: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

SISTEMA DE I	DISTRIBUIÇÃO					
Município	Irani	i				
Data de preencl	himento do relatór	io mensal 13/03/2018				
Responsável pe	Responsável pelas informações Gerência Operacional - GOPS					
		Sistema de distribuição				
Turbidez	Número	o de amostras analisadas	18			
1 ur bluez	Número	o de dados > 5,0 uT	0			
	Número	o de dados ≤5,0 uT	18			
		Sistema de distribuição				
Cor	Número	de amostras analisadas	6			
Cor	Número	o de dados > 15,0 uH	0			
	Número	o de dados ≤15,0 uH	6			
		Sistema de distribuiç	ão			
	Número	de amostras analisadas	0			
pН	Número	o de dados > 9,0	0			
	Número	o de dados ≥6,0 e ≤9,0 uT	0			
	Número	o de dados < 6,0	0			
		Sistema de distribuição				
	Média o	las temperaturas máximas diárias(°C)	24,0			
	Mínimo	recomendado na Portaria GM/MS nº 635/1975	0,7			
	Máximo	o recomendado na Portaria GM /MS nº 635/1975	1,0			
	Valor ó	timo recomendado na Portaria GM/MS n°635/1975	0,8			
	Número	de amostras analisadas	0			
Fluoreto	Referêr	Referência à Portaria GM/MS n° 2.914/2011				
	Número	o de dados > 1,5 mg/L	0			
	Número	o de dados ≤1,5 mg/L	0			
	Referê	Referência à Portaria GM/MS nº 635/1975				
	Número	o de dados >[Máximo] mg/L	0			
	Número	o de dados ≥[Mínimo] mg/L e ≤[Máximo] mg/L	0			
	Número	o de dados <[Mínimo] mg/L	0			

	Sistema de distribuição					
	Número de amostras analisadas			18		
Desinfecção ²	Número de dados >5,0mg/L			0		
(Cloro Residual Livre)	Número de dados >2,0 e ≤5,0 mg/L			0		
	Número de dados≥0,2 e ≤ 2,0 mg/L			18		
	Número de dados <0,2mg/L			0		
	Sistema de distribuição					
Coliformes Totais	Número de amostras analisadas			18		
Conformes Totals	N° de amostras com pre	sença de coliformes	totais	0		
	N° de amostras com aus	sência de coliformes	totais	18		
		Sis	tema de distribuição			
Escherichia coli	Número de amostras analisadas			18		
Escherichia con	N° de amostras com presença de Escherichia coli			0		
	N° de amostras com ausência de Escherichia coli			18		
	Sistema de distribuição					
Bactérias	Número de amostras analisadas			4		
heterotróficas 1	Número de dados >500 UFC/100mL			0		
	Número de dados <500	Número de dados <500 UFC/100mL			4	
		Amostra 1	Amostra 2	Amostra 3	Amostra 4	
	Data da coleta					
	Microcistina (μg/L)					
Cianotoxinas	Saxitoxina (µg/L)					
	Cilindroespermopsina (µg/L)					
	Anatoxina (μg/L)					
	Outra(s) (μg/L)					

⁽¹⁾ Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (2) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (3) Caso o agente desinfetante utilizado seja cloramina ou dióxido de cloro, a tabela deve ser adaptada segundo os valores de referência para cada agente desinfetante; (4) Análise não obrigatória. (5) Caso existam resultados nessa faixa (fora do padrão ou da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Percentil 95

Percentil é uma medida estatística utilizada para indicar o valor abaixo do qual se encontra uma determinada porcentagem de observações. Por exemplo, o percentil 50 (também chamado de Mediana) é o valor abaixo do qual 50% das observações podem ser encontradas. Considerado, por exemplo, a realização de 1000 análises de cloro residual livre na saída do tratamento em determinado mês, se o valor correspondente ao percentil 95 é 2,5 mg/L, isso quer dizer que 95% das amostras analisadas estão abaixo deste valor, e que os outros 5% das analises estão acima desse valor. Quando solicitamos que seja informado o percentil 95 ao invés do valor Máximo encontrado, os 5% dos valores mais elevados são ignorados. Isso permite que a decisão seja tomada em função de uma estatística, e não de um simples valor máximo, que pode ter sido pontual e não representar, portanto, as condições da água durante a maior parte do tempo de distribuição

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

SISTEMA DE DISTRIBUIÇÃO Número de eventos relacionados à infraestrutura e às condições operacionais (por localidade atingida)									
Área ou Local	Reparos na Rede	Intermitências	Faltas de Água	Reclamações de Gosto/Odor	Reclamações na Cor				
Alto Irani	2	0	0	0	0				
Centro	5	0	0	0	0				
Jardim Maria Rosa	0	0	0	0	0				
Modesto Tortelli	0	0	0	0	0				
Nelson Griza	0	0	0	0	0				
Nossa Senhora Aparecida	2	0	0	0	0				
Santo Antonio	1	0	0	0	0				
Santo Marcon	11	0	0	0	0				
Zampieri	0	0	0	0	0				

Observações Gerais

Os dados referentes ao monitoramento da qualidade da água da saída de tratamento e pós filtração, bem como as ações corretivas referentes as amostras fora do padrão e número de eventos relacionados à infraestrutura e condições operacionais são informados pela agência do município.

Quando da identificação de amostras fora do padrão ou da faixa recomendada no sistema de distribuição, o Setor de Qualidade de Água e Efluentes (SEQAE) envia para o setor operacional os ajustes técnicos (providências) a serem realizados. Todos os ajustes técnicos são registrados na forma de Autorização de Serviço (AS), que estão disponíveis para consulta. A seguir estão descritas as não-conformidades e seus respectivos ajustes técnicos. Por via de regra, faz-se remoção da água em não-conformidade da rede de distribuição quando: cloro residual livre > 5,0 mg/L; coliformes totais e ou E. coli = presente; cont. bactérias heterotróficas > 500 UFC; cor aparente > 15 uH; fluoreto > 1,5 mg/L; turbidez > 5 uT. Faz-se correção de dosagem de agentes químicos na unidade de tratamento quando: cloro residual livre < 0,2 mg/L; fluoreto < 0,7 ou > 1,0 mg/L.

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDENTIFIC	CAÇÃO D	O SAA						
UF SC Municíp	io Irani			Referê	ıcia	de 01/03/2	018 à 31/03/2018	
Nome do SAA	Irani U	Jnidade I		Código	SAA (SisAgua)	S420780000002	
Instituição Responsável	CASA	N						
PARTE II - MONITOR	RAMENT	O DA QUALIDA	DE DA ÁGUA (1-	TRAT. DE ÁGUA F	E/ OU 2	-SIST. DE I	DISTRIBUIÇÃO)	
1 - TRATAMENTO DA	ÁGUA							
Nome da ETA/UTA	ETA Irani	Unidade I	Data	de preenchimento d	o relat	ório mensal	09/04/2018	
Responsável pelas infor	mações	Felipe Antonio	Cassini	Cargo do Respons	sável	Químico		
A ETA operou no mês?		X Sim Não		lisagua, ao marcar o í nserção de resultados				_
1.1 - PONTO DE CAPT	CACÃO:	Superficial	Subterrâneo					
Nome: Indefinido	niçno.	— .	— Latitı	ıde: ()		Longitude:	: 0	
Nome. indefinido			Latitt	ide. ()		Longitude.	U	
			Amostra 1	Amostra 2	A	mostra 3	Amostra 4	
F1::1:	Data da	v a a lata	Amostra 1	Amostra 2	A	iniosti a 5	Amostra	
Escherichia coli	Data da							
	E.coli/1	100mL					_	
Protozoários -			Amostra 1	Amostra 2	Aı	mostra 3	Amostra 4	
Cryptosporidium spp.	Data da	ı coleta						
	Oocisto	os/L						
(1)			Amostra 1	Amostra 2	A	mostra 3	Amostra 4	
Protozoários - Giardia spp.	Data da	ı coleta						
Giai aia sppi	Cistos/l	L						
			Amostra 1	Amostra 2	A	Amostra 3	Amostra 4	•••
Vírus entéricos (2)	Data da	ı coleta						
	UFP/10	00mL						****
			Amostra 1	Amostra 2		Amostra 3	Amostra 4	
Clorofila - a	Data da	ı coleta	Alliostia 1	Amosti a 2		inostra 3	Amosti a 4	
	UFP/10							****
	011/10	, o.m.2	Amostra 1	Amostra 2		Amostra 3	Amostra 4	
			(Células/mL)	(Células/mL)	(Células/mL)	(Células/mL)	
		Data da coleta						
	Anabaen							
Cianobactérias (4)	Aphanoc							
Cianobacterias	Aphanoth							
	Geitlering	spermopsis sp.			-			••••
	Jaaginen							
	Lyngbya							

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
(4)	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	1				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
Cianotoxinas (5)	Data da coleta				
` '	Data da coleta Microcistina (μg/L)				
` '	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota₁: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

1.2 - ÁGUA TRAT	TADA				
	Pós-filtração ou Pré-desi	nfecção			
	Número de amostras analisadas	0			
	Percentil 95 (uT)	0			
Turbidez	Número de dados > 1,0 uT	0			
	Número de dados > 0,5 uT e ≤ 1,0 uT	0			
	Número de dados > 0,3 uT e ≤ 0,5 uT	0			
	Número de dados ≤ 0,3 uT	0			
	Saída do tratamento				
Turbidez	Número de amostras analisadas	39			
	Percentil 95 (uT)	0,51			
	Saída do tratamen	to			
	Número de amostras analisadas	4			
Cor	Percentil 95 (uT)	2			
	Número de dados > 15,0 uH	0			
	Número de dados ≤ 15,0 uH	4			

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento					
	Número de amostras analisadas	16				
рН	Número de dados > 9,0	0				
	Número de dados ≥ 6,0 e ≤ 9,0 uT	8				
	Número de dados < 6,0	0				
	Saída do tratamento					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7				
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0				
	Valor ótimo recomendado na Portaria GM/MS nº 635/1975	0,8				
	Número de amostras analisadas	39				
Fluoreto (6)	Percentil 95 (mg/L)	1,1				
riuoreto	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L	0				
	Número de dados ≤1,5 mg/L	39				
	Referência à Portaria GM/MS nº 635/1975					
	Número de dados >[Máximo] mg/L	5				
	Número de dados ≥ [Mínimo] mg/L e ≤ [Máximo] mg/L	27				
	Número de dados <[Mínimo] mg/L	7				
	Saída do tratamento					
	Número de amostras analisadas	39				
(7)	Percentil 95 (mg/L)	1,32				
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0				
(,	Número de dados > 2,0 ≤ 5,0 mg/L	0				
	Número de dados $\geq 0.2 \text{ e } \leq 2.0 \text{ mg/L}$	39				
	Número de dados < 0,2mg/L	0				
	Número de amostras analisadas	0				
Desinfecção (7)	Percentil 95 (mg/L)	0				
(Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				
	Número de amostras analisadas	0				
(7)	Percentil 95 (mg/L)	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0				
(Dióxido de Cloro)	Número de dados > 0,2 ≤ 1,0 mg/L	0				
	Número de dados ≤ 0,2 mg/L	0				

	Saída do tratamento				
Coliformes Totais	Número de amostras analisadas	8			
	N° de amostras com presença de coliformes totais	0			
	N° de amostras com ausência de coliformes totais	8			
	Saída do tratamento				
Eacharichia aali	Número de amostras analisadas	8			
Escherichia coli	N° de amostras com presença de Escherichia coli	0			
	N° de amostras com ausência de Escherichia coli	8			

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota2: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃ	O					
Município / UF Irani]	Data de preenchim	ento do relató	ório mensal	09/04/2018
Responsável pelas informações	Felipe Antonio Ca	ssini	Cargo do res	sponsável	Químico	
O sistema de distribuição recebeu água no mês ?	☐ Sim ☐ Não		No Sisagua, ao marc ês", os campos para			tribuição não recebeu icam desabilitados.
2.1 – Informações relacionadas à i	nfraestrutura e às	condições o	operacionais (por l	ocalidade atin	gida) – Núme	ero de eventos
Número de eventos r			DISTRIBUIÇÃO às condições oper	acionais (por	localidade ati	ngida)
Área ou Local	Reparos na Rede	Intermitênc	cias Faltas de Água	Reclamações	de Gosto/Odor	Reclamações na Cor
Alto Irani	1	0	0		0	0
Centro	3	0	0	•	0	0
Jardim Maria Rosa	0	0	0		0	0
Modesto Tortelli	0	0	0	(0	0
Nelson Griza	0	0	0		0	0
Nossa Senhora Aparecida	0	0	0	(0	0
Santo Antonio	0	0	0		0	0
Santo Marcon	4	0	0		0	0
Zampieri	0	0	0		0	0

	Sistema de distribuição					
(9)	Número de amostras analisadas	18				
Гurbidez	Número de dados > 5,0 uT (13)	0				
	Número de dados 5,0 uT	18				
	Sistema de distribuição					
Cor (9)	Número de amostras analisadas	6				
	Número de dados > 15,0 uH (13)	0				
	Número de dados 15,0 uH	6				
	Sistema de distribuição					
(9,12)	Número de amostras analisadas	0				
PH	Número de dados > 9,5 (13)	0				
	Número de dados ≥6,0 e ≤9,5 uT	0				
	Número de dados < 6,0 (13)	0				
	Sistema de distribuição					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7				
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0				
	Valor ótimo recomendado na Portaria GM/MS n°635/1975	0,8				
(0.10.10)	Número de amostras analisadas	0				
(9,10,12) F luoreto	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L ⁽¹³⁾	0				
	Número de dados ≤1,5 mg/L	0				
	Referência à Portaria GM/MS nº 635/1975					
	Número de dados >[Máximo] mg/L (13)	0				
	Número de dados ≥[Mínimo] mg/L e ≤[Máximo] mg/L	0				
	Número de dados <[Mínimo] mg/L (13)	0				
	Sistema de distribuição					
	Número de amostras analisadas	18				
Desinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0				
Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0				
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	18				
	Número de dados < 0,2 mg/L (13)	0				
	Número de amostras analisadas	0				
(9,11) Desinfecção	Percentil 95% (mg/L)	0				
Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				

	Número de amostras ana	lisadas		0			
(9,11)	Percentil 95% (mg/L)			0			
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 1	ng/L	0				
,	Número de dados $> 0.2 \le 1.0 \text{ mg/L}$ 0						
	Número de dados ≤ 0,2 n	ng/L		0			
		Sist	ema de distribuição				
Coliformes Totais	Número de amostras ana			18			
Comormes Totals	N° de amostras com pres	ença de coliformes t	totais (13)	1			
	N° de amostras com aus			17			
		Sist	ema de distribuição				
Escherichia coli	Número de amostras ana	lisadas	18				
Escherichia coli	N° de amostras com pres	ença de Escherichia	0				
	N° de amostras com ausé	ència de Escherichia	coli	18			
	Sistema de distribuição						
Bactérias (9)	Número de amostras ana	lisadas		5			
heterotróficas	Número de dados >500 l	JFC/100mL ⁽¹³⁾		0			
	Número de dados <500 l	UFC/100mL		5			
		Amostra 1	Amostra 2	Amostra 3	Amostra 4		
	Data da coleta						
	Microcistina (μg/L)						
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)						
	Cilindroespermopsina (μg/L)						
	Anatoxina (µg/L)						
	Outra(s) (µg/L)						

⁽⁹⁾ Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 2: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

Parâmetro	Data da coleta	Endereço	Ações Corretivas:	Resultado
Coliformes Totais	15/03/2018	Rua Sonia Bressan Zampieri, 555 - Zampieri - Irani	N° AS 16/03/2018 15:08 901546 efetuado descarga no cavalete	P

Nota₄: O número de linhas da tabela deve ser igual ao número de análises fora do padrão (máximo de 50 linhas para cada parâmetro).

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDE	NTIFICA	ÇAO DO	O SAA							
UF SC N	Aunicípio	Irani					Referência	de 01/04/20	018 à 30/04/	2018
Nome do SAA		Irani U	nidade I				Código SAA	(SisAgua)	S42078000	00002
Instituição Resp	onsável	CASA	N			'				
PARTE II - MC	ONITORA	MENT(O DA QUALIDA	DE DA ÁG	J A (1-7	ΓRAT. DE Δ	ÁGUA E/OU	2-SIST. DE D	ISTRIBUI	ÇÃO)
1 - TRATAMEN	NTO DA Á	GUA								
Nome da ETA/U	J TA ET	`A Irani	Unidade I		Data o	de preenchi	mento do rela	tório mensal	11/05/20	018
Responsável pel	as informa	ıções	Felipe Antonio	Cassini		Cargo do	Responsável	Químico		
A ETA operou i			X Sim Não					"A ETA não opicam desabilita		s", os
1.1 - PONTO D	F CAPTA	CÃO:	Superficial	Subter	âneo					
		ÇAO.	_ 1						•	
Nome: Indefini	do					Latitude:	0	Longitud	e: 0	
				Amostra	ı 1	Amost	tra 2	Amostra 3	Amo	stra 4
Escherichia col	li	Data da	coleta							
		E.coli/1	00mL							
(1)				Amostra	ı 1	Amost	ra 2 💮 A	Amostra 3	Amos	stra 4
Protozoários -		Data da coleta			•••••					
Cryptosporidiu		Oocistos/L								
		0 0 0 10 10	5, 2	Amostr	o 1	Amos	tro 2	Amostra 3	Amo	stra 4
Protozoários -		D-4- 1-	- 1 - 4 -	Amosti	a 1	Amos	uaz .	Alliosti a 5	Amo	511 a ¬
Giardia spp.	-	Data da coleta								
		Cistos/I	_							
	(2)			Amost	a 1	Amos	stra 2	Amostra 3	Amo	ostra 4
Vírus entéricos		Data da	coleta							
		UFP/10	0mL							
				Amost	•a 1	Amos	stra 2	Amostra 3	Amo	ostra 4
Clorofila - a (3)	-	Data da	coleta							
	-	UFP/10	00mL							
				Amostra	1	Amost	ra 2	Amostra 3	Am	ostra 4
				(Células/	nL)	(Célula:	s/mL)	(Células/mL)	(Célı	ulas/mL)
			Data da coleta							
	ļ-	Anabaena								
Cianobactérias	Į	Aphanoca								
Cianobacterias	ļ.,	Aphanoth								
	}		spermopsis sp.							
		Geitlerine								
		Jaaginem								
		Lyngbya Microcys								
			r			1			ł	

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
(0)	Raphidiopsis sp.				
(4) Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	l			1	
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	Amostra 1	Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
Cianotoxinas (5)	Data da coleta				
	Data da coleta Microcistina (µg/L)				
	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota 1: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-desi	nfecção				
	Número de amostras analisadas	0				
	Percentil 95 (uT)	0				
Turbidez	Número de dados > 1,0 uT	0				
	Número de dados > 0,5 uT e ≤ 1,0 uT	0				
	Número de dados > 0,3 uT e ≤ 0,5 uT	0				
	Número de dados ≤ 0,3 uT	0				
	Saída do tratamento					
Turbidez	Número de amostras analisadas	37				
	Percentil 95 (uT)	0,61				
	Saída do tratamento					
	Número de amostras analisadas	4				
Cor	Percentil 95 (uT)	2				
	Número de dados > 15,0 uH	0				
	Número de dados ≤ 15,0 uH	4				

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento							
	Número de amostras analisadas	7						
рН	Número de dados > 9,0	0						
	Número de dados ≥ 6,0 e ≤ 9,0 uT	7						
	Número de dados < 6,0	0						
	Saída do tratamento							
	Média das temperaturas máximas diárias (°C)	24,0						
	Mínimo recomendado na Portaria GM/MS n° 635/1975	0,7						
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0						
	Valor ótimo recomendado na Portaria GM/MS nº 635/1975	0,8						
	Número de amostras analisadas	37						
Fluoreto (6)	Percentil 95 (mg/L)	1,14						
riuoreto	Referência à Portaria GM/MS n° 2.914/2011							
	Número de dados > 1,5 mg/L	0						
	Número de dados ≤1,5 mg/L	37						
	Referência à Portaria GM/MS nº 635/1975							
	Número de dados >[Máximo] mg/L	4						
	Número de dados ≥ [Mínimo] mg/L e ≤ [Máximo] mg/L	25						
	Número de dados <[Mínimo] mg/L	8						
	Saída do tratamento							
	Número de amostras analisadas	37						
(7)	Percentil 95 (mg/L)	1,02						
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0						
(Número de dados $> 2,0 \le 5,0 \text{ mg/L}$	0						
	Número de dados $\geq 0.2 \text{ e } \leq 2.0 \text{ mg/L}$	37						
	Número de dados < 0,2mg/L	0						
	Número de amostras analisadas	0						
Desinfecção (7)	Percentil 95 (mg/L)	0						
(Cloro Residual	Número de dados > 4,0 mg/L	0						
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0						
	Número de dados < 2,0 mg/L	0						
	Número de amostras analisadas	0						
(7)	Percentil 95 (mg/L)	0						
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0						
(Número de dados > 0,2 ≤ 1,0 mg/L	0						
	Número de dados ≤ 0,2 mg/L	0						

	Saída do tratamento						
C.P.C.	Número de amostras analisadas	7					
Coliformes Totais	N° de amostras com presença de coliformes totais	0					
	N° de amostras com ausência de coliformes totais	7					
	Saída do tratamento						
Escherichia coli	Número de amostras analisadas	7					
Escherichia con	N° de amostras com presença de Escherichia coli	0					
	N° de amostras com ausência de Escherichia coli	7					

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota₂: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO								
Município / UF Irani		Data de preenchimento do relatório mensal 11/05/2018						
Responsável pelas informações	Felipe Antonio Ca	ssini		Cargo do res	sponsável	Químico		
O sistema de distribuição recebeu água no mês ?	☐ Sim ☐ Não						tribuição não recebeu icam desabilitados.	
2.1 — Informações relacionadas à infraestrutura e às condições operacionais (por localidade atingida) — Número de eventos								
Número de eventos r				RIBUIÇÃO ondições opera	acionais (por	localidade ati	ngida)	
Área ou Local	Reparos na Rede	Intermitên	cias 1	Faltas de Água	Reclamações	de Gosto/Odor	Reclamações na Cor	
Alto Irani	0	0		0		0	0	
Centro	1	0		0	(0	0	
Jardim Maria Rosa	0	0		0	(0	0	
Modesto Tortelli	0	0		0	(0	0	
Nelson Griza	0	0		0		0	0	
Nossa Senhora Aparecida	1	0		0		0	0	
Santo Antonio	0	0		0	(0	0	
Santo Marcon	0	0		0		0	0	
Zampieri	0	0		0	(0	0	

2.2 – MONITORAMEN	TO DA QUALIDADE DA ÁGUA TRATADA						
	Sistema de distribuição						
(9)	Número de amostras analisadas	16					
Turbidez	Número de dados > 5,0 uT (13)	0					
	Número de dados 5,0 uT	16					
	Sistema de distribuição						
(9)	Número de amostras analisadas	5					
Cor	Número de dados > 15,0 uH (13)	0					
	Número de dados 15,0 uH	5					
	Sistema de distribuição						
(9,12)	Número de amostras analisadas	0					
PH	Número de dados > 9,5 (13)	0					
	Número de dados ≥ 6,0 e ≤ 9,5 uT	0					
	Número de dados < 6,0 (13)	0					
	Sistema de distribuição						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7					
	Máximo recomendado na Portaria GM /MS n° 635/1975	1,0					
	Valor ótimo recomendado na Portaria GM/MS n°635/1975	0,8					
	Número de amostras analisadas	0					
Fluoreto (9,10,12)	Referência à Portaria GM/MS nº 2.914/2011						
	Número de dados > 1,5 mg/L (13)	0					
	Número de dados ≤1,5 mg/L	0					
	Referência à Portaria GM/MS nº 635/1975						
	Número de dados >[Máximo] mg/L (13)	0					
	Número de dados ≥[Mínimo] mg/L e ≤[Máximo] mg/L	0					
	Número de dados <[Mínimo] mg/L (13)	0					
	Sistema de distribuição						
	Número de amostras analisadas	16					
Desinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0					
(Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0					
	Número de dados ≥ $0.2 \text{ e} \le 2.0 \text{ mg/L}$	16					
	Número de dados < 0,2 mg/L (13)	0					
	Número de amostras analisadas	0					
(9,11)	Percentil 95% (mg/L)	0					
Desinfecção (Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					

	Número de amostras ana	lisadas		0				
(9,11) Desinfecção (Dióxido de Cloro)	Percentil 95% (mg/L)			0				
	Número de dados > 1,0 1	ng/L		0				
	Número de dados > 0,2 :	≤ 1,0 mg/L		0				
	Número de dados ≤ 0,2 n	ng/L		0				
		Sist	ema de distribuição					
Coliformes Totais	Número de amostras ana			16				
Comormes Totals	N° de amostras com pres	ença de coliformes t	otais (13)	0				
	N° de amostras com auso			16				
		Sist	ema de distribuição					
Escherichia coli	Número de amostras ana	lisadas		16				
Escherichia con	N° de amostras com pres	ença de Escherichia	coli ⁽¹³⁾	0				
	N° de amostras com ausé	ència de Escherichia	coli	16				
	Sistema de distribuição							
Bactérias (9)	Número de amostras ana			3				
heterotróficas	Número de dados >500 l	JFC/100mL (13)		0				
	Número de dados <500 l	JFC/100mL		3				
		Amostra 1	Amostra 2	Amostra 3	Amostra 4			
	Data da coleta							
	Microcistina (μg/L)							
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)							
	Cilindroespermopsina (μg/L)							
	Anatoxina (μg/L)							
	Outra(s) (µg/L)							

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PAR	TE I - IDEN	TIFICA	ÇÃO DO	O SAA									
UF	SC M	unicípio	Irani					Referênc	cia	de 01/05/2	2018 à	31/05/2018	
Nome	e do SAA		Irani U	nidade I	Código SAA (Sis			SisAgua)	S420	0780000002			
Instit	tuição Respo	nsável	CASA	N									
PAR	TE II - MON	NITORA	MENTO	O DA QUALIDA	DE DA ÁGU	J A (1-T	TRAT. DE	ÁGUA E/	OU 2-	SIST. DE 1	DISTR	RIBUIÇÃO)	
1 - T	RATAMEN	TO DA Á	GUA										
Nome	e da ETA/UT	га Ет	`A Irani	Unidade I		Data d	le preenchi	mento do	relató	rio mensal	15	5/06/2018	
Resp	onsável pela	s informa	ações	Felipe Antonio	Cassini		Cargo do	Responsá	ivel	Químico			
A ET	`A operou no	mês?		X Sim Não			sagua, ao m serção de re					no mês", os	
11-	PONTO DE	САРТА	CÃO:	Superficial	X Subterr	âneo							
			-	rgas, S/N (Poço ()2) Contro		T -4:43			T	۵.,		
TAOIII	e. Kua Osoi	io de Oir	vena va	igas, 5/11 (Foço (73) - Centro		Latitude:			Longitu	ue:		
					Amostra	1	Amos	tra 2	Λr	nostra 3		Amostra 4	
T 1	1		Doto do	aalata	Amostra	1	Aiiios	11 a 2		5/05/2018		Amosti a 4	
Escherichia coli			Data da coleta						1.				
			E.coli/1	00mL				_		0,0			
Protozoários -					Amostra	a 1 Amos		ra 2	Am	ostra 3		Amostra 4	
Protozoários - Cryptosporidium spp.	spp.	Data da coleta											
			Oocisto	s/L									
(1)					Amostr	a 1	Amos	tra 2	Ar	nostra 3		Amostra 4	
	tozoários - rdia spp.		Data da coleta										
· · · · ·	www.sppv		Cistos/I	-									
					Amostr	a 1	Amos	stra 2	Aı	mostra 3		Amostra 4	
Víru	ıs entéricos	2)	Data da	coleta									
, it us entertees			UFP/10	0mL									
					Amostr	∙a 1	Amos	stra 2	Aı	mostra 3		Amostra 4	
Clo	rofila - a		Data da	coleta			7 4 11 10						
			UFP/10	0mL									
					Amostra	1	Amost	ra 2		Amostra 3		Amostra 4	
					(Células/r	nL)	(Célula	s/mL)	(C	élulas/mL)		(Células/mL)	
				Data da coleta									
			Anabaena										
Ciar	obactérias	·)	Aphanoca										***************************************
Ciui			Aphanoth Cylindros	spermopsis sp.									
			Geitlerine										
			Jaaginem										
		-	Lyngbya										

Microcystis sp.

	<u> </u>		Y	}	ĭ
	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	- Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
(5) Cianotoxinas	Data da coleta				
	Data da coleta Microcistina (μg/L)				
	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota₁: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

1.2 - ÁGUA TRAT	ΓADA					
	Pós-filtração ou Pré-desi	infecção				
	Número de amostras analisadas	0				
	Percentil 95 (uT)	0				
Turbidez	Número de dados > 1,0 uT	0				
	Número de dados > 0,5 uT e ≤ 1,0 uT	0				
	Número de dados > 0.3 uT e ≤ 0.5 uT	0				
	Número de dados ≤ 0,3 uT	0				
	Saída do tratamento					
Turbidez	Número de amostras analisadas	39				
	Percentil 95 (uT)	0,83				
	Saída do tratamento					
	Número de amostras analisadas	4				
Cor	Percentil 95 (uT)	4				
	Número de dados > 15,0 uH	0				
	Número de dados ≤ 15,0 uH	4				

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento							
	Número de amostras analisadas	8						
рН	Número de dados > 9,0	0						
	Número de dados ≥ 6,0 e ≤ 9,0 uT	8						
	Número de dados < 6,0	0						
	Saída do tratamento							
	Média das temperaturas máximas diárias (°C)	24,0						
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7						
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0						
	Valor ótimo recomendado na Portaria GM/MS nº 635/1975	0,8						
	Número de amostras analisadas	39						
Fluoreto (6)	Percentil 95 (mg/L)	1,04						
riuoreto	Referência à Portaria GM/MS nº 2.914/2011							
	Número de dados > 1,5 mg/L	0						
	Número de dados ≤1,5 mg/L	39						
	Referência à Portaria GM/MS nº 635/1975							
	Número de dados >[Máximo] mg/L	3						
	Número de dados ≥ [Mínimo] mg/L e ≤ [Máximo] mg/L	29						
	Número de dados <[Mínimo] mg/L	7						
	Saída do tratamento							
	Número de amostras analisadas	39						
(7)	Percentil 95 (mg/L)	1,2						
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0						
(,	Número de dados > 2,0 ≤ 5,0 mg/L	0						
	Número de dados $\geq 0.2 \text{ e } \leq 2.0 \text{ mg/L}$	39						
	Número de dados < 0,2mg/L	0						
	Número de amostras analisadas	0						
Desinfecção (7)	Percentil 95 (mg/L)	0						
(Cioro Residual	Número de dados > 4,0 mg/L	0						
Combinado)	Número de dados $> 2,0 \le 4,0 \text{ mg/L}$	0						
	Número de dados < 2,0 mg/L	0						
	Número de amostras analisadas	0						
(7)	Percentil 95 (mg/L)	0						
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0						
(Número de dados > 0,2 ≤ 1,0 mg/L	0						
	Número de dados ≤ 0,2 mg/L	0						

	Saída do tratamento						
California Tatala	Número de amostras analisadas	8					
Coliformes Totais	N° de amostras com presença de coliformes totais	0					
	N° de amostras com ausência de coliformes totais	8					
	Saída do tratamento						
Escherichia coli	Número de amostras analisadas	8					
Escherichia con	N° de amostras com presença de Escherichia coli	0					
	N° de amostras com ausência de Escherichia coli	8					

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota2: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO									
Município / UF Irani					Data de preenchimento do relatório mensal 15/06/2018				
Responsável pelas i		Felipe Antonio Ca	ssini		Cargo do res	sponsável	Químico		
O sistema de distrib água no mês ?	uição recebeu	X Sim Não						tribuição não recebeu ficam desabilitados.	
2.1 – Informações r	2.1 – Informações relacionadas à infraestrutura e às condições operacionais (por localidade atingida) – Número de eventos								
Númer	o de eventos r	SIST elacionados à infra			RIBUIÇÃO condições opera	acionais (por	localidade ati	ingida)	
Área ou L	ocal	Reparos na Rede	Intermitê	ncias	Faltas de Água	Reclamações	de Gosto/Odor	Reclamações na Cor	
Alto Ira	ni	0	0		0	,	0	0	
Centro	,	2	0		0		0	0	
Jardim Maria	a Rosa	0	0		0	,	0	0	
Modesto To	ortelli	0	0		0	(0	0	
Nelson G	riza	6	0		0		0	0	
Nossa Senhora	Aparecida	0	0		0	(0	0	
Santo Antonio		0	0		0		0	0	
Santo Marcon		2	0		0		0	0	
Zampie	ri	0	0		0		0	0	

	Sistema de distribuição					
(9)	Número de amostras analisadas	19				
Furbidez	Número de dados > 5,0 uT (13)	0				
	Número de dados 5,0 uT	19				
	Sistema de distribuição					
Cor (9)	Número de amostras analisadas	7				
or .	Número de dados > 15,0 uH (13)	0				
	Número de dados 15,0 uH	7				
	Sistema de distribuição					
(9,12)	Número de amostras analisadas	0				
PH	Número de dados > 9,5 (13)	0				
	Número de dados ≥6,0 e ≤9,5 uT	0				
	Número de dados < 6,0 (13)	0				
	Sistema de distribuição					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7				
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0				
	Valor ótimo recomendado na Portaria GM/MS n°635/1975	0,8				
(0.40.40)	Número de amostras analisadas	0				
(9,10,12) F luoreto	Referência à Portaria GM/MS n° 2.914/2011					
	Número de dados > 1,5 mg/L (13)	0				
	Número de dados ≤1,5 mg/L	0				
	Referência à Portaria GM/MS nº 635/1975					
	Número de dados >[Máximo] mg/L (13)	0				
	Número de dados ≥[Mínimo] mg/L e ≤[Máximo] mg/L	0				
	Número de dados <[Mínimo] mg/L (13)	0				
	Sistema de distribuição					
	Número de amostras analisadas	19				
Desinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0				
Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0				
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	19				
	Número de dados < 0,2 mg/L (13)	0				
	Número de amostras analisadas	0				
(9,11) Desinfecção	Percentil 95% (mg/L)	0				
Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				

	Número de amostras ana	llisadas		0				
(9,11)	Percentil 95% (mg/L)			0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 1	mg/L		0				
,	Número de dados > 0,2 :	≤ 1,0 mg/L		0				
	Número de dados ≤ 0,2 r	ng/L		0				
		Sist	ema de distribuição					
Coliformes Totais	Número de amostras ana			19				
Comormes Totals	N° de amostras com pres	sença de coliformes t	otais (13)	0				
	N° de amostras com aus			19				
		Sist	ema de distribuição					
Escherichia coli	Número de amostras ana	lisadas		19				
Escherichia coli	N° de amostras com pres	sença de Escherichia	coli ⁽¹³⁾	0				
	N° de amostras com ausé	ència de Escherichia	coli	19				
	Sistema de distribuição							
Bactérias (9)	Número de amostras ana	lisadas		4				
heterotróficas	Número de dados >500	UFC/100mL ⁽¹³⁾		0				
	Número de dados <500	UFC/100mL		4				
		Amostra 1	Amostra 2	Amostra 3	Amostra 4			
	Data da coleta							
	Microcistina (μg/L)							
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)							
	Cilindroespermopsina (µg/L)							
	Anatoxina (μg/L)							
	Outra(s) (µg/L)							

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDEN	NTIFICA	ÇÃO DO	O SAA								
UF SC M	lunicípio	Irani					Referênci	a	de 01/07/20)19 à 3	1/07/2019
Nome do SAA		Irani U	nidade I				Código Sa	AA (S	SisAgua)	S420′	780000002
Instituição Respo	onsável	CASA	N								
PARTE II - MO	NITORA	MENTO	O DA QUALIDA	DE DA ÁG	UA (1-7	TRAT. DE	ÁGUA E/O)U 2-	SIST. DE D	ISTR	(BUIÇÃO)
1 - TRATAMEN	TO DA Á	GUA									
Nome da ETA/U	TA ET	`A Irani	Unidade I		Data d	le preenchi	mento do 1	relatá	ório mensal	07/	/08/2019
Responsável pela	s informa	acões	Bruna Favassa C	`hiot		_	Responsáv		Engenheira	Ouím	ica
A ETA operou n			X Sim Não	Atençã		sagua, ao m	narcar o íco	ne "A	ETA não o am desabilita	perou r	
1.1 DONTO DI	CARTA	~~~	Superficial	X Subter		serção de re	surraces ac	75 1100	in acsacinic	405.	
1.1 - PONTO DE		-	_ ^	ZI Subtei	Tanco						
Nome: Rua José	Fazolo, S	SN (Poço	02) - Centro			Latitude:	-27,0225		Longitud	l e: - 5	1,900556
		******************************		Amostr	a 1	Amos	tra 2	Aı	nostra 3		Amostra 4
Escherichia coli		Data da coleta				11/07/2	2019	10	6/07/2019		
		E.coli/1	00mL			0,0)		0,0		
(1)				Amostr	a 1	Amost	ra 2	An	ostra 3	1	Amostra 4
Protozoários -		Data da coleta									
Cryptosporidiun	n spp.	Oocistos/L									
		0001010	U, <u>L</u>	Amost	ra 1	Amos	tra 2	Λ,	nostra 3		Amostra 4
Protozoários -				Amost	141	Amos	uaz		nosti a 5		Amosu a 4
Giardia spp.	l l	Data da coleta									
		Cistos/I	_								
	(2)			Amost	ra 1	Amos	stra 2	A	mostra 3		Amostra 4
Vírus entéricos		Data da	coleta								
		UFP/100mL					1				
				Amost	ra 1	Amos	stra 2	A	mostra 3		Amostra 4
Clorofila - a		Data da	coleta								
		UFP/10	0mL								
				Amostr	a 1	Amost	ra 2	1	Amostra 3		Amostra 4
				(Células	/mL)	(Célula:	s/mL)	(0	Células/mL)		(Células/mL)
			Data da coleta			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	•••	Anabaena									
Cianobactérias (E	Aphanoca									
Cianobacterias		Aphanoth	······								
			spermopsis sp.								
		Geitlerine									
		Jaaginem									
		Lyngbya	sp.								

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
745	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	- Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
(5) Cianotoxinas	Data da coleta				
* *	Data da coleta Microcistina (µg/L)				
* *	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota 1: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-desi	nfecção
	Número de amostras analisadas	0
	Percentil 95 (uT)	0
Turbidez	Número de dados > 1,0 uT	0
	Número de dados > 0,5 uT e ≤ 1,0 uT	0
	Número de dados > 0,3 uT e ≤ 0,5 uT	0
	Número de dados ≤ 0,3 uT	0
	Saída do tratament	to
Turbidez	Número de amostras analisadas	39
	Percentil 95 (uT)	0,38
	Saída do tratamen	to
	Número de amostras analisadas	4
Cor	Percentil 95 (uT)	2
	Número de dados > 15,0 uH	0
	Número de dados ≤ 15,0 uH	4

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento						
	Número de amostras analisadas	8					
рН	Número de dados > 9,0	0					
	Número de dados ≥6,0 e ≤ 9,0	8					
	Número de dados < 6,0	0					
	Saída do tratamento						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7					
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0					
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8					
	Número de amostras analisadas	39					
Fluoreto (6)	Percentil 95 (mg/L)	1,01					
Fluoreto	Referência à Portaria GM/MS n° 2.914/2011						
	Número de dados > 1,5 mg/L	0					
	Número de dados ≤1,5 mg/L	39					
	Referência à Nota Técnica DIVS 002/2017						
	Número de dados > 1,0 mg/L	2					
	Número de dados \geq = 0,7 mg/L e \leq = 1,0 mg/L	36					
	Número de dados < 0,7 mg/L	1					
	Saída do tratamento						
	Número de amostras analisadas	39					
(7)	Percentil 95 (mg/L)	1,57					
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0					
(,	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0					
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	39					
	Número de dados < 0,2mg/L	0					
	Número de amostras analisadas	0					
Desinfecção (7)	Percentil 95 (mg/L)	0					
(Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					
	Número de amostras analisadas	0					
(7)	Percentil 95 (mg/L)	0					
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0					
	Número de dados > 0,2 ≤ 1,0 mg/L	0					
	Número de dados ≤ 0,2 mg/L	0					

	Saída do tratamento	
Coliformes Totais	Número de amostras analisadas	8
Comormes Totals	N° de amostras com presença de coliformes totais	0
	Nº de amostras com ausência de coliformes totais	8
	Saída do tratamento	
Fashanishia asli	Número de amostras analisadas	8
Escherichia coli	N° de amostras com presença de Escherichia coli	0
	N° de amostras com ausência de Escherichia coli	8

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota₂: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO	0						
Município / UF Irani			Data	de preenchim	ento do relató	ório mensal	07/08/2019
Responsável pelas informações	Bruna Favassa Ch	iot		Cargo do res	sponsável	Engenheira Ç	uímica
O sistema de distribuição recebeu água no mês ?	X Sim Não						tribuição não recebeu icam desabilitados.
2.1 – Informações relacionadas à i	nfraestrutura e às	condições	opera	acionais (por le	ocalidade atin	gida) – Núme	ro de eventos
Número de eventos ro				RIBUIÇÃO ondições opera	acionais (por	localidade ati	ngida)
Área ou Local	Reparos na Rede	Intermitên	cias	Faltas de Água	Reclamações	de Gosto/Odor	Reclamações na Cor
Zampieri	0	0		0		0	0
Nossa Senhora Aparecida	3	0		0		0	0
Nelson Grisa	0	0		0		0	0
Santo Marcon	1	0		0		0	0
Santo Antonio	0	0		0		0	0
Loteamento Modesto Torteli	0	0		0		0	0
Alto Irani	2	0		0		0	0
Jardim Maria Rosa	0	0		0		0	0
Centro	3	0		0		0	0

2.2 – MONITORAMEN	TO DA QUALIDADE DA ÁGUA TRATADA						
	Sistema de distribuição						
Turbidez (9)	Número de amostras analisadas	20					
1 ui biucz	Número de dados > 5,0 uT ⁽¹³⁾	0					
	Número de dados 5,0 uT	20					
	Sistema de distribuição						
C or (9)	Número de amostras analisadas	2					
Coi	Número de dados > 15,0 uH (13)	0					
	Número de dados 15,0 uH	2					
	Sistema de distribuição						
(9,12)	Número de amostras analisadas	0					
РН	Número de dados > 9,5 (13)	0					
	Número de dados ≥6,0 e ≤9,5	0					
	Número de dados < 6,0 (13)	0					
	Sistema de distribuição						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7					
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0					
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8					
	Número de amostras analisadas	0					
(9,10,12) Fluoreto	Referência à Portaria GM/MS nº 2.914/2011						
	Número de dados > 1,5 mg/L (13)	0					
	Número de dados ≤1,5 mg/L	0					
	Referência à Nota Técnica DIVS 002/2017						
	Número de dados > 1,0 mg/L (13)	0					
	Número de dados \geq = 0,7 mg/L e \leq = 1,0 mg/L	0					
	Número de dados < 0,7 mg/L (13)	0					
	Sistema de distribuição						
	Número de amostras analisadas	20					
Desinfecção ^(9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0					
(Cloro Residual Livre)	Número de dados > 2,0 \leq 5,0 mg/L ⁽¹³⁾	0					
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	20					
	Número de dados < 0,2 mg/L (13)	0					
	Número de amostras analisadas	0					
(9,11)	Percentil 95% (mg/L)	0					
Desinfecção (Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					

	Número de amostras ana	lisadas		0				
(9,11)	Percentil 95% (mg/L)		A	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 r	ng/L		0				
,	Número de dados > 0,2 ≤	≤ 1,0 mg/L		0				
	Número de dados ≤ 0,2 n	ng/L		0				
		Sist	ema de distribuição					
Coliformes Totais	Número de amostras anal			20				
Comormes Totals	N° de amostras com pres	ença de coliformes t	totais (13)	0				
N° de amostras com ausência de coliformes totais				20				
		Sist	ema de distribuição					
Escherichia coli	Número de amostras anal	isadas		20				
Escnericnia coli	N° de amostras com pres	ença de Escherichia	0					
	N° de amostras com ausê	ncia de Escherichia	20					
	Sistema de distribuição							
Bactérias (9)	Número de amostras anal	isadas		5				
heterotróficas	Número de dados >500 U	JFC/100mL ⁽¹³⁾		0				
	Número de dados <500 U	JFC/100mL		5				
		Amostra 1	Amostra 2	Amostra 3	Amostra 4			
	Data da coleta							
(0)	Microcistina (μg/L)							
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)							
	Cilindroespermopsina (μg/L)							
	Anatoxina (µg/L)							
	Outra(s) (μg/L)							

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de fluor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDENTIFICA	ÇAU D	U SAA					
UF SC Município	Irani				Referência	de 01/07/20	18 à 31/07/2018
Nome do SAA	Irani U	Inidade I			Código SAA ((SisAgua)	S420780000002
Instituição Responsável	CASA	N					
PARTE II - MONITORA	MENT	O DA QUALIDA	DE DA ÁGU	A (1-TRAT. DE	ÁGUA E/OU 2	S-SIST. DE D	ISTRIBUIÇÃO)
1 - TRATAMENTO DA	ÁGUA						
Nome da ETA/UTA ET	ΓA Irani	Unidade I]	Data de preench	imento do relat	tório mensal	09/08/2018
Responsável pelas inform	ações	Felipe Antonio	Cassini	Cargo do	Responsável	Químico	'
A ETA operou no mês?		X Sim Não		No Sisagua, ao nara inserção de re			perou no mês", os dos.
1.1 - PONTO DE CAPTA	ÇÃO:	Superficial	Subterrâ	neo			
Nome: Indefinido				Latitude:	0	Longitud	e: 0
			Amostra	1 Amos	stra 2 A	mostra 3	Amostra 4
Escherichia coli	Data da	coleta					
	E.coli/1	00mL					
(1)			Amostra	1 Amos	tra 2 A	mostra 3	Amostra 4
Protozoários -	Data da coleta						
Cryptosporidium spp.	Oocistos/L						
	GoCisto		Amostra	1 Amos	stra 2 A	mostra 3	Amostra 4
Protozoários -	Data da calata		Amostra	1 Amos	SHAZ A	iniosti a 5	Amosti a 4
Giardia spp.	Data da coleta						
	Cistos/I	_			_		
(2)			Amostra	1 Amo	stra 2	Amostra 3	Amostra 4
Vírus entéricos	Data da	coleta					
	UFP/10	00mL					
(0)			Amostra	1 Amo	stra 2	Amostra 3	Amostra 4
Clorofila - a	Data da	coleta					
	UFP/10	00mL					
			Amostra 1	Amos	tra 2	Amostra 3	Amostra 4
			(Células/m	L) (Célula	ıs/mL) (Células/mL)	(Células/mL)
	. 1	Data da coleta					
(4)	Anabaena Aphanoca						
Cianobactérias (4)	Aphanoth						
	······	spermopsis sp.					
	Geitlerine	·					
	Jaaginem	 -					
	Lyngbya	<u>†</u>					
	Microcys	***************************************				••••••	

	<u> </u>		Y	}	ĭ
	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	- Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
(5) Cianotoxinas	Data da coleta				
	Data da coleta Microcistina (μg/L)				
	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota₁: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

1.2 - ÁGUA TRAT	TADA						
	Pós-filtração ou Pré-desinfecção						
	Número de amostras analisadas	0					
	Percentil 95 (uT)	0					
Turbidez	Número de dados > 1,0 uT	0					
	Número de dados > 0,5 uT e ≤ 1,0 uT	0					
	Número de dados > 0,3 uT e ≤ 0,5 uT	0					
	Número de dados ≤ 0,3 uT	0					
	Saída do tratamento						
Turbidez	Número de amostras analisadas	39					
	Percentil 95 (uT)	0,4					
	Saída do tratament	0					
	Número de amostras analisadas	4					
Cor	Percentil 95 (uT)	2					
	Número de dados > 15,0 uH	0					
	Número de dados ≤ 15,0 uH	4					

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento						
	Número de amostras analisadas	8					
рН	Número de dados > 9,0	0					
	Número de dados ≥ 6,0 e ≤ 9,0 uT	8					
	Número de dados < 6,0	0					
	Saída do tratamento						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado na Portaria GM/MS n° 635/1975	0,7					
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0					
	Valor ótimo recomendado na Portaria GM/MS nº 635/1975	0,8					
	Número de amostras analisadas	39					
Fluoreto (6)	Percentil 95 (mg/L)	1					
riuoreto	Referência à Portaria GM/MS nº 2.914/2011						
	Número de dados > 1,5 mg/L	0					
	Número de dados ≤1,5 mg/L	39					
	Referência à Portaria GM/MS nº 635/1975						
	Número de dados >[Máximo] mg/L	0					
	Número de dados ≥ [Mínimo] mg/L e ≤ [Máximo] mg/L	39					
	Número de dados <[Mínimo] mg/L	0					
	Saída do tratamento						
	Número de amostras analisadas	39					
(7)	Percentil 95 (mg/L)	1,2					
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0					
,	Número de dados $> 2,0 \le 5,0 \text{ mg/L}$	0					
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	39					
	Número de dados < 0,2mg/L	0					
	Número de amostras analisadas	0					
Desinfecção (7)	Percentil 95 (mg/L)	0					
(Cioro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados > 2,0 ≤ 4,0 mg/L	0					
	Número de dados < 2,0 mg/L	0					
	Número de amostras analisadas	0					
(7)	Percentil 95 (mg/L)	0					
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0					
(Número de dados > 0,2 ≤ 1,0 mg/L	0					
	Número de dados ≤ 0,2 mg/L	0					

	Saída do tratamento						
C-1:6	Número de amostras analisadas	8					
Coliformes Totais	N° de amostras com presença de coliformes totais	0					
	N° de amostras com ausência de coliformes totais	8					
	Saída do tratamento						
Fackariakia aali	Número de amostras analisadas	8					
Escherichia coli	N° de amostras com presença de Escherichia coli	0					
	N° de amostras com ausência de Escherichia coli	8					

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota2: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO								
Município / UF Irani			Data de preenchimento do relatório mensal 09/08/2018					
Responsável pelas i	nformações	Felipe Antonio Ca	ssini		Cargo do res	ponsável	Químico	
O sistema de distrib água no mês ?	uição recebeu	Sim Não						stribuição não recebeu ficam desabilitados.
2.1 – Informações r	elacionadas à i	nfraestrutura e às	condições	oper	acionais (por lo	ocalidade atin	gida) – Núm	ero de eventos
Númer	o de eventos r	SIST elacionados à infra			RIBUIÇÃO condições opera	acionais (por	localidade at	ingida)
Área ou L	ocal	Reparos na Rede	Intermitê	ncias	Faltas de Água	Reclamações o	de Gosto/Odor	Reclamações na Cor
Alto Ira	ni	0	0		0	(0	0
Centro		7	0		0	(0	0
Jardim Maria	a Rosa	0	0		0	(0	0
Modesto To	ortelli	0	0		0	(0	0
Nelson G	riza	0	0		0	(0	0
Nossa Senhora	Aparecida	0	0		0	(0	0
Santo Anto	onio	0	0		0	(0	0
Santo Mar	con	0	0		0	(0	0
Zampie	ri	1	0		0	(0	0

	Sistema de distribuição						
Turbidez ⁽⁹⁾	Número de amostras analisadas	18					
	Número de dados > 5,0 uT (13)	0					
	Número de dados 5,0 uT	18					
	Sistema de distribuição						
Cor (9)	Número de amostras analisadas	6					
	Número de dados > 15,0 uH (13)	0					
	Número de dados 15,0 uH	6					
	Sistema de distribuição						
(9,12)	Número de amostras analisadas	0					
PH	Número de dados > 9,5 (13)	0					
	Número de dados ≥6,0 e ≤9,5 uT	0					
	Número de dados < 6,0 (13)	0					
	Sistema de distribuição						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7					
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0					
	Valor ótimo recomendado na Portaria GM/MS n°635/1975	0,8					
(0.40.40)	Número de amostras analisadas	0					
(9,10,12) F luoreto	Referência à Portaria GM/MS nº 2.914/2011						
	Número de dados > 1,5 mg/L (13)	0					
	Número de dados ≤1,5 mg/L	0					
	Referência à Portaria GM/MS nº 635/1975						
	Número de dados >[Máximo] mg/L (13)	0					
	Número de dados ≥[Mínimo] mg/L e ≤[Máximo] mg/L	0					
	Número de dados <[Mínimo] mg/L (13)	0					
	Sistema de distribuição						
	Número de amostras analisadas	18					
Desinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0					
Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0					
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	18					
	Número de dados < 0,2 mg/L (13)	0					
	Número de amostras analisadas	0					
(9,11) Desinfecção	Percentil 95% (mg/L)	0					
Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					

	Número de amostras ana	lisadas		0				
(9,11)	Percentil 95% (mg/L)			0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 1	ng/L		0				
(Dioxido de Cioro)	Número de dados > 0,2 :	≤ 1,0 mg/L		0				
	Número de dados ≤ 0,2 r	ng/L		0				
		Sist	tema de distribuição					
(9)	Número de amostras ana	lisadas		18				
Coliformes Totais	N° de amostras com pres	ença de coliformes	totais (13)	1				
	N° de amostras com ause			17				
		Sist	tema de distribuição					
(9)	Número de amostras ana	lisadas	18					
Escherichia coli	N° de amostras com pres	ença de Escherichia	0					
	N° de amostras com ausé	ència de Escherichia	coli	18				
	Sistema de distribuição							
Bactérias (9)	Número de amostras ana	lisadas		4				
heterotróficas	Número de dados >500	UFC/100mL ⁽¹³⁾		0				
	Número de dados <500	UFC/100mL		4				
		Amostra 1	Amostra 2	Amostra 3	Amostra 4			
	Data da coleta							
	Microcistina (μg/L)							
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)							
	Cilindroespermopsina (µg/L)							
	Anatoxina (µg/L)							
	Outra(s) (µg/L)							

⁽⁹⁾ Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 2: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

Parâmetro	Data da coleta	Endereço	Ações Corretivas:	Resultado
Coliformes Totais	11/07/2018	Rua Julia Silva, 518 - Centro - Irani	N° AS 12/07/2018 15:39 901546 Efetuado descarga de cavalete no local	P

Nota₄: O número de linhas da tabela deve ser igual ao número de análises fora do padrão (máximo de 50 linhas para cada parâmetro).

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDENTII	FICAÇÃO	DO SAA								
UF SC Muni	cípio Irani	i				Referência	a	de 01/09/20)19 à 30)/09/2019
Nome do SAA	Irani	Unidade I				Código SA	A (S	isAgua)	S4207	80000002
Instituição Responsá	vel CAS	SAN								
PARTE II - MONIT	ORAMEN	TO DA QUALIDA	DE DA ÁG	U A (1- 7	TRAT. DE	ÁGUA E/O	U 2-S	SIST. DE D	ISTRII	BUIÇÃO)
1 - TRATAMENTO	DA ÁGUA									
Nome da ETA/UTA	ETA Irai	A Irani Unidade I Data de preenchi				mento do r	elató	rio mensal	09/1	10/2019
Responsável pelas in		Bruna Favassa (Thiot		1	Responsáv		Engenheira	Onímic	 ra
A ETA operou no me	X Sim Não	Atenção		sagua, ao m	narcar o ícor sultados do	ne "A	ETA não o	perou no		
		• Superficial	X Subter		serção de re	surudos do	3 1100.	iii desdoiiite	405.	
1.1 - PONTO DE CA	-		M Subter	aneo						
Nome: Rua José Ka	des, SN (Po	ço 01) - Centro			Latitude:	- 27,02222	22	Longitud	le: -51	,894167
			Amostra	ı 1	Amos	tra 2	An	ostra 3	A	Amostra 4
Escherichia coli	Data	da coleta	04/09/20	19			17	/09/2019		
	E.col	i/100mL	0,0					0,0		
Protozoários -			Amostra	ı 1	Amost	ra 2	Am	ostra 3	A	mostra 4
	Data	da coleta								
Cryptosporidium spp	7.	stos/L								
	Oocis	5105/ L	A4-	1	A	4 2		10stra 3		
Protozoários -	-		Amostr	ат	Amos	та 2	AII	108tra 3	P	Amostra 4
Giardia spp.		da coleta								
	Cisto	s/L								
(2)			Amost	ra 1	Amos	stra 2	Ar	nostra 3	1	Amostra 4
Vírus entéricos	Data	da coleta								
	UFP/	100mL								
			Amost	ra 1	Amos	stra 2	Ar	nostra 3		Amostra 4
Clorofila - a	Data	da coleta								
	UFP/	100mL								
			Amostra	ı 1	Amost	ra 2	Α	mostra 3		Amostra 4
			(Células/	mL)	(Célula	s/mL)	(C	élulas/mL)		(Células/mL)
		Data da coleta								
	Anaba									
Cianobactérias (4)	<u> </u>	ocapsa sp.								
Cianopacterias		othece sp.								
		rospermopsis sp.								
		rinema sp.								
	<u> </u>	ema sp.								
	Lyngb	ya sp.								

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
(4)	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				5
	Outro(s) gênero(s)*				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	- Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta			Amostra 3	
(5)				Amostra 3	
(5) Cianotoxinas	Data da coleta			Amostra 3	
	Data da coleta Microcistina (µg/L)			Amostra 3	
	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)			Amostra 3	

Nota 1: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

1.2 - ÁGUA TRAT	ΓADA					
	Pós-filtração ou Pré-desinfecção					
	Número de amostras analisadas	0				
	Percentil 95 (uT)	0				
Turbidez	Número de dados > 1,0 uT	0				
	Número de dados > 0,5 uT e ≤ 1,0 uT	0				
	Número de dados $> 0.3 \text{ uT e} \le 0.5 \text{ uT}$	0				
	Número de dados ≤ 0,3 uT	0				
	Saída do tratamento					
Turbidez	Número de amostras analisadas	38				
	Percentil 95 (uT)	0,41				
	Saída do tratament	to				
	Número de amostras analisadas	4				
Cor	Percentil 95 (uT)	2				
	Número de dados > 15,0 uH	0				
	Número de dados ≤ 15,0 uH	4				

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento						
рН	Número de amostras analisadas	8					
	Número de dados > 9,0	0					
	Número de dados ≥6,0 e ≤ 9,0	8					
	Número de dados < 6,0	0					
	Saída do tratamento						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7					
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0					
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8					
	Número de amostras analisadas	38					
Fluoreto (6)	Percentil 95 (mg/L)	1					
Fluoreto	Referência à Portaria GM/MS n° 2.914/2011						
	Número de dados > 1,5 mg/L	0					
	Número de dados ≤1,5 mg/L	38					
	Referência à Nota Técnica DIVS 002/2017						
	Número de dados > 1,0 mg/L	1					
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	35					
	Número de dados < 0,7 mg/L	2					
	Saída do tratamento						
	Número de amostras analisadas	38					
(7)	Percentil 95 (mg/L)	1,31					
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0					
(,	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0					
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	38					
	Número de dados < 0,2mg/L	0					
	Número de amostras analisadas	0					
Desinfecção (7)	Percentil 95 (mg/L)	0					
(Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					
	Número de amostras analisadas	0					
(7)	Percentil 95 (mg/L)	0					
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0					
(Número de dados > 0,2 ≤ 1,0 mg/L	0					
	Número de dados ≤ 0,2 mg/L	0					

	Saída do tratamento					
California Tatala	Número de amostras analisadas	8				
Coliformes Totais	N° de amostras com presença de coliformes totais	0				
	N° de amostras com ausência de coliformes totais	8				
	Saída do tratamento					
Escherichia coli	Número de amostras analisadas	8				
Escherichia con	N° de amostras com presença de Escherichia coli	0				
	N° de amostras com ausência de Escherichia coli	8				

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota₂: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO								
Município / UF Irani			Data de preenchimento do relatório mensal			09/10/2019		
Responsável pelas informações	Bruna Favassa Chiot			Cargo do responsável Eng		Engenheira Ç	ngenheira Química	
O sistema de distribuição recebeu água no mês ?	X Sim Não		o: No Sisagua, ao marcar o ícone "O sistema de distribuição não recebo mês", os campos para inserção de resultados dos ficam desabilitados.					
2.1 — Informações relacionadas à infraestrutura e às condições operacionais (por localidade atingida) — Número de eventos								
SISTEMA DE DISTRIBUIÇÃO Número de eventos relacionados à infraestrutura e às condições operacionais (por localidade atingida)								
Área ou Local	Reparos na Rede	Intermitên	cias	Faltas de Água	Reclamações	de Gosto/Odor	Reclamações na Cor	
Zampieri	0	0		0		0	0	
Nossa Senhora Aparecida	1	0		0	ı	0	0	
Nelson Grisa	0	0		0		0	0	
Santo Marcon	3	0		0	1	0	0	
Santo Antonio	0	0		0		0	0	
Loteamento Modesto Torteli	0	0		0	ı	0	0	
Alto Irani	3	0		0		0	0	
Jardim Maria Rosa	0	0		0	1	0	0	
Centro	5	0		0		0	0	

2.2 – MONITORAMEN	NTO DA QUALIDADE DA ÁGUA TRATADA						
	Sistema de distribuição	Sistema de distribuição					
Turbidez (9)	Número de amostras analisadas	21					
1 ut bluez	Número de dados > 5,0 uT (13)	0					
	Número de dados 5,0 uT	21					
Cor (9)	Sistema de distribuição						
	Número de amostras analisadas	7					
	Número de dados > 15,0 uH (13)	0					
	Número de dados 15,0 uH	7					
(9,12) PH	Sistema de distribuição						
	Número de amostras analisadas	0					
	Número de dados > 9,5 (13)	0					
	Número de dados ≥6,0 e ≤ 9,5	0					
	Número de dados < 6.0 ⁽¹³⁾	0					
	Sistema de distribuição						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7					
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0					
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8					
	Número de amostras analisadas	0					
Fluoreto (9,10,12)	Referência à Portaria GM/MS nº 2.914/2011						
	Número de dados > 1,5 mg/L (13)	0					
	Número de dados ≤1,5 mg/L	0					
	Referência à Nota Técnica DIVS 002/2017						
	Número de dados > 1,0 mg/L (13)	0					
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	0					
	Número de dados < 0,7 mg/L (13)	0					
Desinfecção ^(9,11) (Cloro Residual Livre)	Sistema de distribuição						
	Número de amostras analisadas	21					
	Número de dados $> 5,0$ mg/L ⁽¹³⁾	0					
	Número de dados > 2,0 \leq 5,0 mg/L ⁽¹³⁾	0					
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	21					
	Número de dados < 0,2 mg/L (13)	0					
(9,11) Desinfecção (Cloro Residual Combinado)	Número de amostras analisadas	0					
	Percentil 95% (mg/L)	0					
	Número de dados > 4,0 mg/L	0					
	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					

	Número de amostras ana	lisadas		0		
(9,11)	Percentil 95% (mg/L)	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 r	ng/L		0		
(=	Número de dados > 0,2 ≤	≤ 1,0 mg/L		0		
	Número de dados ≤ 0,2 n	ıg/L		0		
		Sist	ema de distribuição			
Coliformes Totais	Número de amostras anal			21		
Comormes Totals	N° de amostras com pres	ença de coliformes t	totais (13)	0		
	N° de amostras com ausê			21		
		Sist	ema de distribuição			
Escherichia coli	Número de amostras anal	21				
Escnericnia coli	N° de amostras com pres	N° de amostras com presença de Escherichia coli (13)			0	
	N° de amostras com ausê	21				
		Sist	ema de distribuição	ão		
Bactérias (9)	Número de amostras anal	lisadas		5		
heterotróficas	Número de dados >500 U	JFC/100mL ⁽¹³⁾		0		
	Número de dados <500 U	JFC/100mL		5		
		Amostra 1	Amostra 2	Amostra 3	Amostra 4	
	Data da coleta					
Cianotoxinas (9)	Microcistina (μg/L)					
	Saxitoxina (μg/L) (g equivalente STX/L)					
	Cilindroespermopsina (μg/L)					
	Anatoxina (μg/L)					
	Outra(s) (μg/L)					

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de fluor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PAR'	TE I - ID	DENTIFICA	ÇAO D	O SAA					
UF	SC	Município	Irani				Referência	de 01/06/20	18 à 30/06/2018
Nome	e do SAA		Irani Unidade I				Código SAA	(SisAgua)	S420780000002
Instit	uicão Re	esponsável	CASA	 N					
	,			- 1					
PAR	TE II - N	MONITORA	MENTO	O DA QUALIDA	ADE DA ÁGUA (1	-TRAT. DE	ÁGUA E/OU 2	2-SIST. DE D	ISTRIBUIÇÃO)
1 - TI	RATAM	ENTO DA A	ÁGUA						
Nome	e da ETA	A/UTA ET	A Irani	Unidade I	Data	de preenchi	mento do relat	tório mensal	10/07/2018
Respo	onsável p	pelas inform	ações	Felipe Antonio	Cassini	Cargo do	Responsável	Químico	
A ET	A opero	u no mês?		X Sim Não			narcar o ícone ". esultados dos fic		perou no mês", os dos.
1.1 -]	PONTO	DE CAPTA	ÇÃO:	Superficial	X Subterrâneo				
Nome	e: Rua J	José Kades. S	N (Poco	01) - Centro		Latitude:		Longitud	e:
		,	,	,		2000000		20.19.00.0	
					Amostra 1	Amos	tra 2 A	amostra 3	Amostra 4
Esch	herichia (coli	Data da	coleta	05/06/2018		2	20/06/2018	
			E.coli/1	00mL	0,0			0,0	
			2,001,1		Amostra 1	Amost	ra 2 A	mostra 3	Amostra 4
Prot	ozoários	(1) -	D.4. 1.	1 - 4 -	Amostra i	Amosi	Iaz A	mosti a 5	Amostra
Cryp	otosporid	ium spp.	Data da						
			Oocisto	s/L					
_		(1)			Amostra 1	Amos	tra 2 A	mostra 3	Amostra 4
	ozoários dia spp.	-	Data da	coleta					
<i>9</i>	uu sppi		Cistos/I	- 					
		<i>/</i>			Amostra 1	Amo	stra 2	Amostra 3	Amostra 4
Víru	s entéric	(2) COS	Data da	coleta					
			UFP/10	0mL					
					Amostra 1	Amo	stra 2	Amostra 3	Amostra 4
Clor	ofila - a	(3)	Data da	coleta					
			UFP/10	0mL					
					Amostra 1	Amost	ra 2	Amostra 3	Amostra 4
					(Células/mL)	(Célula	s/mL) (Células/mL)	(Células/mL)
				Data da coleta					
			Anabaena						
C:-	aha-41	(4)	Aphanoca						
Cian	obactéri	ias	Aphanoth						
				spermopsis sp.					
			Geitlerine						
			Jaaginem	a sp.					

Lyngbya sp.
Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
, n	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
				:	
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
Cianotoxinas (5)	Data da coleta				
• /	Data da coleta Microcistina (μg/L)				
• /	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota₁: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

1.2 - ÁGUA TRAT	TADA				
	Pós-filtração ou Pré-desi	nfecção			
	Número de amostras analisadas	0			
	Percentil 95 (uT)	0			
Turbidez	Número de dados > 1,0 uT	0			
	Número de dados > 0,5 uT e ≤ 1,0 uT	0			
	Número de dados > 0,3 uT e ≤ 0,5 uT	0			
	Número de dados ≤ 0,3 uT	0			
	Saída do tratamento				
Turbidez	Número de amostras analisadas	38			
	Percentil 95 (uT)	0,53			
	Saída do tratament	:o			
	Número de amostras analisadas	4			
Cor	Percentil 95 (uT)	4			
	Número de dados > 15,0 uH	0			
	Número de dados ≤ 15,0 uH	4			

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento					
	Número de amostras analisadas	8				
рН	Número de dados > 9,0	0				
	Número de dados ≥ 6,0 e ≤ 9,0 uT	8				
	Número de dados < 6,0	0				
	Saída do tratamento					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7				
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0				
	Valor ótimo recomendado na Portaria GM/MS nº 635/1975	0,8				
	Número de amostras analisadas	38				
Fluoreto (6)	Percentil 95 (mg/L)	1,25				
riuoreto	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L	0				
	Número de dados ≤1,5 mg/L	38				
	Referência à Portaria GM/MS nº 635/1975					
	Número de dados >[Máximo] mg/L	3				
	Número de dados ≥[Mínimo] mg/L e ≤ [Máximo] mg/L	31				
	Número de dados <[Mínimo] mg/L	4				
	Saída do tratamento					
	Número de amostras analisadas	38				
(7)	Percentil 95 (mg/L)	1,5				
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0				
()	Número de dados > 2,0 ≤ 5,0 mg/L	0				
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	38				
	Número de dados < 0,2mg/L	0				
	Número de amostras analisadas	0				
Desinfecção (7)	Percentil 95 (mg/L)	0				
(Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				
	Número de amostras analisadas	0				
(7)	Percentil 95 (mg/L)	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0				
(Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0				
	Número de dados ≤ 0,2 mg/L	0				

	Saída do tratamento				
Coliformes Totais	Número de amostras analisadas	8			
Comormes Totals	N° de amostras com presença de coliformes totais	0			
	N° de amostras com ausência de coliformes totais	8			
	Saída do tratamento				
Escherichia coli	Número de amostras analisadas	8			
Escherichia con	N° de amostras com presença de Escherichia coli	0			
	N° de amostras com ausência de Escherichia coli	8			

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota2: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃ	0						
Município / UF Irani			Data	de preenchim	ento do relató	orio mensal	10/07/2018
Responsável pelas informações	Felipe Antonio Ca	ssini		Cargo do res	ponsável	Químico	
O sistema de distribuição recebeu água no mês ?	X Sim Não						tribuição não recebeu icam desabilitados.
2.1 — Informações relacionadas à i	infraestrutura e às	condições	opera	icionais (por lo	ocalidade atin	gida) – Núme	ero de eventos
Número de eventos r				RIBUIÇÃO ondições opera	acionais (por	localidade ati	ngida)
Área ou Local	Reparos na Rede	Intermitên	cias	Faltas de Água	Reclamações o	de Gosto/Odor	Reclamações na Cor
Alto Irani	0	0		0	(0	0
Centro	3	0		0	(0	0
Jardim Maria Rosa	0	0		0	(0	0
Modesto Tortelli	0	0		0	(0	0
Nelson Griza	1	0		0	(0	0
Nossa Senhora Aparecida	4	0		0	(0	0
Santo Antonio	1	0		0	(0	0
Santo Marcon	0	0		0	(0	0
Zampieri	0	0		0	(0	0

	Sistema de distribuição					
Turbidez ⁽⁹⁾	Número de amostras analisadas	19				
	Número de dados > 5,0 uT (13)	0				
	Número de dados 5,0 uT	19				
	Sistema de distribuição					
(9)	Número de amostras analisadas	7				
Cor	Número de dados > 15,0 uH (13)	0				
	Número de dados 15,0 uH	7				
	Sistema de distribuição					
(9,12)	Número de amostras analisadas	0				
PH	Número de dados > 9,5 (13)	0				
	Número de dados ≥6,0 e ≤9,5 uT	0				
	Número de dados < 6,0 (13)	0				
	Sistema de distribuição					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7				
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0				
	Valor ótimo recomendado na Portaria GM/MS n°635/1975	0,8				
(0.40.40)	Número de amostras analisadas	0				
(9,10,12) F luoreto	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L (13)	0				
	Número de dados ≤1,5 mg/L	0				
	Referência à Portaria GM/MS nº 635/1975					
	Número de dados >[Máximo] mg/L (13)	0				
	Número de dados ≥[Mínimo] mg/L e ≤[Máximo] mg/L	0				
	Número de dados <[Mínimo] mg/L (13)	0				
	Sistema de distribuição					
	Número de amostras analisadas	19				
Desinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0				
Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0				
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	19				
	Número de dados < 0,2 mg/L (13)	0				
	Número de amostras analisadas	0				
(9,11) Desinfecção	Percentil 95% (mg/L)	0				
Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				

	Número de amostras ana	llisadas		0		
(9,11)	Percentil 95% (mg/L)			0		
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 1	mg/L		0		
,	Número de dados > 0,2 :	≤ 1,0 mg/L		0		
	Número de dados ≤ 0,2 r	ng/L		0		
		Sist	ema de distribuição			
Coliformes Totais	Número de amostras ana			19		
Comormes Totals	N° de amostras com pres	sença de coliformes t	otais (13)	0		
	N° de amostras com aus			19		
		Sist	ema de distribuição	10		
Escherichia coli	Número de amostras ana	lisadas		19		
Escherichia coli	N° de amostras com pres	sença de Escherichia	0			
	N° de amostras com ausé	ència de Escherichia	coli	19		
		Sist	ema de distribuição	ão		
Bactérias (9)	Número de amostras ana	lisadas		4		
heterotróficas	Número de dados >500	UFC/100mL ⁽¹³⁾		0		
	Número de dados <500	UFC/100mL		4		
		Amostra 1	Amostra 2	Amostra 3	Amostra 4	
	Data da coleta					
	Microcistina (μg/L)					
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)					
	Cilindroespermopsina (µg/L)					
	Anatoxina (μg/L)					
	Outra(s) (µg/L)					

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDEN	TIFICA	ÇÃO DO	O SAA						
UF SC M	unicípio	Irani					Referência	de 01/11/2	2019 à 30/11/2019
Nome do SAA		Irani Unidade I					Código SA	A (SisAgua)	S420780000002
Instituição Respo	onsável	CASA	N						
PARTE II - MO	NITORA	MENTO	D DA QUALIDA	DE DA ÁG	UA (1-7	ΓRAT. DE	ÁGUA E/OU	J 2-SIST. DE 1	DISTRIBUIÇÃO)
1 - TRATAMEN	TO DA Á	GUA							
Nome da ETA/U	TA ET	A Irani	Unidade I		Data	de preenchi	mento do re	latório mensal	09/12/2019
Responsável pela	s informa	ıções	Bruna Favassa (Chiot	•	Cargo do	Responsável	l Engenheir	a Química
A ETA operou no	o mês?		X Sim Não					"A ETA não of ficam desabilit	operou no mês", os ados.
1.1 - PONTO DE	CAPTA	CÃO:	Superficial	X Subter	râneo				
Nome: Rua José		-	0 02) - Centro			Latitude:	-27,0225	Longitu	de: -51,900556
				Amostr	a 1	Amos	tra 2	Amostra 3	Amostra 4
Escherichia coli		Data da	coleta	05/11/20	019	12/11/	2019		
		E.coli/1	00mL	0,0		0,0	0		
(1)				Amostr	a 1	Amost	ra 2	Amostra 3	Amostra 4
Protozoários -		Data da	coleta						
Cryptosporidium		Oocisto	s/L						
(4)				Amost	ra 1	Amos	tra 2	Amostra 3	Amostra 4
Protozoários -		Data da	coleta						
Giardia spp.	ļ.,	Cistos/I							
		C15tO5/1		Amost	ro 1	Amo	stro 2	Amostra 3	Amostra 4
Vírus entéricos	(2)	Data da	coleta	Amosi	14 1	AMO	ou a a	Amostia 3	Amosu a 4
virus entericos			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
		UFP/10	UML				_		
(3)				Amost	ra 1	Amo	stra 2	Amostra 3	Amostra 4
Clorofila - a		Data da	coleta						
		UFP/10	0mL						
				Amostr (Células		Amost (Célula		Amostra 3 (Células/mL)	Amostra 4 (Células/mL)
			Data da coleta	(Celulas)	niL)	(Ceidia	omill)	(Celulas/IIIL)	(Ceiuias/IIIL)
		Anabaena							
(4		Aphanoca	.						
Cianobactérias		Aphanoth	ece sp.			\$			
		Cylindros	permopsis sp.						
		Geitlerine	ema sp.			6			
		Igaginem	a en						

Lyngbya sp.
Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
40	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				φ
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	- Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta			Amostra 3	
(5)				Amostra 3	
(5) Cianotoxinas	Data da coleta			Amostra 3	
	Data da coleta Microcistina (μg/L)			Amostra 3	
	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)			Amostra 3	

Nota 1: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

1.2 - ÁGUA TRAT	ΓADA						
	Pós-filtração ou Pré-desi	Pós-filtração ou Pré-desinfecção					
	Número de amostras analisadas	0					
	Percentil 95 (uT)	0					
Turbidez	Número de dados > 1,0 uT	0					
	Número de dados > 0,5 uT e ≤ 1,0 uT	0					
	Número de dados $> 0.3 \text{ uT e} \le 0.5 \text{ uT}$	0					
	Número de dados ≤ 0,3 uT	0					
	Saída do tratamento						
Turbidez	Número de amostras analisadas	38					
	Percentil 95 (uT)	0,33					
	Saída do tratament	to					
	Número de amostras analisadas	4					
Cor	Percentil 95 (uT)	2					
	Número de dados > 15,0 uH	0					
	Número de dados ≤ 15,0 uH	4					

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento)		
	Número de amostras analisadas	8		
pH	Número de dados > 9,0	0		
	Número de dados ≥6,0 e ≤ 9,0	8		
	Número de dados < 6,0	0		
	Saída do tratamento			
	Média das temperaturas máximas diárias (°C)	24,0		
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7		
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0		
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8		
	Número de amostras analisadas	38		
Fluoreto (6)	Percentil 95 (mg/L)	1,06		
Fluoreto	Referência à Portaria GM/MS n° 2.914/2011			
	Número de dados > 1,5 mg/L	0		
	Número de dados ≤1,5 mg/L	38		
	Referência à Nota Técnica DIVS 002/2017			
	Número de dados > 1,0 mg/L	2		
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	31		
	Número de dados < 0,7 mg/L	5		
	Saída do tratamento			
	Número de amostras analisadas	38		
(7)	Percentil 95 (mg/L)	1,39		
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0		
(,	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0		
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	38		
	Número de dados < 0,2mg/L	0		
	Número de amostras analisadas	0		
Desinfecção (7)	Percentil 95 (mg/L)	0		
(Cloro Residual	Número de dados > 4,0 mg/L	0		
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0		
	Número de dados < 2,0 mg/L	0		
	Número de amostras analisadas	0		
(7)	Percentil 95 (mg/L)	0		
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0		
(Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0		
	Número de dados ≤ 0,2 mg/L	0		

	Saída do tratamento					
Coliformes Totais	Número de amostras analisadas	8				
Comormes Totals	N° de amostras com presença de coliformes totais	1				
	Nº de amostras com ausência de coliformes totais	7				
	Saída do tratamento					
Fashanishia asli	Número de amostras analisadas	8				
Escherichia coli	N° de amostras com presença de Escherichia coli	0				
	N° de amostras com ausência de Escherichia coli	8				

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota₂: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃ	0						
Município / UF Irani			Data	de preenchim	ento do relató	ório mensal	09/12/2019
Responsável pelas informações	Bruna Favassa Ch	iot		Cargo do res	sponsável	Engenheira C	Química
O sistema de distribuição recebeu água no mês ?	X Sim Não						tribuição não recebeu icam desabilitados.
2.1 – Informações relacionadas à i	nfraestrutura e às	condições	opera	acionais (por le	ocalidade atin	gida) – Núme	ero de eventos
Número de eventos re				RIBUIÇÃO condições opera	acionais (por	localidade ati	ngida)
Área ou Local	Reparos na Rede	Intermitên	cias	Faltas de Água	Reclamações	de Gosto/Odor	Reclamações na Cor
Zampieri	0	0	·	0		0	0
Nossa Senhora Aparecida	1	0		0		0	0
Nelson Grisa	0	0		0		0	0
Santo Marcon	0	0		0		0	0
Santo Antonio	1	0		0	,	0	0
Loteamento Modesto Torteli	0	0		0	•	0	0
Alto Irani	4	0		0		0	0
Jardim Maria Rosa	0	0		0		0	0
Centro	12	0		0		0	0

2.2 – MONITORAMEN	TO DA QUALIDADE DA ÁGUA TRATADA						
	Sistema de distribuição						
(9)	Número de amostras analisadas	21					
Turbidez	Número de dados > 5,0 uT (13)	0					
	Número de dados 5,0 uT	21					
	Sistema de distribuição						
(9)	Número de amostras analisadas	7					
Cor	Número de dados > 15,0 uH (13)	0					
	Número de dados 15,0 uH	7					
	Sistema de distribuição						
(9,12)	Número de amostras analisadas	0					
РН	Número de dados > 9,5 (13)	0					
	Número de dados ≥ 6,0 e ≤ 9,5	0					
	Número de dados $<$ 6,0 $^{(13)}$	0					
	Sistema de distribuição						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7					
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0					
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8					
(9,10,12)	Número de amostras analisadas	0					
Fluoreto	Referência à Portaria GM/MS nº 2.914/2011						
	Número de dados > 1,5 mg/L (13)	0					
	Número de dados ≤1,5 mg/L	0					
	Referência à Nota Técnica DIVS 002/2017						
	Número de dados > 1,0 mg/L (13)	0					
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	0					
	Número de dados < 0,7 mg/L (13)	0					
	Sistema de distribuição						
	Número de amostras analisadas	21					
Desinfecção (9,11)	Número de dados $> 5,0 \text{ mg/L}^{(13)}$	0					
(Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0					
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	21					
	Número de dados $< 0.2 \text{ mg/L}^{(13)}$	0					
	Número de amostras analisadas	0					
(9,11) Desinfecção	Percentil 95% (mg/L)	0					
(Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					

	Número de amostras ana	lisadas		0			
(9,11)	Percentil 95% (mg/L)	0					
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 r	ng/L		0			
(=,	Número de dados > 0,2 ≤	≤ 1,0 mg/L		0			
	Número de dados ≤ 0,2 n	ng/L		0			
		Sist	ema de distribuição				
Coliformes Totais	Número de amostras anal			21			
Comormes Totals	N° de amostras com pres	ença de coliformes t	totais (13)	0			
	N° de amostras com ausê			21			
		Sist	ema de distribuição				
Escherichia coli	Número de amostras anal	Número de amostras analisadas			21		
Escnericnia coli	N° de amostras com pres	N° de amostras com presença de Escherichia coli (13)		0			
	N° de amostras com ausê	21					
		Sist	ema de distribuição	ão			
Bactérias (9)	Número de amostras anal	isadas		5			
heterotróficas	Número de dados >500 U	JFC/100mL ⁽¹³⁾		0			
	Número de dados <500 U	JFC/100mL		5			
		Amostra 1	Amostra 2	Amostra 3	Amostra 4		
	Data da coleta						
Cianotoxinas (9)	Microcistina (μg/L)						
	Saxitoxina (μg/L) (g equivalente STX/L)						
	Cilindroespermopsina (μg/L)						
	Anatoxina (μg/L)						
	Outra(s) (μg/L)						

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de fluor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PAR	TE I - II	DENTIFICA	ÇAO DO	O SAA						
UF	SC	Município	Irani					Referência	de 01/09/2	018 à 30/09/2018
Nome	e do SAA		Irani U	nidade I				Código SA	(SisAgua)	S420780000002
Instit	uição Re	esponsável	CASA	N						
PAR'	TE II - N	MONITORA	MENT(D DA QUALIDA	ADE DA ÁG	UA (1-T	TRAT. DE	ÁGUA E/OU	2-SIST. DE I	DISTRIBUIÇÃO)
1 - T	RATAM	ENTO DA À	ÁGUA							
Nome	e da ETA	A/UTA ET	A Irani	Unidade I		Data d	le preenchi	mento do rel	atório mensal	15/10/2018
Respo	onsável r	oelas inform	acões	Felipe Antonio	Cassini		Cargo do	Responsável	Químico	
		u no mês?	,	X Sim Não	Atenção		sagua, ao m	arcar o ícone		operou no mês", os ados.
1.1	DONTO	DE CAPTA	CÃO:	Superficial	X Subter	râneo				
			-	rgas, S/N (Poço (_		Latitude:		Longitue	de.
110111	or itua (350110 uc 011	vena va	1945, 5/11 (1 040 C	<i>(</i> 3) Co ntro		Datitude.		Dongitu	ис.
					Amostr	a 1	Amos	tra 2	Amostra 3	Amostra 4
Esch	herichia (coli	Data da	coleta					17/09/2018	
			E.coli/1	00mL					0,0	
					Amostr	ด 1	Amost	ra 2	Amostra 3	Amostra 4
Protozoários -		Data da	coleta	74110501		7 Kill OSt	14.2		Amostia 4	
Cryptosporidium spp. Data Oocis										
			Oocisio	S/L	A4	4	<u> </u>	4 2	A 2	A 4
Prot	ozoários	(1) -	.	1	Amostı	'a I	Amos	tra 2	Amostra 3	Amostra 4
	dia spp.		Data da		······					
			Cistos/I							
		(2)			Amost	ra 1	Amos	stra 2	Amostra 3	Amostra 4
Víru	ıs entéric		Data da	coleta						
			UFP/10	0mL						
					Amost	ra 1	Amos	stra 2	Amostra 3	Amostra 4
Clo	rofila - a	(3)	Data da	coleta						
			UFP/10	0mL						
					Amostra	a 1	Amost	ra 2	Amostra 3	Amostra 4
					(Células/	mL)	(Célula:	s/mL)	(Células/mL)	(Células/mL)
				Data da coleta						
		(4)	Anabaena Aphanoca							
Cian	obactéri	ias	Aphanoth							
				permopsis sp.						
			Geitlerine							
			Jaaginem							
	ļ			en						

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
, n	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
				:	
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
Cianotoxinas (5)	Data da coleta				
• /	Data da coleta Microcistina (μg/L)				
• /	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota₁: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-desi	nfecção				
	Número de amostras analisadas	0				
	Percentil 95 (uT)	0				
Turbidez	Número de dados > 1,0 uT	0				
	Número de dados > 0,5 uT e ≤ 1,0 uT	0				
	Número de dados $> 0.3 \text{ uT e} \le 0.5 \text{ uT}$	0				
	Número de dados ≤ 0,3 uT	0				
	Saída do tratamento					
Turbidez	Número de amostras analisadas	38				
	Percentil 95 (uT)	0.28				
	Saída do tratamen	to				
	Número de amostras analisadas	4				
Cor	Percentil 95 (uT)	3				
	Número de dados > 15,0 uH	0				
	Número de dados ≤ 15,0 uH	4				

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento	
	Número de amostras analisadas	8
рН	Número de dados > 9,0	0
	Número de dados ≥6,0 e ≤9,0	8
	Número de dados < 6,0	0
	Saída do tratamento	
	Média das temperaturas máximas diárias (°C)	24,0
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0
	Valor ótimo recomendado na Portaria GM/MS nº 635/1975	0,8
	Número de amostras analisadas	38
Fluoreto (6)	Percentil 95 (mg/L)	1.09
riuoreio	Referência à Portaria GM/MS nº 2.914/2011	
	Número de dados > 1,5 mg/L	0
	Número de dados ≤1,5 mg/L	38
	Referência à Portaria GM/MS nº 635/1975	
	Número de dados >[Máximo] mg/L	2
	Número de dados ≥ [Mínimo] mg/L e ≤ [Máximo] mg/L	36
	Número de dados <[Mínimo] mg/L	0
	Saída do tratamento	
	Número de amostras analisadas	38
(7)	Percentil 95 (mg/L)	1.42
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0
,	Número de dados $> 2,0 \le 5,0 \text{ mg/L}$	0
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	38
	Número de dados < 0,2mg/L	0
	Número de amostras analisadas	0
Desinfecção (7)	Percentil 95 (mg/L)	0
(Cloro Residual	Número de dados > 4,0 mg/L	0
Combinado)	Número de dados > 2,0 ≤ 4,0 mg/L	0
	Número de dados < 2,0 mg/L	0
	Número de amostras analisadas	0
(7)	Percentil 95 (mg/L)	0
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0
,	Número de dados > 0,2 ≤ 1,0 mg/L	0
	Número de dados ≤ 0,2 mg/L	0

	Saída do tratamento					
Coliformes Totais	Número de amostras analisadas	8				
Comormes Totals	N° de amostras com presença de coliformes totais	0				
	N° de amostras com ausência de coliformes totais	8				
	Saída do tratamento					
Eachariahia aali	Número de amostras analisadas	8				
Escherichia coli	N° de amostras com presença de Escherichia coli	0				
	N° de amostras com ausência de Escherichia coli	8				

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota2: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE D	ISTRIBUIÇÃ	0						
Município / UF	Irani			Data	de preenchim	ento do relató	orio mensal	15/10/2018
Responsável pelas i		Felipe Antonio Ca	ssini		Cargo do res	ponsável	Químico	
O sistema de distrib água no mês ?	uição recebeu	X Sim Não						tribuição não recebeu ficam desabilitados.
2.1 – Informações r	elacionadas à i	nfraestrutura e às	condições	oper	acionais (por lo	ocalidade atin	gida) – Núm	ero de eventos
SISTEMA DE DISTRIBUIÇÃO Número de eventos relacionados à infraestrutura e às condições operacionais (por localidade atingida)						ingida)		
Área ou L	ocal	Reparos na Rede	Intermitê	ncias	Faltas de Água	Reclamações o	de Gosto/Odor	Reclamações na Cor
Alto Ira	ni	1	0		0	(0	0
Centro	1	2	0		0	(0	0
Jardim Maria	a Rosa	0	0		0	(0	0
Loteamento Mod	esto Torteli	0	0		0	(0	0
Nelson G	risa	0	0		0	(0	0
Nossa Senhora A	Aparecida	2	0		0	(0	0
Santo Anto	onio	1	0		0	(0	0
Santo Mar	con	2	0		0		0	0
Zampie	ri	0	0		0	(0	0

	Sistema de distribuição						
(9)	Número de amostras analisadas	19					
Turbidez	Número de dados > 5,0 uT (13)	0					
	Número de dados 5,0 uT	19					
	Sistema de distribuição						
(9)	Número de amostras analisadas	7					
Cor	Número de dados > 15,0 uH (13)	0					
	Número de dados 15,0 uH	7					
	Sistema de distribuição						
(9,12)	Número de amostras analisadas	0					
Н	Número de dados > 9,5 (13)	0					
	Número de dados ≥6,0 e ≤ 9,5	0					
	Número de dados < 6,0 (13)	0					
	Sistema de distribuição						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7					
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0					
	Valor ótimo recomendado na Portaria GM/MS n°635/1975	0,8					
(9,10,12)	Número de amostras analisadas	0					
Fluoreto	Referência à Portaria GM/MS nº 2.914/2011						
	Número de dados > 1,5 mg/L (13)	0					
	Número de dados ≤1,5 mg/L	0					
	Referência à Portaria GM/MS nº 635/1975						
	Número de dados >[Máximo] mg/L (13)	0					
	Número de dados ≥[Mínimo] mg/L e ≤[Máximo] mg/L	0					
	Número de dados <[Mínimo] mg/L (13)	0					
	Sistema de distribuição						
	Número de amostras analisadas	19					
Desinfecção ^(9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0					
Cloro Residual Livre)	Número de dados $\geq 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0					
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	18					
	Número de dados < 0,2 mg/L (13)	1					
	Número de amostras analisadas	0					
(9,11) Desinfecção	Percentil 95% (mg/L)	0					
Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					

	Número de amostras ana	lisadas		0	
(9,11)	Percentil 95% (mg/L)			0	
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 r	ng/L		0	
(=	Número de dados > 0,2 :	≤ 1,0 mg/L		0	
	Número de dados ≤ 0,2 n	ng/L		0	
		Sist	ema de distribuição		
Coliformes Totais	Número de amostras ana			19	
Comormes Totals	N° de amostras com pres	ença de coliformes t	otais (13)	1	
	N° de amostras com ausé			18	
		Sist	ema de distribuição		
Escherichia coli	Número de amostras ana	lisadas		19	
Escherichia coli	N° de amostras com pres	ença de Escherichia	coli ⁽¹³⁾	0	
	N° de amostras com ausê	ència de Escherichia	coli	19	
		Sist	ema de distribuição		
Bactérias (9)	Número de amostras ana	lisadas		4	
heterotróficas	Número de dados >500 U	JFC/100mL (13)		0	
	Número de dados <500 U	JFC/100mL		4	
		Amostra 1	Amostra 2	Amostra 3	Amostra 4
	Data da coleta				
	Microcistina (μg/L)				
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)				
	Cilindroespermopsina (µg/L)				
	Anatoxina (µg/L)				
	Outra(s) (µg/L)				

⁽⁹⁾ Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

Parâmetro	Data da coleta	Endereço	Ações Corretivas:	Resultado
Cloro Residual Livre	19/09/2018	Rua Sonia Bressan Zampieri, 555 - Zampieri - Irani	N° AS 19/09/2018 15:09 901546 Problemas na bomba dosadora do hipoclorito, efetuado regulagem correta novamente. No local efetuado descarga de rede	0.11
Coliformes Totais	19/09/2018	Rua Valdecir Angelo Zampieri, 1155 - Centro - Irani	N° AS 20/09/2018 15:15 901546 Efetuado descarga de rede no local	P

Nota₄: O número de linhas da tabela deve ser igual ao número de análises fora do padrão (máximo de 50 linhas para cada parâmetro).

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDENT	TIFICA	ÇÃO DO	O SAA									
UF SC Mu	nicípio	Irani					Referência	ı d	le 01/08/20	018 à 3	31/08/2018	
Nome do SAA	ne do SAA Irani Unidade I Código SAA (SisAgua) S4207800								780000002			
Instituição Respons	sável	CASA	N									
		•										
PARTE II - MONI	ITORA)	MENT	O DA QUALIDA	DE DA ÁG	UA (1-7	TRAT. DE	ÁGUA E/O	U 2-SI	ST. DE D	ISTR	IBUIÇÃO)	
1 - TRATAMENT	O DA Á	GUA										
Nome da ETA/UTA	A ET	A Irani	Unidade I		Data o	de preenchi	imento do r	elatóri	o mensal	11/	/09/2018	
Responsável pelas	informa	ıções	Felipe Antonio	Cassini		Cargo do	Responsávo	el Ç	Químico			
A ETA operou no i	mês?		X Sim Não				narcar o ícon esultados dos				no mês", os	
1.1 - PONTO DE C	CAPTA	CÃO:	Superficial	Subter	râneo							
Nome: Indefinido		,				Latitude:	0		Longitud	le: 0		
										<u> </u>		
				Amostr	a 1	Amos	tra 2	Amo	ostra 3		Amostra 4	************
Escherichia coli		Data da coleta										
		E.coli/100mL										
_ (1)				Amostr	a 1	Amost	ra 2	Amo	stra 3	1	Amostra 4	
	spp.	Data da coleta										
Protozoários - Cryptosporidium spp.	;	Oocistos/L										
(1)				Amosti	ra 1	Amos	tra 2	Amo	ostra 3		Amostra 4	
Protozoários - Giardia spp.		Data da	coleta									
Giuruiu spp.		Cistos/I										***************************************
				Amost	ra 1	Amos	stra 2	Am	ostra 3		Amostra 4	
Vírus entéricos (2)	-	Data da	coleta									
		UFP/10	0mL									
				Amost	ra 1	Amos	stra 2	Am	ostra 3		Amostra 4	
Clorofila - a		Data da	coleta									
		UFP/10	0mL									
				Amostra	a 1	Amost	ra 2	An	10stra 3		Amostra 4	
				(Células/	mL)	(Célula	s/mL)	(Céh	ulas/mL)		(Células/mL)	·
			Data da coleta									
(4)		Anabaena										
Cianobactérias (4)	ļ	Aphanoca Aphanoth	·····									
	<u> </u>		permopsis sp.									
	}···	Geitlerine	·									
	···	Jaaginem										
		Lvngbva	sp.									

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
, n	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
				:	
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
Cianotoxinas (5)	Data da coleta				
• /	Data da coleta Microcistina (μg/L)				
• /	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota₁: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-desi	nfecção					
	Número de amostras analisadas	0					
	Percentil 95 (uT)	0					
Turbidez	Número de dados > 1,0 uT	0					
	Número de dados > 0,5 uT e ≤ 1,0 uT	0					
	Número de dados $> 0.3 \text{ uT e} \le 0.5 \text{ uT}$	0					
	Número de dados ≤ 0,3 uT	0					
	Saída do tratamento						
Turbidez	Número de amostras analisadas	39					
	Percentil 95 (uT)	0,46					
	Saída do tratamen	to					
	Número de amostras analisadas	4					
Cor	Percentil 95 (uT)	4					
	Número de dados > 15,0 uH	0					
	Número de dados ≤ 15,0 uH	4					

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento						
	Número de amostras analisadas	8					
рН	Número de dados > 9,0	0					
	Número de dados ≥ 6,0 e ≤ 9,0	8					
	Número de dados < 6,0	0					
	Saída do tratamento						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7					
	Máximo recomendado na Portaria GM /MS n° 635/1975	1,0					
	Valor ótimo recomendado na Portaria GM/MS nº 635/1975	0,8					
	Número de amostras analisadas	39					
Fluoreto (6)	Percentil 95 (mg/L)	1					
riuoreto	Referência à Portaria GM/MS nº 2.914/2011						
	Número de dados > 1,5 mg/L	0					
	Número de dados ≤1,5 mg/L	39					
	Referência à Portaria GM/MS nº 635/1975						
	Número de dados >[Máximo] mg/L	1					
	Número de dados ≥ [Mínimo] mg/L e ≤ [Máximo] mg/L	37					
	Número de dados <[Mínimo] mg/L	1					
	Saída do tratamento						
	Número de amostras analisadas	39					
7 (7)	Percentil 95 (mg/L)	1,2					
Desinfecção (') (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0					
,	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0					
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	39					
	Número de dados < 0,2mg/L	0					
	Número de amostras analisadas	0					
Desinfecção (7)	Percentil 95 (mg/L)	0					
(Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados > 2,0 ≤ 4,0 mg/L	0					
	Número de dados < 2,0 mg/L	0					
	Número de amostras analisadas	0					
(7)	Percentil 95 (mg/L)	0					
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0					
,	Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0					
	Número de dados ≤ 0,2 mg/L	0					

	Saída do tratamento						
	Número de amostras analisadas	8					
Coliformes Totais	N° de amostras com presença de coliformes totais	0					
	N° de amostras com ausência de coliformes totais	8					
	Saída do tratamento						
Escherichia coli	Número de amostras analisadas	8					
Escherichia con	N° de amostras com presença de Escherichia coli	0					
	N° de amostras com ausência de Escherichia coli	8					

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota2: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃ	0						
Município / UF Irani			Data	de preenchim	ento do relató	ório mensal	11/09/2018
Responsável pelas informações	Felipe Antonio Ca	ssini		Cargo do res	ponsável	Químico	
O sistema de distribuição recebeu água no mês ?	☐ Sim ☐ Não						tribuição não recebeu icam desabilitados.
2.1 – Informações relacionadas à i	nfraestrutura e às	condições	opera	acionais (por lo	ocalidade atin	gida) – Núme	ero de eventos
Número de eventos r				RIBUIÇÃO ondições opera	acionais (por	localidade ati	ngida)
Área ou Local	Reparos na Rede	Intermitên	cias	Faltas de Água	Reclamações	de Gosto/Odor	Reclamações na Cor
Alto Irani	7	0		0	,	0	0
Centro	0	0		0	(0	0
Jardim Maria Rosa	0	0		0		0	0
Loteamento Modesto Torteli	0	0		0	(0	0
Nelson Grisa	0	0		0		0	0
Nossa Senhora Aparecida	1	0		0		0	0
Santo Antonio	0	0		0		0	0
Santo Marcon	0	0		0		0	0
Zampieri	0	0		0		0	0

	Sistema de distribuição						
(9)	Número de amostras analisadas	18					
Furbidez	Número de dados > 5,0 uT (13)	0					
	Número de dados 5,0 uT	18					
	Sistema de distribuição						
C or ⁽⁹⁾	Número de amostras analisadas	6					
	Número de dados > 15,0 uH (13)	0					
	Número de dados 15,0 uH	6					
	Sistema de distribuição						
(0.12)	Número de amostras analisadas	0					
(9,12) PH	Número de dados > 9,5 (13)	0					
	Número de dados ≥ 6,0 e ≤ 9,5	0					
	Número de dados < 6,0 (13)	0					
	Sistema de distribuição						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado na Portaria GM/MS n° 635/1975	0,7					
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0					
	Valor ótimo recomendado na Portaria GM/MS n°635/1975	0,8					
	Número de amostras analisadas	0					
(9,10,12) F luoreto	Referência à Portaria GM/MS nº 2.914/2011						
	Número de dados > 1,5 mg/L ⁽¹³⁾	0					
	Número de dados ≤1,5 mg/L	0					
	Referência à Portaria GM/MS nº 635/1975						
	Número de dados >[Máximo] mg/L (13)	0					
	Número de dados ≥[Mínimo] mg/L e ≤[Máximo] mg/L	0					
	Número de dados <[Mínimo] mg/L (13)	0					
	Sistema de distribuição						
	Número de amostras analisadas	18					
esinfecção ^(9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0					
Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0					
	Número de dados ≥ $0.2 \text{ e} \le 2.0 \text{ mg/L}$	18					
	Número de dados < 0,2 mg/L (13)	0					
	Número de amostras analisadas	0					
(9,11)	Percentil 95% (mg/L)	0					
Desinfecção Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados > $2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					

	Número de amostras ana	lisadas		0	
(9,11)	Percentil 95% (mg/L)			0	
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 r	ng/L		0	
(=,	Número de dados > 0,2 :	≤ 1,0 mg/L		0	
	Número de dados ≤ 0,2 n	ng/L		0	
		Sist	ema de distribuição		
Coliformes Totais	Número de amostras ana			18	
Comormes Totals	N° de amostras com pres	ença de coliformes t	otais (13)	1	
	N° de amostras com ausé			17	
		Sist	ema de distribuição		
Escherichia coli	Número de amostras ana	lisadas		18	
Escherichia coli	N° de amostras com pres	ença de Escherichia	coli ⁽¹³⁾	0	
	N° de amostras com ausê	ència de Escherichia	coli	18	
		Sist	ema de distribuição		
Bactérias (9)	Número de amostras ana	lisadas		4	
heterotróficas	Número de dados >500 U	UFC/100mL ⁽¹³⁾		0	
	Número de dados <500 U	UFC/100mL		4	
		Amostra 1	Amostra 2	Amostra 3	Amostra 4
	Data da coleta				
	Microcistina (μg/L)				
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)				
	Cilindroespermopsina (µg/L)				
	Anatoxina (µg/L)				
	Outra(s) (µg/L)				

⁽⁹⁾ Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 2: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

Parâmetro	Data da coleta	Endereço	Ações Corretivas:	Resultado
Coliformes Totais	16/08/2018	Rua São João, 53 - Centro - Irani	Nº AS 17/08/2018 14:30 901546 efetuado descarga de cavalete no local	P

Nota₄: O número de linhas da tabela deve ser igual ao número de análises fora do padrão (máximo de 50 linhas para cada parâmetro).

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDEN	TIFICA	ÇÃO DO	O SAA		_			
UF SC Mu	unicípio	Irani				Referência	de 01/10/2	018 à 31/10/2018
Nome do SAA		Irani U	nidade I			Código SAA ((SisAgua)	S420780000002
Instituição Respon	nsável	CASA	N					
PARTE II - MON	(ITORA	MENT(O DA QUALIDA	DE DA ÁGUA (1	-TRAT. DE Á	GUA E/OU 2	-SIST. DE I	DISTRIBUIÇÃO)
1 - TRATAMENT	ΓΟ DA Á	GUA						
Nome da ETA/UT	A ET	`A Irani	Unidade I	Data	a de preenchir	nento do relat	tório mensal	06/11/2018
Responsável pelas	informa	ıções	Felipe Antonio	Cassini	Cargo do l	Responsável	Químico	
A ETA operou no	mês?		X Sim Não		Sisagua, ao ma inserção de res			perou no mês", os ados.
1.1 - PONTO DE	САРТА	CÃO:	Superficial	X Subterrâneo				
Nome: Rua José		-	01) - Centro	_	Latitude:		Longitud	le:
				Amostra 1	Amost	ra 2 A	mostra 3	Amostra 4
Escherichia coli		Data da coleta		01/10/2018				30/10/2018
Escherichia coli		E.coli/100mL		0,0				0,0
		E.COII/TOOIIL			A4-			
Protozoários - Cryptosporidium spp.				Amostra 1	Amostr	a Z A	mostra 3	Amostra 4
	spp.	Data da coleta						
Cryptosporidium spp.		Oocistos/L						
Protoso ários				Amostra 1	Amost	ra 2 A	mostra 3	Amostra 4
Protozoários - Giardia spp.		Data da	coleta					
**		Cistos/L						
				Amostra 1	Amos	tra 2	Amostra 3	Amostra 4
Vírus entéricos		Data da	coleta					
		UFP/10	0mL					
				Amostra 1	Amos	tra 2	Amostra 3	Amostra 4
Clorofila - a (3)	-	Data da	coleta					
		UFP/10	0mL					
				Amostra 1	Amostr	a 2	Amostra 3	Amostra 4
				(Células/mL)	(Células	/mL) (Células/mL)	(Células/mL)
			Data da coleta					
	<u> -</u>	Anabaena						
Cianobactérias (4)	-	Aphanoca Aphanoth						
	<u> -</u>		spermopsis sp.					
	P**	Geitlerine	·					
		Jaaginem	-					
		Lvngbva	······································					

Microcystis sp.

	<u> </u>		Y	}	ĭ
	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	- Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
(5) Cianotoxinas	Data da coleta				
	Data da coleta Microcistina (μg/L)				
	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota₁: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

1.2 - ÁGUA TRAT	ΓΑDA					
	Pós-filtração ou Pré-desi	Pós-filtração ou Pré-desinfecção				
	Número de amostras analisadas	0				
	Percentil 95 (uT)	0				
Turbidez	Número de dados > 1,0 uT	0				
	Número de dados > 0,5 uT e ≤ 1,0 uT	0				
	Número de dados > 0,3 uT e ≤ 0,5 uT	0				
	Número de dados ≤ 0,3 uT	0				
	Saída do tratamento					
Turbidez	Número de amostras analisadas	39				
	Percentil 95 (uT)	0,42				
	Saída do tratamento					
	Número de amostras analisadas	4				
Cor	Percentil 95 (uT)	3				
	Número de dados > 15,0 uH	0				
	Número de dados ≤ 15,0 uH	4				

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento					
	Número de amostras analisadas	8				
рН	Número de dados > 9,0	0				
	Número de dados ≥ 6,0 e ≤ 9,0	8				
	Número de dados < 6,0	0				
	Saída do tratamento					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7				
	Máximo recomendado na Portaria GM /MS n° 635/1975	1,0				
	Valor ótimo recomendado na Portaria GM/MS nº 635/1975	0,8				
	Número de amostras analisadas	39				
Fluoreto (6)	Percentil 95 (mg/L)	1				
Fluoreto	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L	0				
	Número de dados ≤1,5 mg/L	39				
	Referência à Portaria GM/MS nº 635/1975					
	Número de dados >[Máximo] mg/L	1				
	Número de dados ≥[Mínimo] mg/L e ≤ [Máximo] mg/L	38				
	Número de dados <[Mínimo] mg/L	0				
	Saída do tratamento					
	Número de amostras analisadas	39				
(7)	Percentil 95 (mg/L)	1,5				
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0				
(0.0.0 1.0.0.0.0.0.0.0.0.0)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0				
	Número de dados $\geq 0.2 \text{ e } \leq 2.0 \text{ mg/L}$	39				
	Número de dados < 0,2mg/L	0				
	Número de amostras analisadas	0				
Desinfecção (7)	Percentil 95 (mg/L)	0				
(Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				
	Número de amostras analisadas	0				
(7)	Percentil 95 (mg/L)	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0				
(= 10.110 00 01010)	Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0				
	Número de dados ≤ 0,2 mg/L	0				

	Saída do tratamento				
Coliformes Totais	Número de amostras analisadas	8			
Comormes Totals	N° de amostras com presença de coliformes totais	0			
	N° de amostras com ausência de coliformes totais	8			
	Saída do tratamento				
Escherichia coli	Número de amostras analisadas	8			
Escherichia con	N° de amostras com presença de Escherichia coli	0			
	N° de amostras com ausência de Escherichia coli	8			

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota2: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO							
Município / UF Irani			Data	de preenchim	ento do relató	ório mensal	06/11/2018
Responsável pelas informações	Felipe Antonio Ca	ssini		Cargo do res	ponsável	Químico	
O sistema de distribuição recebeu água no mês ?	X Sim Não						tribuição não recebeu icam desabilitados.
2.1 – Informações relacionadas à i	nfraestrutura e às	condições	opera	acionais (por lo	ocalidade atin	gida) – Núme	ero de eventos
Número de eventos r				RIBUIÇÃO condições opera	acionais (por	localidade ati	ngida)
Área ou Local	Reparos na Rede	Intermitên	cias	Faltas de Água	Reclamações	de Gosto/Odor	Reclamações na Cor
Alto Irani	6	0		0	,	0	0
Centro	2	0		0	(0	0
Jardim Maria Rosa	0	0		0		0	0
Loteamento Modesto Torteli	0	0		0	(0	0
Nelson Grisa	0	0		0		0	0
Nossa Senhora Aparecida	0	0		0	(0	0
Santo Antonio	2	0		0		0	0
Santo Marcon	0	0		0		0	0
Zampieri	3	0		0		0	0

	Sistema de distribuição					
(9)	Número de amostras analisadas	18				
Turbidez	Número de dados > 5,0 uT (13)	0				
	Número de dados 5,0 uT	18				
	Sistema de distribuição					
Cor ⁽⁹⁾	Número de amostras analisadas	6				
	Número de dados > 15,0 uH (13)	0				
	Número de dados 15,0 uH	6				
	Sistema de distribuição					
(0.12)	Número de amostras analisadas	0				
(9,12) PH	Número de dados > 9,5 (13)	0				
	Número de dados ≥ 6,0 e ≤ 9,5	0				
	Número de dados < 6,0 (13)	0				
	Sistema de distribuição					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado na Portaria GM/MS n° 635/1975	0,7				
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0				
	Valor ótimo recomendado na Portaria GM/MS n°635/1975	0,8				
	Número de amostras analisadas	0				
(9,10,12) F luoreto	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L ⁽¹³⁾	0				
	Número de dados ≤1,5 mg/L	0				
	Referência à Portaria GM/MS nº 635/1975					
	Número de dados >[Máximo] mg/L (13)	0				
	Número de dados ≥[Mínimo] mg/L e ≤[Máximo] mg/L	0				
	Número de dados <[Mínimo] mg/L (13)	0				
	Sistema de distribuição					
	Número de amostras analisadas	18				
esinfecção ^(9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0				
Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0				
	Número de dados ≥ $0.2 \text{ e} \le 2.0 \text{ mg/L}$	18				
	Número de dados < 0,2 mg/L (13)	0				
	Número de amostras analisadas	0				
(9,11)	Percentil 95% (mg/L)	0				
Desinfecção Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados > $2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				

	Número de amostras ana	lisadas		0		
(9,11)	Percentil 95% (mg/L)			0		
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 r	ng/L		0		
,	Número de dados > 0,2 :	≤ 1,0 mg/L	0			
	Número de dados ≤ 0,2 n	ng/L		0		
		Sist	ema de distribuição			
Coliformes Totais	Número de amostras ana			18		
Comormes Totals	N° de amostras com pres	ença de coliformes t	otais (13)	0		
		N° de amostras com ausência de coliformes totais				
		Sist	ema de distribuição	ão		
Escherichia coli	Número de amostras ana	lisadas		18		
Escherichia coli	N° de amostras com pres	ença de Escherichia	0			
	N° de amostras com ausê	ència de Escherichia	18			
		Sist	ema de distribuição			
Bactérias (9)	Número de amostras ana	lisadas		4		
heterotróficas	Número de dados >500 U	JFC/100mL (13)		0		
	Número de dados <500 U	JFC/100mL		4		
		Amostra 1	Amostra 2	Amostra 3	Amostra 4	
	Data da coleta					
Cianotoxinas (9)	Microcistina (μg/L)					
	Saxitoxina (μg/L) (g equivalente STX/L)					
	Cilindroespermopsina (µg/L)					
	Anatoxina (µg/L)					
	Outra(s) (μg/L)					

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDEN	NTIFICA	ÇÃO DO	O SAA								
UF SC M	Iunicípio	Irani					Referência	de 01/11	/2018	3 à 30/11/2018	
Nome do SAA		Irani U	^J nidade I				Código SA.	A (SisAgua)	S	420780000002	
Instituição Respo	onsável	CASA	N								
		•									
PARTE II - MO	NITORA	MENT(O DA QUALIDA	DE DA	ÁGUA (1-7	TRAT. DE	ÁGUA E/OI	U 2-SIST. DE	DIS	TRIBUIÇÃO)	
1 - TRATAMEN	ITO DA Á	GUA									
Nome da ETA/U	TA ET	`A Irani	Unidade I		Data	de preenchi	imento do re	latório mens	al	13/12/2018	
Responsável pela	s informa	ações	BRUNA FAVA	SSA CH	IOT	Cargo do	Responsáve	l Engenhe	ira Qı	uímica	
A ETA operou n	o mês?		X Sim Não					e "A ETA não ficam desabil		ou no mês", os s.	
1.1 - PONTO DE	E CAPTA	CÃO:	Superficial	Su	bterrâneo						
Nome: Indefinio		,				Latitude:	0	Longit	ude:	0	
				Amo	ostra 1	Amos	tra 2	Amostra 3		Amostra 4	
Escherichia coli	į	Data da	ı coleta								
	ire	E.coli/1	00mL								****
(1)				Amo	stra 1	Amost	tra 2	Amostra 3		Amostra 4	
Protozoários - Cryptosporidium spp.		Data da	ı coleta								
		Oocisto	os/L								
(1)				Am	ostra 1	Amos	stra 2	Amostra 3		Amostra 4	
Protozoários - Giardia spp.		Data da	ı coleta								
Sun unu spp.		Cistos/I	L								
				An	ostra 1	Amo	stra 2	Amostra 3		Amostra 4	
Vírus entéricos	(2)	Data da	coleta								
		UFP/10	00mL								****
				An	ostra 1	Amo	stra 2	Amostra 3		Amostra 4	
Clorofila - a (3)	-	Data da	coleta								
		UFP/10	00mL								****
				Am	ostra 1	Amost	tra 2	Amostra 3		Amostra 4	
				(Cél	ulas/mL)	(Célula	s/mL)	(Células/mL)		(Células/mL)	
		Anabaena	Data da coleta								
(į	Aphanoca									
Cianobactérias		Aphanoth									****
	-		spermopsis sp.								
		Geitlerine	ema sp.								
		Jaaginem	······								
		Lvngbva	sp.								

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
, n	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
				:	
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
Cianotoxinas (5)	Data da coleta				
• /	Data da coleta Microcistina (μg/L)				
• /	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota₁: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-desi	Pós-filtração ou Pré-desinfecção				
	Número de amostras analisadas	0				
	Percentil 95 (uT)	0				
Turbidez	Número de dados > 1,0 uT	0				
	Número de dados > 0,5 uT e ≤ 1,0 uT	0				
	Número de dados > 0.3 uT e ≤ 0.5 uT	0				
	Número de dados ≤ 0,3 uT	0				
	Saída do tratamento					
Turbidez	Número de amostras analisadas	38				
	Percentil 95 (uT)	0,31				
	Saída do tratamento					
	Número de amostras analisadas	4				
Cor	Percentil 95 (uT)	4				
	Número de dados > 15,0 uH	0				
	Número de dados ≤ 15,0 uH	4				

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento					
	Número de amostras analisadas	8				
рН	Número de dados > 9,0	0				
	Número de dados ≥ 6,0 e ≤ 9,0	8				
	Número de dados < 6,0	0				
	Saída do tratamento					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7				
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0				
	Valor ótimo recomendado na Portaria GM/MS nº 635/1975	0,8				
	Número de amostras analisadas	37				
Fluoreto ⁽⁶⁾	Percentil 95 (mg/L)	0,99				
Fluoreto	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L	0				
	Número de dados ≤1,5 mg/L	37				
	Referência à Portaria GM/MS nº 635/1975					
	Número de dados >[Máximo] mg/L	1				
	Número de dados ≥ [Mínimo] mg/L e ≤ [Máximo] mg/L	36				
	Número de dados <[Mínimo] mg/L	0				
	Saída do tratamento					
	Número de amostras analisadas	38				
(7)	Percentil 95 (mg/L)	1,2				
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0				
(5.0.0 1.0	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0				
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	38				
	Número de dados < 0,2mg/L	0				
	Número de amostras analisadas	0				
Desinfecção (7)	Percentil 95 (mg/L)	0				
(Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				
	Número de amostras analisadas	0				
(7)	Percentil 95 (mg/L)	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0				
(= 10.11.00 0.00 0.000)	Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0				
	Número de dados ≤ 0,2 mg/L	0				

	Saída do tratamento				
Coliformes Totais	Número de amostras analisadas	8			
Comormes Totals	N° de amostras com presença de coliformes totais	0			
	N° de amostras com ausência de coliformes totais	8			
	Saída do tratamento				
Escherichia coli	Número de amostras analisadas	8			
Escherichia con	N° de amostras com presença de Escherichia coli	0			
	N° de amostras com ausência de Escherichia coli	8			

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota2: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO								
Município / UF Irani				Data de preenchimento do relató			orio mensal	13/12/2018
Responsável pelas informações		BRUNA FAVASSA CHIOT			Cargo do responsável		Engenheira Química	
O sistema de distribuição recebeu água no mês ?		☐ Sim ☐ Não			o Sisagua, ao marcar o ícone "O sistema de distribuição não recebeu s", os campos para inserção de resultados dos ficam desabilitados.			
2.1 – Informações ro	elacionadas à i	nfraestrutura e às	condições	opera	ncionais (por lo	ocalidade atin	gida) – Núme	ero de eventos
SISTEMA DE DISTRIBUIÇÃO Número de eventos relacionados à infraestrutura e às condições operacionais (por localidade atingida)								
Área ou Local		Reparos na Rede	Intermitê	ncias 1	Faltas de Água	Reclamações o	de Gosto/Odor	Reclamações na Cor
Alto Irani		7	0	<u> </u>	0	(0	0
Centro		6	0		0	(0	0
Jardim Maria Rosa		0	0		0	(0	0
Loteamento Modesto Torteli		0	0		0	(0	0
Nelson Grisa		0	0		0	(0	0
Nossa Senhora Aparecida		0	0		0	(0	0
Santo Antonio		2	0		0	(0	0
Santo Marcon		1	0		0	(0	0
Zampieri		0	0		0	(0	0

	Sistema de distribuição						
(9)	Número de amostras analisadas	19					
Turbidez	Número de dados > 5,0 uT (13)	0					
	Número de dados 5,0 uT	19					
	Sistema de distribuição						
(9)	Número de amostras analisadas	7					
Cor	Número de dados > 15,0 uH (13)	0					
	Número de dados 15,0 uH	7					
(9,12)	Sistema de distribuição						
	Número de amostras analisadas	0					
Н	Número de dados > 9,5 (13)	0					
	Número de dados ≥6,0 e ≤9,5	0					
	Número de dados < 6,0 (13)	0					
	Sistema de distribuição						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7					
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0					
	Valor ótimo recomendado na Portaria GM/MS n°635/1975	0,8					
(9,10,12)	Número de amostras analisadas	0					
Fluoreto	Referência à Portaria GM/MS nº 2.914/2011						
	Número de dados > 1,5 mg/L (13)	0					
	Número de dados ≤1,5 mg/L	0					
	Referência à Portaria GM/MS nº 635/1975						
	Número de dados >[Máximo] mg/L (13)	0					
	Número de dados ≥[Mínimo] mg/L e ≤[Máximo] mg/L	0					
	Número de dados <[Mínimo] mg/L (13)	0					
	Sistema de distribuição						
	Número de amostras analisadas	19					
Desinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0					
(Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0					
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	19					
	Número de dados < 0,2 mg/L (13)	0					
Desinfecção (Cloro Residual	Número de amostras analisadas	0					
	Percentil 95% (mg/L)	0					
	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					

	Número de amostras ana	ılisadas		0			
(9,11)	Percentil 95% (mg/L)			0			
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 i	mg/L	0				
(Dioxido de Cioro)	Número de dados > 0,2 :	≤ 1,0 mg/L		0			
	Número de dados ≤ 0,2 r	ng/L		0			
		Sist	tema de distribuição				
(9)	Número de amostras ana			19			
Coliformes Totais	N° de amostras com pres	sença de coliformes	totais (13)	2			
	N° de amostras com aus			17			
		Sist	tema de distribuição				
Escherichia coli	Número de amostras ana	lisadas	19				
Escherichia coli	N° de amostras com pres	sença de Escherichia	0				
	N° de amostras com ausé	ència de Escherichia	coli	19			
	Sistema de distribuição						
Bactérias (9)	Número de amostras ana	lisadas		4			
heterotróficas	Número de dados >500	UFC/100mL ⁽¹³⁾	0				
	Número de dados <500	UFC/100mL	4				
		Amostra 1	Amostra 2	Amostra 3	Amostra 4		
	Data da coleta						
	Microcistina (μg/L)						
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)						
	Cilindroespermopsina (μg/L)						
	Anatoxina (µg/L)						
	Outra(s) (µg/L)						

⁽⁹⁾ Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

Parâmetro	Data da coleta	Endereço	Ações Corretivas:	Resultado
Coliformes Totais	07/11/2018	Rua Monge João Maria, 272 - Alto Irani - Irani	N° AS 08/11/2018 14:45 901546 Efetuado descarga de cavalete no local	Р
Coliformes Totais	23/11/2018	Rua Julia Silva, 518 - Centro - Irani	N° AS 24/11/2018 14:48 901546 efetuado descarga de cavalate no local	P

Nota₄: O número de linhas da tabela deve ser igual ao número de análises fora do padrão (máximo de 50 linhas para cada parâmetro).

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDEN	TIFICA	ÇÃO DO	O SAA					
UF SC M	unicípio	Irani			Refere	ência	de 01/12/2	2018 à 31/12/2018
Nome do SAA		Irani U	nidade I		Códig	o SAA (SisAgua)	S420780000002
Instituição Respo	nsável	CASA	N					
PARTE II - MO	NITORA	MENTO	O DA QUALIDA	DE DA ÁGUA (1-	TRAT. DE ÁGUA	E/OU 2	-SIST. DE I	DISTRIBUIÇÃO)
1 - TRATAMEN	TO DA Á	GUA						
Nome da ETA/U	га Ет	'A Irani	Unidade I	Data	de preenchimento	do relat	ório mensal	08/01/2019
Responsável pela	s informa	ıções	BRUNA FAVA	SSA CHIOT	Cargo do Respoi	nsável	Engenheira	a Química
A ETA operou no	o mês?		X Sim Não		isagua, ao marcar o nserção de resultado			
1.1 - PONTO DE	CAPTA	CÃO:	Superficial	Subterrâneo				
Nome: Indefinid		y. zov			Latitude: 0		Longitud	de: 0
				Amostra 1	Amostra 2	A	mostra 3	Amostra 4
Escherichia coli	i.e	Data da	coleta					
		E.coli/100mL						
Protozoários -				Amostra 1	Amostra 2	Ar	nostra 3	Amostra 4
		Data da coleta						
	Oocistos/L							
		3 00 isto 3 is		Amostra 1	Amostra 2	A	mostra 3	Amostra 4
Protozoários -		Data da	coleta		1111105014 2			733103114
Giardia spp.	<u> -</u>	Data da coleta						
		Cistos/L		A 1	A 2			A 4
	2)	—	1	Amostra 1	Amostra 2	A	Amostra 3	Amostra 4
Vírus entéricos	<u> </u>	Data da						
		UFP/10	0mL					
(3)	-			Amostra 1	Amostra 2	A	mostra 3	Amostra 4
Clorofila - a		Data da	coleta					
		UFP/10	0mL					
				Amostra 1	Amostra 2		Amostra 3	Amostra 4
				(Células/mL)	(Células/mL)	(0	Células/mL)	(Células/mL)
		Anabaena	Data da coleta					
(4		Aphanoca						
Cianobactérias	[Aphanoth	·*					
		Cylindros	permopsis sp.					
		Geitlerine	ema sp.					
		Jaaginem	·····					
		Lvngbva	sp.			1		

Microcystis sp.

	<u> </u>		Y	}	ĭ
	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	- Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
(5) Cianotoxinas	Data da coleta				
	Data da coleta Microcistina (μg/L)				
	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota₁: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

1.2 - ÁGUA TRAT	TADA				
	Pós-filtração ou Pré-desia	nfecção			
	Número de amostras analisadas	0			
	Percentil 95 (uT)	0			
Turbidez	Número de dados > 1,0 uT	0			
	Número de dados > 0,5 uT e ≤ 1,0 uT	0			
	Número de dados > 0,3 uT e ≤ 0,5 uT	0			
	Número de dados ≤ 0,3 uT	0			
	Saída do tratamento				
Turbidez	Número de amostras analisadas	39			
	Percentil 95 (uT)	0,43			
	Saída do tratamento				
	Número de amostras analisadas	4			
Cor	Percentil 95 (uT)	1			
	Número de dados > 15,0 uH	0			
	Número de dados ≤ 15,0 uH	4			

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento					
	Número de amostras analisadas	8				
рН	Número de dados > 9,0	0				
	Número de dados ≥6,0 e ≤9,0	8				
	Número de dados < 6,0	0				
	Saída do tratamento					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7				
	Máximo recomendado na Portaria GM /MS n° 635/1975	1,0				
	Valor ótimo recomendado na Portaria GM/MS nº 635/1975	0,8				
	Número de amostras analisadas	39				
Fluoreto ⁽⁶⁾	Percentil 95 (mg/L)	1,23				
riuoreio	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L	0				
	Número de dados ≤1,5 mg/L	39				
	Referência à Portaria GM/MS nº 635/1975					
	Número de dados >[Máximo] mg/L	5				
	Número de dados ≥[Mínimo] mg/L e ≤ [Máximo] mg/L	34				
	Número de dados <[Mínimo] mg/L	0				
	Saída do tratamento					
	Número de amostras analisadas	39				
(7)	Percentil 95 (mg/L)	1,2				
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0				
()	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0				
	Número de dados $\ge 0.2 \text{ e } \le 2.0 \text{ mg/L}$	39				
	Número de dados < 0,2mg/L	0				
	Número de amostras analisadas	0				
Desinfecção (7)	Percentil 95 (mg/L)	0				
(Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				
	Número de amostras analisadas	0				
(7)	Percentil 95 (mg/L)	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0				
(33 23 0.0.0)	Número de dados > 0,2 ≤ 1,0 mg/L	0				
	Número de dados ≤ 0,2 mg/L	0				

	Saída do tratamento				
Coliformes Totais	Número de amostras analisadas	8			
	N° de amostras com presença de coliformes totais	0			
	N° de amostras com ausência de coliformes totais	8			
	Saída do tratamento				
Escherichia coli	Número de amostras analisadas	8			
	N° de amostras com presença de Escherichia coli	0			
	N° de amostras com ausência de Escherichia coli	8			

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota2: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO								
Município / UF	Irani			Data	de preenchim	ento do relató	orio mensal	08/01/2019
Responsável pelas i	nformações	BRUNA FAVASS	SA CHIOT	1	Cargo do res	ponsável	Engenheira (Química
O sistema de distrib água no mês ?	uição recebeu	☐ Sim ☐ Não						tribuição não recebeu ficam desabilitados.
2.1 – Informações re	2.1 — Informações relacionadas à infraestrutura e às condições operacionais (por localidade atingida) — Número de eventos							
Númer	o de eventos r	SIST elacionados à infra			RIBUIÇÃO condições opera	acionais (por	localidade ati	ingida)
Área ou L	ocal	Reparos na Rede	Intermitê	ncias	Faltas de Água	Reclamações o	de Gosto/Odor	Reclamações na Cor
Zampie	ri	0	0	·	0	(0	0
Nossa Senhora A	Aparecida	3	0		0	(0	0
Nelson G	risa	0	0		0	(0	0
Santo Mar	con	4	0		0	(0	0
Santo Anto	onio	0	0		0	(0	0
Loteamento Mode	esto Torteli	0	0		0	(0	0
Alto Ira	ni	1	0		0	(0	0
Jardim Maria	a Rosa	0	0		0	(0	0
Centro		5	0		0	(0	0

	Sistema de distribuição				
(9)	Número de amostras analisadas	19			
Turbidez	Número de dados > 5,0 uT (13)	1			
	Número de dados 5,0 uT	18			
	Sistema de distribuição				
(9)	Número de amostras analisadas	7			
Cor	Número de dados > 15,0 uH (13)	0			
	Número de dados 15,0 uH	7			
	Sistema de distribuição				
(9,12)	Número de amostras analisadas	0			
PH	Número de dados > 9,5 (13)	0			
	Número de dados ≥6,0 e ≤9,5	0			
	Número de dados < 6,0 (13)	0			
	Sistema de distribuição				
	Média das temperaturas máximas diárias (°C)	24,0			
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7			
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0			
	Valor ótimo recomendado na Portaria GM/MS n°635/1975	0,8			
	Número de amostras analisadas	0			
(9,10,12) F luoreto	Referência à Portaria GM/MS nº 2.914/2011				
	Número de dados > 1,5 mg/L ⁽¹³⁾	0			
	Número de dados ≤1,5 mg/L	0			
	Referência à Portaria GM/MS nº 635/1975				
	Número de dados >[Máximo] mg/L (13)	0			
	Número de dados ≥[Mínimo] mg/L e ≤[Máximo] mg/L	0			
	Número de dados <[Mínimo] mg/L (13)	0			
	Sistema de distribuição				
	Número de amostras analisadas	19			
Pesinfecção ^(9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0			
Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0			
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	19			
	Número de dados < 0,2 mg/L (13)	0			
	Número de amostras analisadas	0			
(9,11)	Percentil 95% (mg/L)	0			
Desinfecção Cloro Residual	Número de dados > 4,0 mg/L	0			
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0			
	Número de dados < 2,0 mg/L	0			

	Número de amostras ana	lisadas		0			
(9,11)	Percentil 95% (mg/L)			0			
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 r	ng/L	0				
,	Número de dados > 0,2 :	≤ 1,0 mg/L		0			
	Número de dados ≤ 0,2 n	lúmero de dados ≤ 0,2 mg/L					
		Sist	ema de distribuição				
(9)	Número de amostras ana			19			
Coliformes Totais	N° de amostras com pres	ença de coliformes t	otais (13)	0			
	N° de amostras com ausé			19			
		Sist	ema de distribuição				
Escherichia coli	Número de amostras ana	lisadas	19				
Escherichia coli	N° de amostras com pres	ença de Escherichia	coli ⁽¹³⁾	0			
	N° de amostras com ausê	ència de Escherichia	coli	19			
	Sistema de distribuição						
Bactérias (9)	Número de amostras ana			4			
heterotróficas	Número de dados >500 U	JFC/100mL (13)		0			
	Número de dados <500 U	JFC/100mL		4			
		Amostra 1	Amostra 2	Amostra 3	Amostra 4		
	Data da coleta						
	Microcistina (μg/L)						
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)						
	Cilindroespermopsina (µg/L)						
	Anatoxina (µg/L)						
	Outra(s) (µg/L)						

⁽⁹⁾ Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 2: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

Parâmetro	Data da coleta	Endereço	Ações Corretivas:	Resultado
Turbidez	05/12/2018	Rua Monge João Maria, 272 - Alto Irani - Irani	N° AS 05/12/2018 15:01 901546 Efetuado descarga de cavalete no local	6,4

Nota₄: O número de linhas da tabela deve ser igual ao número de análises fora do padrão (máximo de 50 linhas para cada parâmetro).

RESUMO DOS RESULTADOS DA AMOSTRA Nº 181799/2018-0

Processo Comercial Nº 28818/2017-3

DADOS REFERENTES AO CLIENTE		
Empresa solicitante: Companhia Catarinense de Águas e Saneamento		
Endereço: Rua Emilio Blum, 83 - Predio - Centro - Florianópolis - SC - CEP: 88.020-010.		
Nome do Solicitante:	Ricardo Kazuo Furuya	

DADOS REFERENTES A AMOSTRA							
Identificação do Cliente:	Irani	ani Unidade I - SD - Rua São João, 53					
Amostra Rotulada como:	Água	gua Tratada					
Coletor:	Intere	essado					
Data da coleta:	27/06	7/06/2018 12:50:00					
Data da entrada no laboratón	rio:	29/06/2018 11:57	Data de Elaboração do RRA:	24/07/2018			

RESULTADOS PARA A AMOSTRA

Parâmetros	Unidade	LQ/ Faixa	Resultados analíticos	PRC N°5/2017 - VMP
Ácidos Haloacéticos Totais (P-2914)	mg/L	0,033	< 0,033	0,08
Cloraminas Totais	mg/L	0,01	0,04	4,0
2,4,6-Triclorofenol	mg/L	0,0001	< 0,0001	0,2
Trihalometanos Totais	mg/L	0,004	< 0,004	0,1

PRC N°5/2017 - VMP Portaria de Consolidação N°5/2017 do Ministério da Saúde

Notas "Mérieux NutriSciences" é nome fantasia, a razão social permanece Bioagri Ambiental Ltda. LQ/ Faixa = Limite de Quantificação ou Faixa de Trabalho, quando aplicável.

Informações do Cliente Cloro:0,93 mg/L

Abrangência

O(s) resultado(s) referem-se somente à(s) amostra(s) analisada(s).

Este Resumo de Resultados só pode ser reproduzido por inteiro e sem nenhuma alteração.

Dados de Origem

Resumo dos resultados da amostra nº 181799/2018-0 preparado com os dados dos relatórios de ensaio: 181799/2018-0 - Piracicaba, 181799/2018-0 - Rio Grande do Sul anexados a este documento.

Declaração de Conformidade

Comparando-se os resultados obtidos para a amostra com os valores estabelecidos pela Portaria de Consolidação N°5/2017 do Ministério da Saúde podemos observar que: O(s) parâmetro(s) satisfazem os limites permitidos.

Chave de Validação: a89e7dd7e76d6018ab36dbfac2034c53

S Gilceni Machado Controle de Qualidade CRQ 004481956 – 4" Região

Bulow Joseane Maria Bütow Gerente Técnica CRQ 09200516 - 9ª Região

RELATÓRIO DE ENSAIO Nº 181799/2018-0 - Piracicaba

Processo Comercial N° 28818/2017-3

DADOS REFERENTES AO CLIENTE						
Empresa solicitante:	Companhia Catarinense de Águas e Saneamento					
Endereço:	Rua Emilio Blum, 83 - Predio - Centro - Florianópolis - SC - CEP: 88.020-010.					
Nome do Solicitante:	Ricardo Kazuo Furuya					

DADOS REFERENTES A AMOSTRA								
Identificação do Cliente:	Irani	Irani Unidade I - SD - Rua São João, 53						
Amostra Rotulada como:	Água	gua Tratada						
Coletor:	Intere	essado						
Data da coleta:	27/06	27/06/2018 12:50:00						
Data da entrada no laboratón	rio:	29/06/2018 11:57	Data de Elaboração do RE:	24/07/2018				

RESULTADOS PARA A AMOSTRA

Parâmetros	CAS	Unidade	LQ/ Faixa	Resultados analíticos	Incerteza	PRC N°5/2017 - VMP	Data do Ensaio
Ácidos Haloacéticos Totais (P-2914)		mg/L	0,033	< 0,033	n.a.	0,08	05/07/2018 13:41
2,4,6-Triclorofenol	88-06-2	mg/L	0,0001	< 0,0001	n.a.	0,2	03/07/2018 22:19
Trihalometanos Totais		mg/L	0,004	< 0,004	n.a.	0,1	05/07/2018 00:50

CONTROLE DE QUALIDADE DO LABORATÓRIO

Controle de Qualidade - VOC - Água

Ensaios de Recuperação

Parâmetros	Quantidade Adicionada	Unidade	Resultado da Recuperação (%)	Faixa Aceitável de Recuperação (%
186787/2018-0 - Amostra Controle - VOC - Água				
1,1-Dicloroeteno	20	μg/L	95	70 - 130
Benzeno	20	μg/L	125	70 - 130
Tricloroeteno	20	μg/L	85	70 - 130
Tolueno	20	μg/L	105	70 - 130
Clorobenzeno	20	μg/L	125	70 - 130
urrogates 181799/2018-0 - Irani Unidade I - SD - Rua São João, 53 p-Bromofluorbenzeno	20	9%	79,4	70 - 130
Dibromofluorometano	20	%	104	70 - 130
186787/2018-0 - Amostra Controle - VOC - Água p-Bromofluorbenzeno	20	9/0	97.9	70 - 130
Dibromofluorometano	20	%	88,0	70 - 130
181799/2018-0 - Irani Unidade I - SD - Rua São João, 53 Dibromofluorometano	20	9%	121	70 - 130
p-Bromofluorbenzeno	20	%	91,6	70 - 130

Controle de Qualidade - Ácidos Haloacéticos

Ensaios de Recuperação

Parâmetros	Quantidade Adicionada	Unidade	Resultado da Recuperação (%)	Faixa Aceitável de Recuperação (%)
189310/2018-0 - Amostra Controle - HAA				
Ácido Cloroacético (MCAA)	0,007475	mg/L	110	50 - 150
Ácido Bromoacético (MBAA)	0,00504	mg/L	121	50 - 150
Ácido Dicloroacético (DCAA)	0,007465	mg/L	109	50 - 150
Ácido Tricloroacético (TCAA)	0,00249	mg/L	94	50 - 150
Ácido Dibromoacético (DBAA)	0,002465	mg/L	83	50 - 150
urrogates 181799/2018-0 - Irani Unidade I - SD - Rua São João, 53				
Ácido 2,3-Dibromopropiônico	0,0125	%	51	50 - 150
189310/2018-0 - Amostra Controle - HAA				
Ácido 2,3-Dibromopropiônico	0,0125	%	50	50 - 150

181799/2018-0 - Irani Unidade I - SD - Rua São João, 53

Ácido 2,3-Dibromopropiônico 0,0125 50 - 150

PRC N°5/2017 - VMP Portaria de Consolidação N°5/2017 do Ministério da Saúde

Notas "Mérieux NutriSciences" é nome fantasia, a razão social permanece Bioagri Ambiental Ltda.

LQ/ Faixa = Limite de Quantificação ou Faixa de Trabalho, quando aplicável. n.a. = Não Aplicável.

Incerteza = Incerteza expandida (U), que é baseada na incerteza padrão combinada, com um nível de confiança de 95% (k=2).

Laboratório cadastrado no IAP segundo número de documento IAPCCL 028

Abrangência

O(s) resultado(s) referem-se somente å(s) amostra(s) analisada(s). Este Relatório de Ensaio só pode ser reproduzido por inteiro e sem nenhuma alteração.

Plano de Amostragem
Plano de amostragem de responsabilidade do interessado.

Responsabilidade Técnica

Respiñas Influada e Techica
Os ensaios foram realizados na unidade da Bioagri Ambiental Ltda. - Matriz, situada na Rua Aljovil Martini, 177/201, Bairro Dois Córregos, Cep. 14420-833, Piracicaba/SP, registrada no CRQ 4ª
Região sob nº 16082-F e responsabilidade técnica do profissional Marcos Donizete Ceccatto, CRQ nº 04364387, 4ª.Região.

Referências Metodológicas

HAAs: EPA 552.3:2003 VOC: Determinação: EPA 8260 C: 2006 / Preparo: EPA 5021 A: 2014

SVOC: Determinação: EPA 8270 D:2014, POP PA 076 - Rev. 17 / Preparo: EPA 3510 C:1996, 3535 A:2007, 3510 C: 1996

Revisores

Débora Fernandes da Silva Luci Carla Gheleri Andrietta

Chave de Validação: a89e7dd7e76d6018ab36dbfac2034c53

Gilceni Machado Controle de Qualidade CRQ 004481956 - 4" Região

ane Maria Bülow Gerente Técnica CRQ 09200516 - 9ª Região

RELATÓRIO DE ENSAIO Nº 181799/2018-0 - Complemento

Processo Comercial Nº 28818/2017-3

DADOS REFERENTES AO CLIENTE						
Empresa solicitante:	Companhia Catarinense de Águas e Saneamento					
Endereço:	Rua Emilio Blum, 83 - Predio - Centro - Florianópolis - SC - CEP: 88.020-010 .					
Nome do Solicitante:	Ricardo Kazuo Furuya					

		DADOS REFER	RENTES A AMOSTRA				
Identificação do Cliente:	Irani	Irani Unidade I - SD - Rua São João, 53					
Amostra Rotulada como:	Água	gua Tratada					
Coletor:	Intere	ssado					
Data da coleta:	27/06	7/06/2018 12:50:00					
Data da entrada no laboratório: 29/06/2018 11:57 Data de Elaboração do RE: 24/07/2018							

RESULTADOS PARA A AMOSTRA

Parâmetros	CAS	Unidade	LQ/ Faixa	Resultados analíticos	PRC N°5/2017 - VMP	Data do Ensaio
Cloraminas Totais		mg/L	0,01	0,04	4,0	29/06/2018 18:00

PRC N°5/2017 - VMP Portaria de Consolidação N°5/2017 do Ministério da Saúde

Notas "Mérieux NutriSciences" é nome fantasia, a razão social permanece Bioagri Ambiental Ltda. LQ/ Faixa = Limite de Quantificação ou Faixa de Trabalho, quando aplicável.

O(s) resultado(s) referem-se somente à(s) amostra(s) analisada(s).

Este Relatório de Ensaio só pode ser reproduzido por inteiro e sem nenhuma alteração.

Plano de Amostragem Plano de amostragem de responsabilidade do interessado.

Referências Metodológicas

Cloro e Cloraminas: POP PA 010 - Rev.09

Revisores Marcos Donizete Ceccatto

Chave de Validação: a89e7dd7e76d6018ab36dbfac2034c53

Gillem mockodo 8 Gilceni Machado Controle de Qualidade CRQ 004481956 - 4º Região

ane Maria Bülow Gerente Técnica CRQ 09200516 - 9º Região

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDEN	NTIFICA	ÇÃO DO	O SAA								
UF SC M	Iunicípio	Irani					Referênci	a	de 01/03/20)19 à 31	1/03/2019
Nome do SAA		Irani U	nidade I				Código SA	AA (Si	isAgua)	S4207	780000002
Instituição Respo	onsável	CASA	N								
PARTE II - MO	NITORA	MENT(O DA QUALIDA	DE DA ÁG	UA (1-7	TRAT. DE	ÁGUA E/C	U 2-S	SIST. DE D	ISTRI	BUIÇÃO)
1 - TRATAMEN	TO DA Á	GUA									
Nome da ETA/U	TA ET	'A Irani	Unidade I		Data o	le preenchi	imento do r	elatóı	rio mensal	09/0	04/2019
Responsável pelas informações Bruna Favassa G				 Chiot	•	Cargo do	Responsáv	el	Engenheira	Químio	ca
A ETA operou no mês? X Sim Nã							narcar o ícon esultados do				o mês", os
1.1 - PONTO DI	E CAPTA	CÃO:	Superficial	Subter	râneo						
Nome: Indefinio		,				Latitude:	0		Longitud	e: 0	
				Amostr	a 1	Amos	tra 2	Am	ostra 3	F	Amostra 4
Escherichia coli	i	Data da	coleta								
	in the second se	E.coli/1	00mL								
(1)				Amostr	a 1	Amost	tra 2	Amo	ostra 3	A	mostra 4
Protozoários - Cryptosporidiun	n spp.	Data da coleta									
		Oocisto	s/L								
(1)				Amost	ra 1	Amos	stra 2	Am	ostra 3	A	Amostra 4
Protozoários - Giardia spp.		Data da coleta									
Sun unu sppr		Cistos/I									
				Amost	ra 1	Amos	stra 2	An	ostra 3		Amostra 4
Vírus entéricos	(2)	Data da	coleta								
		UFP/10	0mL								
				Amost	ra 1	Amos	stra 2	An	10stra 3		Amostra 4
Clorofila - a (3)	-	Data da	coleta								
		UFP/10	0mL								
				Amostr	a 1	Amost	tra 2	A	mostra 3		Amostra 4
				(Células	/mL)	(Célula	s/mL)	(Cé	lulas/mL)		(Células/mL)
		Anabaena	Data da coleta								
(ļ	Aphanoca									
Cianobactérias		Aphanoth									
			permopsis sp.								
		Geitlerine	ema sp.								
		Jaaginem									
		Lyngbya	sp.								

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
, n	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
				:	
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
Cianotoxinas (5)	Data da coleta				
• /	Data da coleta Microcistina (μg/L)				
• /	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota₁: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

1.2 - ÁGUA TRAT	TADA						
	Pós-filtração ou Pré-desinfecção						
	Número de amostras analisadas	0					
	Percentil 95 (uT)	0					
Turbidez	Número de dados > 1,0 uT	0					
	Número de dados > 0,5 uT e ≤ 1,0 uT	0					
	Número de dados $> 0.3 \text{ uT e} \le 0.5 \text{ uT}$	0					
	Número de dados ≤ 0,3 uT	0					
	Saída do tratamento						
Turbidez	Número de amostras analisadas	39					
	Percentil 95 (uT)	0,33					
	Saída do tratamento						
	Número de amostras analisadas	4					
Cor	Percentil 95 (uT)	2					
	Número de dados > 15,0 uH	0					
	Número de dados ≤ 15,0 uH	4					

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento							
	Número de amostras analisadas	8						
рН	Número de dados > 9,0	0						
	Número de dados ≥6,0 e ≤9,0	8						
	Número de dados < 6,0	0						
	Saída do tratamento							
	Média das temperaturas máximas diárias (°C)	24,0						
	Mínimo recomendado na Portaria GM/MS n° 635/1975	0,7						
	Máximo recomendado na Portaria GM /MS n° 635/1975	1,0						
	Valor ótimo recomendado na Portaria GM/MS nº 635/1975	0,8						
	Número de amostras analisadas	39						
Fluoreto ⁽⁶⁾	Percentil 95 (mg/L)	1,07						
riuoreio	Referência à Portaria GM/MS nº 2.914/2011							
	Número de dados > 1,5 mg/L	0						
	Número de dados ≤1,5 mg/L	39						
	Referência à Portaria GM/MS nº 635/1975							
	Número de dados >[Máximo] mg/L	2						
	Número de dados ≥[Mínimo] mg/L e ≤ [Máximo] mg/L	35						
	Número de dados <[Mínimo] mg/L	2						
	Saída do tratamento							
	Número de amostras analisadas	39						
(7)	Percentil 95 (mg/L)	1,5						
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0						
()	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0						
	Número de dados $\geq 0.2 \text{ e} \leq 2.0 \text{ mg/L}$	39						
	Número de dados < 0,2mg/L	0						
	Número de amostras analisadas	0						
Desinfecção (7)	Percentil 95 (mg/L)	0						
(Cloro Residual	Número de dados > 4,0 mg/L	0						
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0						
	Número de dados < 2,0 mg/L	0						
	Número de amostras analisadas	0						
(7)	Percentil 95 (mg/L)	0						
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0						
(33 23 0.0.0)	Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0						
	Número de dados ≤ 0,2 mg/L	0						

	Saída do tratamento						
Coliformes Totais	Número de amostras analisadas	8					
Comormes Totals	N° de amostras com presença de coliformes totais	0					
	N° de amostras com ausência de coliformes totais	8					
	Saída do tratamento						
Escherichia coli	Número de amostras analisadas	8					
Escherichia con	N° de amostras com presença de Escherichia coli	0					
	N° de amostras com ausência de Escherichia coli	8					

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota2: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO								
Município / UF Irani	Município / UF Irani				Data de preenchimento do relatório mensal			
Responsável pelas informações	Bruna Favassa Ch	iot		Cargo do res	ponsável	Engenheira Ç	Química	
O sistema de distribuição recebeu água no mês ?	☐ Sim ☐ Não						tribuição não recebeu icam desabilitados.	
2.1 – Informações relacionadas à i	nfraestrutura e às	condições	opera	cionais (por lo	ocalidade atin	gida) – Núme	ero de eventos	
Número de eventos r				RIBUIÇÃO ondições opera	acionais (por	localidade ati	ngida)	
Área ou Local	Reparos na Rede	Intermitên	cias 1	Faltas de Água	Reclamações o	de Gosto/Odor	Reclamações na Cor	
Zampieri	1	0		0	(0	0	
Nossa Senhora Aparecida	2	0		0	(0	0	
Nelson Grisa	0	0		0	(0	0	
Santo Marcon	2	0		0	(0	0	
Santo Antonio	1	0		0	(0	0	
Loteamento Modesto Torteli	0	0		0	(0	0	
Alto Irani	2	0		0	(0	0	
Jardim Maria Rosa	0	0		0	(0	0	
Centro	8	0		0		0	0	

	Sistema de distribuição						
(9)	Número de amostras analisadas	27					
Furbidez	Número de dados > 5,0 uT (13)	0					
	Número de dados 5,0 uT	27					
	Sistema de distribuição						
(9)	Número de amostras analisadas	10					
Cor	Número de dados > 15,0 uH (13)	0					
	Número de dados 15,0 uH	10					
	Sistema de distribuição						
(9,12)	Número de amostras analisadas	0					
PH	Número de dados > 9,5 (13)	0					
	Número de dados ≥6,0 e ≤9,5	0					
	Número de dados < 6,0 (13)	0					
	Sistema de distribuição						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7					
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0					
	Valor ótimo recomendado na Portaria GM/MS n°635/1975	0,8					
(0.40.40)	Número de amostras analisadas	0					
(9,10,12) F luoreto	Referência à Portaria GM/MS nº 2.914/2011						
	Número de dados > 1,5 mg/L (13)	0					
	Número de dados ≤1,5 mg/L	0					
	Referência à Portaria GM/MS nº 635/1975						
	Número de dados >[Máximo] mg/L (13)	0					
	Número de dados ≥[Mínimo] mg/L e ≤[Máximo] mg/L	0					
	Número de dados <[Mínimo] mg/L (13)	0					
	Sistema de distribuição						
	Número de amostras analisadas	27					
Desinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0					
Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0					
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	27					
	Número de dados < 0,2 mg/L ⁽¹³⁾	0					
	Número de amostras analisadas	0					
(9,11) Desinfecção	Percentil 95% (mg/L)	0					
Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					

	Número de amostras ana	llisadas		0				
(9,11)	Percentil 95% (mg/L)			0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 1	mg/L		0				
	Número de dados > 0,2 :	≤ 1,0 mg/L		0				
	Número de dados ≤ 0,2 n	ng/L		0				
		Sist	ema de distribuição					
Coliformes Totais	Número de amostras ana			23				
Comormes Totals	N° de amostras com pres	sença de coliformes t	otais (13)	0				
	N° de amostras com aus			23				
		Sist	ema de distribuição					
Escherichia coli	Número de amostras ana	lisadas	23					
Escherichia con	N° de amostras com pres	sença de Escherichia	coli ⁽¹³⁾	0				
	N° de amostras com ausé	ència de Escherichia	coli	23				
	Sistema de distribuição							
Bactérias (9)	Número de amostras ana	lisadas		9				
heterotróficas	Número de dados >500 l	UFC/100mL ⁽¹³⁾		0				
	Número de dados <500 l	UFC/100mL		9				
		Amostra 1	Amostra 2	Amostra 3	Amostra 4			
	Data da coleta							
	Microcistina (μg/L)							
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)							
	Cilindroespermopsina (µg/L)							
	Anatoxina (μg/L)							
	Outra(s) (µg/L)							

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDENTII	FICAÇÃ	ÃO DO) SAA									
UF SC Munic	cípio I1	rani					Referênci	a	de 01/01/20	/2019 à 31/01/2019		
Nome do SAA	It	rani Ur	nidade I				Código SA	AA (S	SisAgua)	S42	0780000002	
Instituição Responsá	vel C	CASAN	1									
PARTE II - MONIT	ORAM	ENTO	DA QUALIDA	DE DA ÁG	U A (1-T	RAT. DE	ÁGUA E/C)U 2-	SIST. DE D	ISTI	RIBUIÇÃO)	
1 - TRATAMENTO	DA ÁG	SUA										
Nome da ETA/UTA	ETA	Irani U	Jnidade I		Data d	le preenchi	mento do 1	elató	rio mensal	13	2/02/2019	
Responsável pelas in	formaçõ	ões	Bruna Favassa	Chiot		Cargo do	Responsáv	el	Engenheira	Quír	mica	
A ETA operou no mô	ês?		X Sim Não						ETA não o _l m desabilita		ı no mês", os	
1.1 - PONTO DE CA	APTACÂ	ÃO:	Superficial	X Subter	râneo							
Nome: Rua Osório o	-		rgas S/N (Poco ((3) - Centro		Latitude:			Longitud	٥.		
Nua Osorio C	ic Onvei	na vai	gas, 5/11 (1 0ç0 (3) - Centro		Latitude:			Longituu	e.		
				Amostra	ı 1	Amos	tra 2	Ar	nostra 3		Amostra 4	
Escherichia coli	D	ata da	coleta						5/01/2019			
		.coli/10	00mL						0,0			
40	ے.		, , , , , ,	Amostra	ı 1	Amost	ra 2	Am	iostra 3		Amostra 4	
Protozoários -		Data da coleta		1 11100001	-	12						
Cryptosporidium spp	".	ocistos										
	O.), L	Amostr	o 1	Amos	two 2	A =	nostra 3		Amostra 4	
Protozoários -			- 1 - 4 -	Amosti	a 1	Amos	ua 2	AI	iiusti a 3		Amosu a 4	
Giardia spp.		Data da coleta										
	Cı	istos/L					_					
(2)				Amost	ra 1	Amos	stra 2	Aı	mostra 3		Amostra 4	
Vírus entéricos	Da	ata da	coleta									
	U	FP/100)mL									
(2)				Amost	ra 1	Amos	stra 2	Aı	mostra 3		Amostra 4	
Clorofila - a	Da	ata da	coleta									
	U.	FP/100)mL									
				Amostra	1	Amost	ra 2		Amostra 3		Amostra 4	
				(Células/	mL)	(Célula	s/mL)	(C	élulas/mL)		(Células/mL)
	Δr	nabaena	Data da coleta									
(4)	ļ	phanocar										
Cianobactérias (4)		phanothe										
	ļ	·····	permopsis sp.									
	ļ	eitleriner										
	Ja	aginema	ı sp.									
	Lv	vngbva s	in.									

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
, n	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
				:	
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
Cianotoxinas (5)	Data da coleta				
• /	Data da coleta Microcistina (μg/L)				
• /	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota₁: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-des	infecção				
	Número de amostras analisadas	0				
	Percentil 95 (uT)	0				
Turbidez	Número de dados > 1,0 uT	0				
	Número de dados > 0,5 uT e ≤ 1,0 uT	0				
	Número de dados $> 0.3 \text{ uT e} \le 0.5 \text{ uT}$	0				
	Número de dados ≤ 0,3 uT	0				
	Saída do tratamento					
Turbidez	Número de amostras analisadas	39				
	Percentil 95 (uT)	0,58				
	Saída do tratamento					
	Número de amostras analisadas	4				
Cor	Percentil 95 (uT)	2				
	Número de dados > 15,0 uH	0				
	Número de dados ≤ 15,0 uH	4				

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento							
	Número de amostras analisadas	8						
рН	Número de dados > 9,0	0						
	Número de dados ≥6,0 e ≤9,0	8						
	Número de dados < 6,0	0						
	Saída do tratamento							
	Média das temperaturas máximas diárias (°C)	24,0						
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7						
	Máximo recomendado na Portaria GM /MS n° 635/1975	1,0						
	Valor ótimo recomendado na Portaria GM/MS nº 635/1975	0,8						
	Número de amostras analisadas	39						
Fluoreto ⁽⁶⁾	Percentil 95 (mg/L)	1,03						
riuoreio	Referência à Portaria GM/MS nº 2.914/2011							
	Número de dados > 1,5 mg/L	0						
	Número de dados ≤1,5 mg/L	39						
	Referência à Portaria GM/MS nº 635/1975							
	Número de dados >[Máximo] mg/L	2						
	Número de dados ≥ [Mínimo] mg/L e ≤ [Máximo] mg/L	35						
	Número de dados <[Mínimo] mg/L	2						
	Saída do tratamento							
	Número de amostras analisadas	39						
(7)	Percentil 95 (mg/L)	1,5						
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0						
,	Número de dados $> 2,0 \le 5,0 \text{ mg/L}$	0						
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	39						
	Número de dados < 0,2mg/L	0						
	Número de amostras analisadas	0						
Desinfecção (7)	Percentil 95 (mg/L)	0						
(Cloro Residual	Número de dados > 4,0 mg/L	0						
Combinado)	Número de dados > 2,0 ≤ 4,0 mg/L	0						
	Número de dados < 2,0 mg/L	0						
	Número de amostras analisadas	0						
(7)	Percentil 95 (mg/L)	0						
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0						
,	Número de dados > 0,2 ≤ 1,0 mg/L	0						
	Número de dados ≤ 0,2 mg/L	0						

	Saída do tratamento						
C-11f T-4-1-	Número de amostras analisadas	8					
Coliformes Totais	N° de amostras com presença de coliformes totais	0					
	N° de amostras com ausência de coliformes totais	8					
	Saída do tratamento						
Escherichia coli	Número de amostras analisadas	8					
Escherichia con	N° de amostras com presença de Escherichia coli	0					
	N° de amostras com ausência de Escherichia coli	8					

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota2: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO									
Município / UF	Município / UF Irani				Data de preenchimento do relatório mensal 12/02/2019				
Responsável pelas i		Bruna Favassa Ch	iot		Cargo do res	sponsável	Engenheira (Química	
O sistema de distrib água no mês ?	uição recebeu	X Sim Não						tribuição não recebeu icam desabilitados.	
2.1 — Informações relacionadas à infraestrutura e às condições operacionais (por localidade atingida) — Número de eventos							ero de eventos		
Númer	o de eventos r	SIST elacionados à infra			RIBUIÇÃO condições opera	acionais (por	localidade ati	ngida)	
Área ou L	ocal	Reparos na Rede	Intermitê	ncias	Faltas de Água	Reclamações o	de Gosto/Odor	Reclamações na Cor	
Zampie	ri	0	0		0	()	0	
Nossa Senhora A	Aparecida	2	0		0	()	0	
Nelson G	risa	0	0		0	()	0	
Santo Mar	con	1	0		0	()	0	
Santo Anto	onio	0	0		0	()	0	
Loteamento Mod	esto Torteli	0	0		0	()	0	
Alto Ira	ni	2	0		0	()	0	
Jardim Maria	a Rosa	0	0		0	()	0	
Centro		2	0		0	()	0	

	Sistema de distribuição						
(9)	Número de amostras analisadas	18					
Turbidez	Número de dados > 5,0 uT (13)	0					
	Número de dados 5,0 uT	18					
	Sistema de distribuição						
(9)	Número de amostras analisadas	6					
Cor	Número de dados > 15,0 uH (13)	0					
	Número de dados 15,0 uH	6					
	Sistema de distribuição						
(0.12)	Número de amostras analisadas	0					
(9,12) PH	Número de dados > 9,5 (13)	0					
	Número de dados ≥ 6,0 e ≤ 9,5	0					
	Número de dados < 6,0 (13)	0					
	Sistema de distribuição						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado na Portaria GM/MS n° 635/1975	0,7					
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0					
	Valor ótimo recomendado na Portaria GM/MS n°635/1975	0,8					
	Número de amostras analisadas	0					
(9,10,12) F luoreto	Referência à Portaria GM/MS nº 2.914/2011						
	Número de dados > 1,5 mg/L ⁽¹³⁾	0					
	Número de dados ≤1,5 mg/L	0					
	Referência à Portaria GM/MS nº 635/1975						
	Número de dados >[Máximo] mg/L (13)	0					
	Número de dados ≥[Mínimo] mg/L e ≤[Máximo] mg/L	0					
	Número de dados <[Mínimo] mg/L (13)	0					
	Sistema de distribuição						
	Número de amostras analisadas	18					
esinfecção ^(9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0					
Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0					
	Número de dados ≥ $0.2 \text{ e} \le 2.0 \text{ mg/L}$	18					
	Número de dados < 0,2 mg/L (13)	0					
	Número de amostras analisadas	0					
(9,11)	Percentil 95% (mg/L)	0					
Desinfecção Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados > $2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					

	Número de amostras ana	lisadas		0				
(9,11)	Percentil 95% (mg/L)			0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 r	ng/L		0				
,	Número de dados > 0,2 :	≤ 1,0 mg/L		0				
	Número de dados ≤ 0,2 n		0					
		Sist	ema de distribuição					
Coliformes Totais	Número de amostras ana			18				
Comormes Totals	N° de amostras com pres	ença de coliformes t	otais (13)	0				
	N° de amostras com ausé			18				
		Sist	ema de distribuição					
Escherichia coli	Número de amostras ana	lisadas		18				
Escherichia coli	N° de amostras com pres	ença de Escherichia	coli ⁽¹³⁾	0				
	N° de amostras com ausê	ència de Escherichia	coli	18				
	Sistema de distribuição							
Bactérias (9)	Número de amostras ana	lisadas		4				
heterotróficas	Número de dados >500 U	JFC/100mL ⁽¹³⁾		0				
	Número de dados <500 U	JFC/100mL		4				
		Amostra 1	Amostra 2	Amostra 3	Amostra 4			
	Data da coleta							
	Microcistina (μg/L)							
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)							
	Cilindroespermopsina (µg/L)							
	Anatoxina (µg/L)							
	Outra(s) (μg/L)							

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PAR	TE I - IL	DENTIFICA	ÇAO DO	O SAA						
UF	SC	Município					Referência	de 01/02/2	019 à 28/02/2019	
Nome	e do SAA	\	Irani U	nidade I			Código SAA (SisAgua) S4207			S420780000002
Instit	uição Re	esponsável	CASA	N						
PAR'	TE II - N	MONITORA	MENT(O DA QUALIDA	DE DA ÁG	UA (1-T	TRAT. DE A	GUA E/OU	2-SIST. DE I	DISTRIBUIÇÃO)
1 - T	RATAM	ENTO DA A	ÁGUA							
Nome	e da ETA	A/UTA ET	A Irani	Unidade I		Data d	de preenchi	mento do rel	atório mensal	13/03/2019
Resp	onsável p	oelas inform	ações	Bruna Favassa	 Chiot		Cargo do	Responsável	Engenheira	a Química
		u no mês?	,	X Sim Não			sagua, ao m	arcar o ícone		operou no mês", os ados.
11_	PONTO	DE CAPTA	CÃO:	Superficial	X Subter	râneo	-			
			-	01) - Centro	_		Latitude:		Longitu	de:
					Amostra	a 1	Amost	ra 2	Amostra 3	Amostra 4
Esch	herichia (coli	Data da coleta		06/02/20)19	08/02/2	2019		
			E.coli/100mL		0,0		0,0			
					Amostr	a 1	Amost		Amostra 3	Amostra 4
	ozoários		Data da coleta							
Cryp	ptosporid	lium spp.	Oocistos/L							
			Oocistos/L		Amosti	.a 1	Amostra 2		Amostra 3	Amostra 4
Prot	ozoários	(1) -	D 1 1		Aiiiusu	a I	Aillosi	I a Z	Amostra 5	Amostra 4
Giar	dia spp.		Data da coleta							
			Cistos/L							
		(2)			Amost	ra 1	Amos	tra 2	Amostra 3	Amostra 4
Víru	ıs entéric	eos	Data da	coleta						
			UFP/10	0mL						
		(3)			Amost	ra 1	Amos	tra 2	Amostra 3	Amostra 4
Clo	rofila - a	(5)	Data da	coleta						
			UFP/10	0mL						
					Amostra		Amostı		Amostra 3	Amostra 4
					(Células/	mL)	(Células	/mL)	(Células/mL)	(Células/mL)
			Anabaena	Data da coleta						
		(4)	Anabaena							
Cian	obactéri		Aphanoth							
				spermopsis sp.						
			Geitlerine							
			Jaaginem	a sp.						
			Lynghya	en						

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
, n	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
				:	
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
Cianotoxinas (5)	Data da coleta				
• /	Data da coleta Microcistina (μg/L)				
• /	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota₁: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

1.2 - ÁGUA TRAT	TADA						
	Pós-filtração ou Pré-desinfecção						
	Número de amostras analisadas	0					
	Percentil 95 (uT)	0					
Turbidez	Número de dados > 1,0 uT	0					
	Número de dados > 0,5 uT e ≤ 1,0 uT	0					
	Número de dados $> 0.3 \text{ uT e} \le 0.5 \text{ uT}$	0					
	Número de dados ≤ 0,3 uT	0					
	Saída do tratamento						
Turbidez	Número de amostras analisadas	36					
	Percentil 95 (uT)	0,26					
	Saída do tratamento						
	Número de amostras analisadas	4					
Cor	Percentil 95 (uT)	2					
	Número de dados > 15,0 uH	0					
	Número de dados ≤ 15,0 uH	4					

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento							
	Número de amostras analisadas	8						
рН	Número de dados > 9,0	0						
	Número de dados ≥6,0 e ≤9,0	8						
	Número de dados < 6,0	0						
	Saída do tratamento							
	Média das temperaturas máximas diárias (°C)	24,0						
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7						
	Máximo recomendado na Portaria GM /MS n° 635/1975	1,0						
	Valor ótimo recomendado na Portaria GM/MS nº 635/1975	0,8						
	Número de amostras analisadas	36						
Fluoreto (6)	Percentil 95 (mg/L)	0,97						
riuoreto	Referência à Portaria GM/MS nº 2.914/2011							
	Número de dados > 1,5 mg/L	0						
	Número de dados ≤1,5 mg/L	36						
	Referência à Portaria GM/MS nº 635/1975							
	Número de dados >[Máximo] mg/L	1						
	Número de dados ≥ [Mínimo] mg/L e ≤ [Máximo] mg/L	21						
	Número de dados <[Mínimo] mg/L	14						
	Saída do tratamento							
	Número de amostras analisadas	36						
(7)	Percentil 95 (mg/L)	1,5						
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0						
,	Número de dados $> 2,0 \le 5,0 \text{ mg/L}$	0						
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	36						
	Número de dados < 0,2mg/L	0						
	Número de amostras analisadas	0						
Desinfecção (7)	Percentil 95 (mg/L)	0						
(Cloro Residual	Número de dados > 4,0 mg/L	0						
Combinado)	Número de dados > 2,0 ≤ 4,0 mg/L	0						
	Número de dados < 2,0 mg/L	0						
	Número de amostras analisadas	0						
(7)	Percentil 95 (mg/L)	0						
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0						
,	Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0						
	Número de dados ≤ 0,2 mg/L	0						

	Saída do tratamento							
Coliformes Totais	Número de amostras analisadas	8						
Comormes Totals	N° de amostras com presença de coliformes totais	0						
	N° de amostras com ausência de coliformes totais	8						
	Saída do tratamento							
Escherichia coli	Número de amostras analisadas	8						
Escherichia con	N° de amostras com presença de Escherichia coli	0						
	N° de amostras com ausência de Escherichia coli	8						

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota2: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE D	ISTRIBUIÇÃ	0						
Município / UF	Município / UF Irani				de preenchim	ento do relató	orio mensal	13/03/2019
Responsável pelas i		Bruna Favassa Ch	iot		Cargo do res	ponsável	Engenheira (Química
O sistema de distrib água no mês ?	uição recebeu	X Sim Não						tribuição não recebeu ficam desabilitados.
2.1 – Informações r	elacionadas à i	nfraestrutura e às	condições	oper	acionais (por lo	ocalidade atin	gida) – Númo	ero de eventos
Númer	o de eventos r	SIST elacionados à infra			RIBUIÇÃO condições opera	acionais (por	localidade ati	ingida)
Área ou L	ocal	Reparos na Rede	Intermitê	ncias	Faltas de Água	Reclamações o	de Gosto/Odor	Reclamações na Cor
Zampie	ri	0	0		0	(0	0
Nossa Senhora	Aparecida	3	0		0	(0	0
Nelson G	risa	4	0		0	(0	0
Santo Mar	con	0	0		0	(0	0
Santo Anto	onio	1	0		0	(0	0
Loteamento Mod	esto Torteli	0	0		0	(0	0
Alto Irani		3	0		0	(0	0
Jardim Maria Rosa		0	0		0	(0	0
Centro		4	0		0	(0	0

	TO DA QUALIDADE DA ÁGUA TRATADA Sistema de distribuição						
(0)	Número de amostras analisadas	23					
Turbidez (9)	Número de dados > 5,0 uT (13)	1					
	Número de dados 5,0 uT	22					
	Sistema de distribuição						
(0)	Número de amostras analisadas	10					
Cor (9)	Número de dados > 15,0 uH (13)	0					
	Número de dados 15,0 uH	10					
	Sistema de distribuição	10					
	Número de amostras analisadas	0					
(9,12) PH	Número de amostras anansadas Número de dados > 9,5 (13)	0					
111							
	Número de dados $\geq 6,0$ e $\leq 9,5$ Número de dados $< 6,0$ ⁽¹³⁾	0 0					
	Sistema de distribuição	V					
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7					
	Máximo recomendado na Portaria GM /MS n° 635/1975	1,0					
	Valor ótimo recomendado na Portaria GM/MS n°635/1975	0,8					
	Número de amostras analisadas	0					
(9,10,12) Fluoreto	Referência à Portaria GM/MS nº 2.914/2011						
Pluoreto	Número de dados $> 1,5 \text{ mg/L}^{(13)}$	0					
	Número de dados ≤1,5 mg/L	0					
	Referência à Portaria GM/MS nº 635/1975						
	Número de dados >[Máximo] mg/L (13)	0					
	Número de dados ≥ [Mínimo] mg/L e ≤ [Máximo] mg/L	0					
	Número de dados <[Mínimo] mg/L (13)	0					
	Sistema de distribuição						
	Número de amostras analisadas	23					
Desinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0					
(Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0					
	Número de dados ≥ $0.2 \text{ e} \le 2.0 \text{ mg/L}$	23					
	Número de dados < 0,2 mg/L (13)	0					
	Número de amostras analisadas	0					
(9,11)	Percentil 95% (mg/L)	0					
Desinfecção (Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					

	Número de amostras ana	lisadas		0				
(9,11)	Percentil 95% (mg/L)			0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 1	ng/L		0				
,	Número de dados > 0,2 :	≤ 1,0 mg/L		0				
	Número de dados ≤ 0,2 n	ng/L		0				
		Sist	ema de distribuição					
Coliformes Totais	Número de amostras ana			23				
Comormes Totals	N° de amostras com pres	ença de coliformes t	totais (13)	1				
	N° de amostras com aus			22				
		Sist	ema de distribuição					
Escherichia coli	Número de amostras ana	lisadas		23				
Escherichia coli	N° de amostras com pres	ença de Escherichia	coli ⁽¹³⁾	0				
	N° de amostras com ausé	ència de Escherichia	coli	23				
	Sistema de distribuição							
Bactérias (9)	Número de amostras ana	lisadas		5				
heterotróficas	Número de dados >500 l	UFC/100mL ⁽¹³⁾		0				
	Número de dados <500 l	UFC/100mL		5				
		Amostra 1	Amostra 2	Amostra 3	Amostra 4			
	Data da coleta							
	Microcistina (μg/L)							
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)							
	Cilindroespermopsina (µg/L)							
	Anatoxina (µg/L)							
	Outra(s) (µg/L)							

⁽⁹⁾ Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

Parâmetro	Data da coleta	Endereço	Ações Corretivas:	Resultado
Turbidez	19/02/2019	Rua São João, 53 - Centro - Irani	Nº AS 19/02/2019 14:37 901546 efetuado descarga de cavalete na local.	8,5
Coliformes Totais	27/02/2019	Rua Osório de Oliveira Vargas, 340 - Centro - Irani	Nº AS 28/02/2019 14:49 901546 efetuado descarga de cavalete no local	Р

Nota₄: O número de linhas da tabela deve ser igual ao número de análises fora do padrão (máximo de 50 linhas para cada parâmetro).

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PAR	TE I - II	DENTIFICA	ÇAO D	O SAA						
UF	SC	Município	Irani				Referência	de 01/04/20	019 à 30/04/2019	
Nome	e do SAA	1	Irani U	Inidade I	Código SAA (SisAgua)			(SisAgua)	S420780000002	
Instit	tuição Ro	esponsável	CASA	N						
PAR	TE II - N	MONITORA	MENT	O DA QUALIDA	DE DA ÁG	UA (1-7	TRAT. DE	ÁGUA E/OU	2-SIST. DE D	ISTRIBUIÇÃO)
1 - T	RATAM	IENTO DA A	ÁGUA							
Nome	e da ETA	A/UTA ET	A Irani	Unidade I		Data o	le preenchi	mento do rel	atório mensal	13/05/2019
Resp	onsável i	pelas inform	acões	Bruna Favassa	 Chiot		Cargo do	Responsável	Engenheira	Ouímica
		u no mês?		X Sim Não	Atençã		sagua, ao n	narcar o ícone	_	perou no mês", os
11_	PONTO	DE CAPTA	CÃO:	Superficial	Subter	-				
	e: Indef		ÇHO.	— :	_		Latitude:	0	Longitud	e: 0
								······································		
					Amostr	a 1	Amos	tra 2	Amostra 3	Amostra 4
Esci	herichia	coli	Data da coleta							
			E.coli/100mL							
		(1)			Amostra 1		Amost	ra 2	Amostra 3	Amostra 4
	tozoários ntosporio	- lium spp.	Data da coleta							
Cryp	piosporiu	иит эрр.	Oocistos/L							
		(1)			Amost	ra 1	Amos	tra 2	Amostra 3	Amostra 4
	tozoários	'-	Data da	coleta						
Giai	rdia spp.		Cistos/I	-						
			CISTOS/ L		Amost	Amostra 1 Am		stra 2	Amostra 3	Amostra 4
Víri	ıs entéric	(2)	Data da	coleta	7 111030	141	711110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		7 THOSEI A -
VIII	is chick it	cos	UFP/10							
			O1 F/10	WIIIL	<u> </u>	4				
CI.	CO 3	(3)	D / 1	1 .	Amost	ra I	Amo	stra 2	Amostra 3	Amostra 4
Clo	rofila - a		Data da							
			UFP/10	00mL				_		
					Amostr (Células		Amost (Célula		Amostra 3 (Células/mL)	Amostra 4 (Células/mL)
				Data da coleta	(Ceruius)		(Ceruia	3/ III 2)	(Celulus/IIII)	(Celulas/IIII)
			Anabaena							
	(4)		Aphanoca							
Ciar	nobactér		Aphanoth							
			Cylindros	spermopsis sp.						
			Geitlerine							
			Jaaginem							
			Lynghya	en				1		1

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
, n	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
				:	
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
Cianotoxinas (5)	Data da coleta				
• /	Data da coleta Microcistina (μg/L)				
• /	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota₁: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-desir	Pós-filtração ou Pré-desinfecção						
	Número de amostras analisadas	0						
	Percentil 95 (uT)	0						
Turbidez	Número de dados > 1,0 uT	0						
	Número de dados > 0,5 uT e ≤ 1,0 uT	0						
	Número de dados $> 0.3 \text{ uT e} \le 0.5 \text{ uT}$	0						
	Número de dados ≤ 0,3 uT	0						
	Saída do tratament	Saída do tratamento						
Turbidez	Número de amostras analisadas	38						
	Percentil 95 (uT)	0,5						
	Saída do tratamento							
	Número de amostras analisadas	4						
Cor	Percentil 95 (uT)	4						
	Número de dados > 15,0 uH	0						
	Número de dados ≤ 15,0 uH	4						

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento								
	Número de amostras analisadas	8							
рН	Número de dados > 9,0	0							
•	Número de dados ≥6,0 e ≤9,0	8							
	Número de dados < 6,0	0							
	Saída do tratamento								
	Média das temperaturas máximas diárias (°C)	24,0							
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7							
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0							
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8							
	Número de amostras analisadas	38							
Fluoreto ⁽⁶⁾	Percentil 95 (mg/L)	1,22							
riuoreio	Referência à Portaria GM/MS nº 2.914/2011								
	Número de dados > 1,5 mg/L	0							
	Número de dados ≤1,5 mg/L	38							
	Referência à Nota Técnica DIVS 002/2017								
	Número de dados > 1,0 mg/L	3							
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	34							
	Número de dados < 0,7 mg/L	1							
	Saída do tratamento								
	Número de amostras analisadas	38							
(7)	Percentil 95 (mg/L)	1,5							
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0							
,	Número de dados $> 2,0 \le 5,0 \text{ mg/L}$	0							
	Número de dados $\geq 0.2 \text{ e } \leq 2.0 \text{ mg/L}$	38							
	Número de dados < 0,2mg/L	0							
	Número de amostras analisadas	0							
Desinfecção (7)	Percentil 95 (mg/L)	0							
(Cloro Residual	Número de dados > 4,0 mg/L	0							
Combinado)	Número de dados > 2,0 ≤ 4,0 mg/L	0							
	Número de dados < 2,0 mg/L	0							
	Número de amostras analisadas	0							
(7)	Percentil 95 (mg/L)	0							
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0							
(Número de dados > 0,2 ≤ 1,0 mg/L	0							
	Número de dados ≤ 0,2 mg/L	0							

	Saída do tratamento							
	Número de amostras analisadas	8						
Coliformes Totais	N° de amostras com presença de coliformes totais	0						
	N° de amostras com ausência de coliformes totais	8						
	Saída do tratamento							
Eachariahia aali	Número de amostras analisadas	8						
Escherichia coli	N° de amostras com presença de Escherichia coli	0						
	N° de amostras com ausência de Escherichia coli	8						

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota2: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO									
Município / UF	Irani				Data de preenchimento do relatório mensal 13/05/2019				
Responsável pelas i	nformações	Bruna Favassa Ch	iot		Cargo do responsável Engenheira Q			Química	
O sistema de distrib água no mês ?	uição recebeu	Sim Não		enção: No Sisagua, ao marcar o ícone "O sistema de distribuição n ua no mês", os campos para inserção de resultados dos ficam desab					
2.1 – Informações ro	elacionadas à i	nfraestrutura e às	condições	opera	acionais (por lo	ocalidade atin	gida) – Núme	ero de eventos	
Númer	o de eventos r				RIBUIÇÃO ondições opera	acionais (por	localidade ati	ngida)	
Área ou L	ocal	Reparos na Rede	Intermitê	ıcias	Faltas de Água	sponsável Engenheira C ar o ícone "O sistema de dis		Reclamações na Cor	
Zampie	ri	0	0	·	0	()	0	
Nossa Senhora A	Aparecida	6	0		0	0		0	
Nelson G	risa	0	0		0	()	0	
Santo Mar	con	0	0		0	()	0	
Santo Anto	onio	3	0		0	()	0	
Loteamento Mode	esto Torteli	0	0		0	()	0	
Alto Ira	ni	1	0		0)	0	
Jardim Maria Rosa		0	0		0	()	0	
Centro		2	0		0	()	0	

	Sistema de distribuição						
Turbidez (9)	Número de amostras analisadas	23					
	Número de dados > 5,0 uT (13)	1					
	Número de dados 5,0 uT	22					
	Sistema de distribuição						
(9)	Número de amostras analisadas	10					
Cor	Número de dados > 15,0 uH (13)	0					
	Número de dados 15,0 uH	10					
	Sistema de distribuição						
(9,12)	Número de amostras analisadas	0					
PH	Número de dados > 9,5 (13)	0					
	Número de dados ≥ 6,0 e ≤ 9,5	0					
	Número de dados < 6,0 (13)	0					
	Sistema de distribuição						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7					
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0					
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8					
	Número de amostras analisadas	0					
(9,10,12) F luoreto	Referência à Portaria GM/MS nº 2.914/2011						
	Número de dados > 1,5 mg/L (13)	0					
	Número de dados ≤1,5 mg/L	0					
	Referência à Nota Técnica DIVS 002/2017						
	Número de dados > 1,0 mg/L (13)	0					
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	0					
	Número de dados < 0,7 mg/L (13)	0					
	Sistema de distribuição						
	Número de amostras analisadas	23					
Pesinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0					
Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0					
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	23					
	Número de dados < 0,2 mg/L (13)	0					
	Número de amostras analisadas	0					
(9,11)	Percentil 95% (mg/L)	0					
Desinfecção Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					

	Número de amostras ana	lisadas		0			
(9,11) Desinfecção (Dióxido de Cloro)	Percentil 95% (mg/L)			0			
	Número de dados > 1,0 1	ng/L		0			
,	Número de dados > 0,2 :	≤ 1,0 mg/L		0			
	Número de dados ≤ 0,2 n	ng/L		0			
		Sist	ema de distribuição				
Coliformes Totais	Número de amostras ana			23			
Comormes Totals	N° de amostras com pres	ença de coliformes t	totais (13)	1			
	N° de amostras com aus			22			
		Sist	ema de distribuição				
Escherichia coli	Número de amostras ana	lisadas		23			
Escherichia coli	N° de amostras com pres	ença de Escherichia	coli ⁽¹³⁾	0			
	N° de amostras com ausé	ència de Escherichia	coli	23			
	Sistema de distribuição						
Bactérias (9)	Número de amostras ana	lisadas		5			
heterotróficas	Número de dados >500 l	UFC/100mL ⁽¹³⁾		0			
	Número de dados <500 l	UFC/100mL		5			
		Amostra 1	Amostra 2	Amostra 3	Amostra 4		
	Data da coleta						
Cianotoxinas (9)	Microcistina (μg/L)						
	Saxitoxina (μg/L) (g equivalente STX/L)						
	Cilindroespermopsina (µg/L)						
	Anatoxina (µg/L)						
	Outra(s) (µg/L)						

⁽⁹⁾ Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

Parâmetro	Data da coleta	Endereço	Ações Corretivas:	Resultado
Turbidez	02/04/2019	Rua São João, 53 - Centro - Irani	N° AS 02/04/2019 15:26 901546 Efetuado descarga no cavalete	6,2
Coliformes Totais	16/04/2019	Rua Gov. Ivo Silveira, 430 - Centro - Irani	N° AS 17/04/2019 15:13 901546 Efetuado descarga de cavalete no local	P

Nota₄: O número de linhas da tabela deve ser igual ao número de análises fora do padrão (máximo de 50 linhas para cada parâmetro).

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDENTIFICA	ÇÃO D	O SAA							
UF SC Município	Irani		Referência de 01/05/2019 à 31/05/2019			019 à 31/05/2019			
Nome do SAA	Irani U	Inidade I				Código S	SAA (S	SisAgua)	S420780000002
Instituição Responsável	N								
PARTE II - MONITORA	MENT	O DA QUALIDA	DE DA ÁGU	J A (1-T	TRAT. DE	ÁGUA E/	OU 2-	SIST. DE D	ISTRIBUIÇÃO)
1 - TRATAMENTO DA	ÁGUA								
Nome da ETA/UTA ETA Irani Unidade I Data de preenchimento do relatório mensal 13/06/2019									
Responsável pelas inform	acões	Bruna Favassa	Chiot		Cargo do	Responsá	ivel	Engenheira	Ouímica
A ETA operou no mês?	,	X Sim Não			sagua, ao m	narcar o íc	one "A		perou no mês", os
1.1 - PONTO DE CAPTA	CÃO:	Superficial	X Subtern	âneo	-				
	•				T 1	27.021		T	51 001044
Nome: Rua Osório de Ol	iveira Va	irgas, S/N (Poço (13) - Centro		Latitude:	-27,021	667	Longitud	e: -51,901944
			Amostra	ı 1	Amos			nostra 3	Amostra 4
Escherichia coli	Data da	ı coleta			13/05/2019		15	5/05/2019	
	E.coli/1	.00mL			0,0	0		0,0	
(1)			Amostra	ı 1	Amostra 2		Am	nostra 3	Amostra 4
Protozoários - Cryptosporidium spp.	Data da	ı coleta							
Cryptosportation spp.	Oocisto	Oocistos/L							
(1)			Amostr	a 1	Amostra 2		Ar	nostra 3	Amostra 4
Protozoários -	Data da	ı coleta							
Giardia spp.	Cistos/I								
			Amosti	ra 1	Amo	stra 2	A 1	mostra 3	Amostra 4
Vírus entéricos	Data da coleta								
v II us circultos									
	UFP/100mL								
(3)			Amosti	'a I	Amo	stra 2	Aı	mostra 3	Amostra 4
Clorofila - a	Data da								
	UFP/10	00mL							
			Amostra (Células/1		Amost (Célula			Amostra 3 Células/mL)	Amostra 4 (Células/mL)
		Data da coleta	(Celulas/1		(Ceruia	3/1112)			(Cerulas/IIIE)
	Anabaena								
(4)	Aphanoca	apsa sp.							
Cianobactérias	Aphanoth	nece sp.							
	·····	spermopsis sp.							
	Geitlerine								
	Jaaginem								
	Lyngbya	sp.							

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
(0)	Raphidiopsis sp.				
(4)	Synechococcus sp.				
Cianobactérias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	Total de Cianobactérias	-	-	-	-
		Amostra 1	Amostra 2	Amostra 3	Amostra 4
	Data da coleta				
(5)	Microcistina (μg/L)				
Cianotoxinas				1	}
Cianotoamas	Saxitoxina (µg/L)				
CharlottoAmas	Saxitoxina (μg/L) Cilindroespermopsina (μg/L)				
Ciunotvainus					

Nota 1: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-desii	A Pós-filtração ou Pré-desinfecção					
	Número de amostras analisadas	0					
	Percentil 95 (uT)	0					
Turbidez	Número de dados > 1,0 uT	0					
	Número de dados > 0,5 uT e ≤ 1,0 uT	0					
	Número de dados > 0,3 uT e ≤ 0,5 uT	0					
	Número de dados ≤ 0,3 uT	0					
	Saída do tratamento						
Turbidez	Número de amostras analisadas	39					
	Percentil 95 (uT)	0,5					
	Saída do tratamento						
	Número de amostras analisadas	4					
Cor	Percentil 95 (uT)	2					
	Número de dados > 15,0 uH	0					
	Número de dados ≤ 15,0 uH	4					

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento					
рН	Número de amostras analisadas	8				
	Número de dados > 9,0	0				
	Número de dados ≥ $6.0 \text{ e} \le 9.0$	8				
	Número de dados < 6,0	0				
	Saída do tratamento					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7				
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0				
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8				
	Número de amostras analisadas	39				
Fluoreto (6)	Percentil 95 (mg/L)	1,12				
riuoreto	Referência à Portaria GM/MS n° 2.914/2011					
	Número de dados > 1,5 mg/L	0				
	Número de dados ≤1,5 mg/L	39				
	Referência à Nota Técnica DIVS 002/2017					
	Número de dados > 1,0 mg/L	2				
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	36				
	Número de dados < 0,7 mg/L	1				
	Saída do tratamento					
	Número de amostras analisadas	39				
(7)	Percentil 95 (mg/L)	1,39				
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0				
(Número de dados $> 2,0 \le 5,0 \text{ mg/L}$	0				
	Número de dados $\geq 0.2 \text{ e } \leq 2.0 \text{ mg/L}$	39				
	Número de dados < 0,2mg/L	0				
	Número de amostras analisadas	0				
Desinfecção (7)	Percentil 95 (mg/L)	0				
(Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				
	Número de amostras analisadas	0				
(7)	Percentil 95 (mg/L)	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0				
(Número de dados > 0,2 ≤ 1,0 mg/L	0				
	Número de dados ≤ 0,2 mg/L	0				

	Saída do tratamento						
	Número de amostras analisadas	8					
Coliformes Totais	N° de amostras com presença de coliformes totais	0					
	N° de amostras com ausência de coliformes totais	8					
	Saída do tratamento						
Fasharishia asli	Número de amostras analisadas	8					
Escherichia coli	N° de amostras com presença de Escherichia coli	0					
	N° de amostras com ausência de Escherichia coli	8					

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota₂: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO								
Município / UF Irani	Município / UF Irani				Data de preenchimento do relatório mensal 13/06/2019			
Responsável pelas informações	Bruna Favassa Ch	iot		Cargo do res	sponsável	Engenheira Ç	Química	
O sistema de distribuição recebeu água no mês ?	X Sim Não						tribuição não recebeu icam desabilitados.	
2.1 – Informações relacionadas à i	nfraestrutura e às	condições	opera	acionais (por lo	ocalidade atin	gida) – Núme	ero de eventos	
Número de eventos r				RIBUIÇÃO ondições opera	acionais (por	localidade ati	ngida)	
Área ou Local	Reparos na Rede	Intermitên	cias	Faltas de Água	Reclamações	de Gosto/Odor	Reclamações na Cor	
Zampieri	1	0		0		0	0	
Nossa Senhora Aparecida	1	0		0	(0	0	
Nelson Grisa	0	0		0		0	0	
Santo Marcon	1	0		0	(0	0	
Santo Antonio	1	0		0		0	0	
Loteamento Modesto Torteli	0	0		0	(0	0	
Alto Irani	0	0		0	(0	0	
Jardim Maria Rosa	0	0		0		0	0	
Centro	5	0		0		0	0	

2.2 – MONITORAMEN	TO DA QUALIDADE DA ÁGUA TRATADA					
	Sistema de distribuição	0				
Turbidez (9)	Número de amostras analisadas	22				
	Número de dados > 5,0 uT (13)	0				
	Número de dados 5,0 uT	22				
	Sistema de distribuição	D				
(9)	Número de amostras analisadas	7				
Cor	Número de dados > 15,0 uH (13)	0				
	Número de dados 15,0 uH	7				
	Sistema de distribuição	D				
(9,12)	Número de amostras analisadas	0				
PH	Número de dados > 9,5 (13)	0				
	Número de dados ≥ 6,0 e ≤ 9,5	0				
	Número de dados < 6,0 (13)	0				
	Sistema de distribuição	D				
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7				
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0				
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8				
	Número de amostras analisadas	0				
Fluoreto (9,10,12)	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L (13)	0				
	Número de dados ≤1,5 mg/L	0				
	Referência à Nota Técnica DIVS 002/2017					
	Número de dados > 1,0 mg/L (13)	0				
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	0				
	Número de dados < 0,7 mg/L (13)	0				
	Sistema de distribuição	D				
	Número de amostras analisadas	22				
Desinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0				
(Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0				
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	21				
	Número de dados < 0,2 mg/L (13)	1				
	Número de amostras analisadas	0				
(9,11) Desinfecção	Percentil 95% (mg/L)	0				
(Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				

	Número de amostras ana	alisadas	0				
(9,11) Desinfecção (Dióxido de Cloro)	Percentil 95% (mg/L)			0			
	Número de dados > 1,0	mg/L		0			
(Número de dados > 0,2	≤ 1,0 mg/L		0			
	Número de dados ≤ 0,2 mg/L						
		Sist	tema de distribuição				
(9)	Número de amostras ana			22			
Coliformes Totais	N° de amostras com pres	sença de coliformes	totais (13)	1			
	N° de amostras com aus			21			
	Sistema de distribuição						
Escherichia coli	Número de amostras ana	llisadas	22				
Escnericnia coli	N° de amostras com pres	sença de Escherichia	0				
	N° de amostras com aus	ência de Escherichia	22				
		Sist	tema de distribuição	ão			
Bactérias (9)	Número de amostras ana	llisadas		5			
heterotróficas	Número de dados >500	UFC/100mL ⁽¹³⁾		0			
	Número de dados <500	UFC/100mL		5			
		Amostra 1	Amostra 2	Amostra 3	Amostra 4		
	Data da coleta						
	Microcistina (μg/L)						
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)						
	Cilindroespermopsina (µg/L)						
	Anatoxina (µg/L)						
	Outra(s) (μg/L)						

⁽⁹⁾ Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

Parâmetro	Data da coleta	Endereço	Ações Corretivas:	Resultado
Cloro Residual Livre	15/05/2019	Rua José Kades, 59 - Centro - Irani	N° AS 15/05/2019 15:46 901546 efetuado regulagem boia dosadora	0,1
Coliformes Totais	29/05/2019	Rua Menino Deus, 725 - Alto Irani - Irani	N° AS 30/05/2019 15:23 901546 Efetuado descarga de cavalete no local.	P

Nota₄: O número de linhas da tabela deve ser igual ao número de análises fora do padrão (máximo de 50 linhas para cada parâmetro).

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PART	TE I - IDE	NTIFICA	ÇÃO DO	O SAA								
UF	SC	Município	Irani					Referênc	ia	de 01/06/2	019 à 3	0/06/2019
Nome	do SAA		Irani U	nidade I				Código SAA (SisAgua) S420780000002				780000002
Institu	uição Resp	onsável	CASA	N								
PART	ГЕ II - М(ONITORA	MENTO	DA QUALIDA	DE DA ÁG	U A (1- 7	TRAT. DE	ÁGUA E/O	OU 2-	SIST. DE I	DISTRI	(BUIÇÃO)
1 - TF	RATAME	NTO DA Á	GUA									
Nome	da ETA/l	U TA ET	`A Irani	Unidade I		Data o	de preenchi	mento do	relató	orio mensal	10/	07/2019
Respo	nsável pel	las informa	ações	Bruna Favassa (Chiot		Cargo do	Responsá	vel	Engenheira	ı Quími	ica
A ET	A operou	no mês?		X Sim Não			isagua, ao m serção de re					no mês", os
1.1 - F	PONTO D	E CAPTA	CÃO:	Superficial	X Subter	âneo						
			-	02) - Centro			Latitude:	-27,0225	;	Longitud	le: -5	1,900556
				,				,		8		,
					Amostra	ı 1	Amost	tra 2	Aı	nostra 3		Amostra 4
Esch	erichia co	li	Data da	coleta	04/06/20	19						
			E.coli/100mL		0,0							
	(1)				Amostra	ı 1	Amostra 2 A		An	ostra 3	F	Amostra 4
	ozoários -	*	Data da coleta									
Стур	tosporidiu	т ѕрр.	Oocisto	s/L								
	(1)				Amostr	a 1	Amos	tra 2	Aı	nostra 3		Amostra 4
	ozoários -		Data da	coleta								
Giard	dia spp.	ļ.	Cistos/L								1	
					Amost	ra 1	Amos	tra 2	Α	mostra 3		Amostra 4
Vírus entéricos D		Data da	coleta									
			UFP/10	0mL								
					Amost	ra 1	Amos	tra 2	A	mostra 3		Amostra 4
Clore	ofila - a		Data da	coleta								
			UFP/10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
					Amostra	1	Amost	ra 2	1	Amostra 3		Amostra 4
					(Células/	nL)	(Células	s/mL)	(0	Células/mL)		(Células/mL)
				Data da coleta								
			Anabaena									
Cian	obactérias	(4)	Aphanoca	·~			<u></u>					
Ciail	obuctel 148		Aphanoth	······································								
			Coitlaria	permopsis sp.					***************************************			

Jaaginema sp.
Lyngbya sp.
Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
(5) Cianotoxinas	Data da coleta				
* *	Data da coleta Microcistina (µg/L)				
* *	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota 1: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

1.2 - ÁGUA TRAT	ΓADA				
	Pós-filtração ou Pré-desi	nfecção			
	Número de amostras analisadas	0			
	Percentil 95 (uT)	0			
Turbidez	Número de dados > 1,0 uT	0			
	Número de dados > 0,5 uT e ≤ 1,0 uT	0			
	Número de dados > 0.3 uT e ≤ 0.5 uT	0			
	Número de dados ≤ 0,3 uT	0			
	Saída do tratamento				
Turbidez	Número de amostras analisadas	38			
	Percentil 95 (uT)	0,35			
	Saída do tratamen	to			
	Número de amostras analisadas	4			
Cor	Percentil 95 (uT)	3			
	Número de dados > 15,0 uH	0			
	Número de dados ≤ 15,0 uH	4			

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento					
	Número de amostras analisadas	8				
pН	Número de dados > 9,0	0				
	Número de dados ≥6,0 e ≤9,0	8				
	Número de dados < 6,0	0				
	Saída do tratamento					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7				
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0				
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8				
	Número de amostras analisadas	38				
Fluoreto (6)	Percentil 95 (mg/L)	1,04				
riuoreto	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L	0				
	Número de dados ≤1,5 mg/L	38				
	Referência à Nota Técnica DIVS 002/2017					
	Número de dados > 1,0 mg/L	4				
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	33				
	Número de dados < 0,7 mg/L	1				
	Saída do tratamento					
	Número de amostras analisadas	38				
(7)	Percentil 95 (mg/L)	1,6				
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0				
,	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0				
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	38				
	Número de dados < 0,2mg/L	0				
	Número de amostras analisadas	0				
Desinfecção (7)	Percentil 95 (mg/L)	0				
(Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados > 2,0 ≤ 4,0 mg/L	0				
	Número de dados < 2,0 mg/L	0				
	Número de amostras analisadas	0				
(7)	Percentil 95 (mg/L)	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0				
,	Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0				
	Número de dados ≤ 0,2 mg/L	0				

	Saída do tratamento				
	Número de amostras analisadas	8			
Coliformes Totais	N° de amostras com presença de coliformes totais	0			
	N° de amostras com ausência de coliformes totais	8			
	Saída do tratamento				
Easharishia asli	Número de amostras analisadas	8			
Escherichia coli	N° de amostras com presença de Escherichia coli	0			
	N° de amostras com ausência de Escherichia coli	8			

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota₂: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃ	0						
Município / UF Irani			Data	de preenchim	ento do relató	ório mensal	10/07/2019
Responsável pelas informações	Bruna Favassa Ch	iot		Cargo do res	sponsável	Engenheira Ç	uímica
O sistema de distribuição recebeu água no mês ?	X Sim Não						tribuição não recebeu icam desabilitados.
2.1 — Informações relacionadas à i	nfraestrutura e às	condições	opera	acionais (por lo	ocalidade atin	gida) – Núme	ro de eventos
Número de eventos re				RIBUIÇÃO ondições opera	acionais (por	localidade ati	ngida)
Área ou Local	Reparos na Rede	Intermitên	cias	Faltas de Água	Reclamações	de Gosto/Odor	Reclamações na Cor
Zampieri	0	0		0		0	0
Nossa Senhora Aparecida	1	0		0		0	0
Nelson Grisa	0	0		0		0	0
Santo Marcon	0	0		0		0	0
Santo Antonio	10	0		0		0	0
Loteamento Modesto Torteli	0	0		0		0	0
Alto Irani	3	0		0		0	0
Jardim Maria Rosa	0	0		0		0	0
Centro	2	0		0		0	0

2.2 – MONITORAMEN	TO DA QUALIDADE DA ÁGUA TRATADA					
	Sistema de distribuição					
Turbidez (9)	Número de amostras analisadas	20				
1 ul blucz	Número de dados > 5,0 uT (13)	0				
	Número de dados 5,0 uT	20				
	Sistema de distribuição					
Cor (9)	Número de amostras analisadas	3				
Cor	Número de dados > 15,0 uH (13)	0				
	Número de dados 15,0 uH	3				
	Sistema de distribuição					
(9,12)	Número de amostras analisadas	0				
РН	Número de dados > 9,5 (13)	0				
	Número de dados ≥6,0 e ≤9,5	0				
	Número de dados < 6,0 (13)	0				
	Sistema de distribuição					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7				
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0				
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8				
	Número de amostras analisadas	0				
Fluoreto (9,10,12)	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L (13)	0				
	Número de dados ≤1,5 mg/L	0				
	Referência à Nota Técnica DIVS 002/2017					
	Número de dados > 1,0 mg/L (13)	0				
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	0				
	Número de dados < 0,7 mg/L (13)	0				
	Sistema de distribuição					
	Número de amostras analisadas	20				
Desinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0				
(Cloro Residual Livre)	Número de dados > $2.0 \le 5.0 \text{ mg/L}^{(13)}$	0				
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	20				
	Número de dados < 0,2 mg/L (13)	0				
	Número de amostras analisadas	0				
(9,11)	Percentil 95% (mg/L)	0				
Desinfecção (Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				

	Número de amostras analisadas			0		
(9,11)	Percentil 95% (mg/L)	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 n	ng/L		0		
(=======	Número de dados > 0,2 ≤	≤ 1,0 mg/L		0		
	Número de dados ≤ 0,2 m	ng/L		0		
		Sist	ema de distribuição			
Coliformes Totais	Número de amostras anal			20		
Comormes Totals	N° de amostras com pres	ença de coliformes t	otais (13)	0		
	N° de amostras com ausê			20		
	Sistema de distribuição					
Escherichia coli	Número de amostras anal	20				
Escnericnia coli	N° de amostras com pres	0				
	N° de amostras com ausê	20				
	Sistema de distribuição					
Bactérias (9)	Número de amostras anal		5			
heterotróficas	Número de dados >500 U		0			
	Número de dados <500 U		5			
		Amostra 1	Amostra 2	Amostra 3	Amostra 4	
	Data da coleta					
	Microcistina (μg/L)					
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)					
	Cilindroespermopsina (μg/L)					
	Anatoxina (μg/L)					
	Outra(s) (μg/L)					

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de fluor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - ID	ENTIFICA	ÇÃO DO	O SAA									
UF SC	Município	Irani					Referência	ı	de 01/08/2	019 à	31/08/2019	
Nome do SAA		Irani U	nidade I				Código SA	A (S	isAgua)	S420	780000002	
Instituição Re	sponsável	CASA	N									
PARTE II - M	ONITORA	MENTO	O DA QUALIDA	DE DA ÁGI	U A (1- T	TRAT. DE	ÁGUA E/O	U 2-	SIST. DE I	DISTR	RIBUIÇÃO)	
1 - TRATAM	ENTO DA Á	GUA										
Nome da ETA	/UTA ET	`A Irani	Unidade I		Data d	le preenchi	mento do r	elató	rio mensal	10	0/09/2019	
Responsável p	elas informa	ações	Bruna Favassa C	Chiot		Cargo do	Responsávo	el	Engenheira	a Quín	nica	
A ETA operou	u no mês?		X Sim Não				arcar o ícon sultados dos				no mês", os	
1.1 - PONTO	DE CAPTA	CÃO:	Superficial	X Subtern	râneo							
Nome: Rua J		-	01) - Centro			Latitude:	-27,02222	2	Longitud	de: -:	51,894167	
				Amostra	a 1	Amos	tra 2	An	ostra 3		Amostra 4	
Escherichia d	coli	Data da	coleta	07/08/20	119	13/08/	2019					
		E.coli/1	00mL	0,0		0,0)					
(1)				Amostra	ı 1	Amost	ra 2	Am	ostra 3		Amostra 4	
Protozoários	-	Data da coleta					1	***************************************				
Cryptosporid	um spp.	Oocisto	s/L									
	(1)			Amostr	'a 1	Amos	tra 2	An	ostra 3		Amostra 4	
Protozoários		Data da	coleta				1					
Giardia spp.		Cistos/I										
				Amosti	ra 1	Amos	stra 2	Δı	nostra 3		Amostra 4	
Vírus entéric	(2)	Data da	coleta	ZIHOSU		Amo		Al	Hosti a 5		zimosu a 7	
vii us ciitei ic	US											
		UFP/10	UIIIL						4			
	(3)		_	Amosti	ra 1	Amos	stra 2	Aı	nostra 3		Amostra 4	**********
Clorofila - a		Data da	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
		UFP/10	0mL									
				Amostra (Células/i		Amost (Célula			amostra 3 élulas/mL)		Amostra 4 (Células/mL)	
			Data da coleta	(Celulas/I	111)	(Ceiula		(0)	craias/IIIL)		(Ceruias/IIIL)	
		Anabaena										
	(4)	Aphanoca	t			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************					
Cianobactéri	as	Aphanoth	iece sp.									
		Cylindros	spermopsis sp.									
		Geitlerine										
		Igaginem	a sn							1		

Lyngbya sp.
Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
(5) Cianotoxinas	Data da coleta				
* *	Data da coleta Microcistina (µg/L)				
* *	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota 1: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-desi	nfecção		
	Número de amostras analisadas	0		
	Percentil 95 (uT)	0		
Turbidez	Número de dados > 1,0 uT	0		
	Número de dados > 0,5 uT e ≤ 1,0 uT	0		
	Número de dados > 0,3 uT e ≤ 0,5 uT	0		
	Número de dados ≤ 0,3 uT	0		
	Saída do tratamento			
Turbidez	Número de amostras analisadas	39		
	Percentil 95 (uT)	0,25		
	Saída do tratamen	to		
	Número de amostras analisadas	4		
Cor	Percentil 95 (uT)	2		
	Número de dados > 15,0 uH	0		
	Número de dados ≤ 15,0 uH	4		

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento						
	Número de amostras analisadas	8					
рН	Número de dados > 9,0	0					
	Número de dados ≥6,0 e ≤ 9,0	8					
	Número de dados < 6,0	0					
	Saída do tratamento						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7					
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0					
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8					
	Número de amostras analisadas	39					
Fluoreto (6)	Percentil 95 (mg/L)	1					
Fluoreto	Referência à Portaria GM/MS n° 2.914/2011						
	Número de dados > 1,5 mg/L	0					
	Número de dados ≤1,5 mg/L	39					
	Referência à Nota Técnica DIVS 002/2017						
	Número de dados > 1,0 mg/L	0					
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	36					
	Número de dados < 0,7 mg/L	3					
	Saída do tratamento						
	Número de amostras analisadas	39					
(7)	Percentil 95 (mg/L)	1,45					
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0					
(,	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0					
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	39					
	Número de dados < 0,2mg/L	0					
	Número de amostras analisadas	0					
Desinfecção (7)	Percentil 95 (mg/L)	0					
(Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					
	Número de amostras analisadas	0					
(7)	Percentil 95 (mg/L)	0					
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0					
,	Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0					
	Número de dados ≤ 0,2 mg/L	0					

	Saída do tratamento					
C. P.C. T. A.	Número de amostras analisadas	8				
Coliformes Totais	N° de amostras com presença de coliformes totais	0				
	N° de amostras com ausência de coliformes totais	8				
	Saída do tratamento					
Escherichia coli	Número de amostras analisadas	8				
Escherichia con	N° de amostras com presença de Escherichia coli	0				
	N° de amostras com ausência de Escherichia coli	8				

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota₂: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE D	ISTRIBUIÇÃ	0						
	-			Data	de preenchim	ento do relató	orio mensal	10/09/2019
Responsável pelas in		Bruna Favassa Ch	iot		Cargo do res	sponsável	Engenheira Ç	Química
O sistema de distribu água no mês ?	uição recebeu	X Sim Não						tribuição não recebeu icam desabilitados.
2.1 — Informações re	elacionadas à i	nfraestrutura e às	condições	opera	acionais (por lo	ocalidade atin	gida) – Núme	ero de eventos
Númer	o de eventos r	SIST elacionados à infra			RIBUIÇÃO ondições opera	acionais (por	localidade ati	ngida)
Área ou Lo	ocal	Reparos na Rede	Intermitê	ncias	Faltas de Água	Reclamações	de Gosto/Odor	Reclamações na Cor
Zampier	i	0	0		0	(0	0
Nossa Senhora A	Aparecida	1	0		0	()	0
Nelson Gr	risa	1	0		0	()	0
Santo Mare	con	5	0		0	()	0
Santo Anto	onio	0	0		0	(0	0
Loteamento Mode	esto Torteli	0	0		0	(0	0
Alto Irar	ni	4	0		0		0	0
Jardim Maria	Rosa	0	0		0)	0
Centro		2	0		0)	0

2.2 – MONITORAMEN	NTO DA QUALIDADE DA ÁGUA TRATADA					
	Sistema de distribuição					
Turbidez (9)	Número de amostras analisadas	21				
	Número de dados > 5,0 uT (13)	0				
	Número de dados 5,0 uT	21				
	Sistema de distribuição					
Cor (9)	Número de amostras analisadas	4				
Cor	Número de dados > 15,0 uH (13)	0				
	Número de dados 15,0 uH	4				
	Sistema de distribuição					
(9,12)	Número de amostras analisadas	0				
PH	Número de dados > 9,5 (13)	0				
	Número de dados $\geq 6,0$ e $\leq 9,5$	0				
	Número de dados $< 6.0^{(13)}$	0				
	Sistema de distribuição					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7				
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0				
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8				
(0.40.42)	Número de amostras analisadas	0				
Fluoreto (9,10,12)	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L (13)	0				
	Número de dados ≤1,5 mg/L	0				
	Referência à Nota Técnica DIVS 002/2017					
	Número de dados > 1,0 mg/L (13)	0				
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	0				
	Número de dados < 0,7 mg/L (13)	0				
	Sistema de distribuição					
	Número de amostras analisadas	21				
Desinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0				
(Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0				
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	21				
	Número de dados $< 0.2 \text{ mg/L}^{(13)}$	0				
	Número de amostras analisadas	0				
(9,11) Desinfecção	Percentil 95% (mg/L)	0				
(Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				

	Número de amostras analisadas			0			
(9,11) Desinfecção (Dióxido de Cloro)	Percentil 95% (mg/L)			0			
	Número de dados > 1,0 r	ng/L		0			
,	Número de dados > 0,2 ≤	≤ 1,0 mg/L		0			
	Número de dados ≤ 0,2 n	ng/L		0			
		Sist	tema de distribuição				
Coliformes Totais	Número de amostras anal			21			
Comormes Totals	N° de amostras com pres	ença de coliformes t	totais (13)	0			
	N° de amostras com ausê			21			
		Sist	tema de distribuição				
Escherichia coli	Número de amostras anal	isadas	21				
Escnericnia cott	N° de amostras com pres	ença de Escherichia	0				
	N° de amostras com ausência de Escherichia coli			21			
	Sistema de distribuição						
Bactérias (9)	Número de amostras anal	isadas	5				
heterotróficas	Número de dados >500 U	JFC/100mL ⁽¹³⁾	0				
	Número de dados <500 U	JFC/100mL	5				
		Amostra 1	Amostra 2	Amostra 3	Amostra 4		
	Data da coleta						
(0)	Microcistina (μg/L)						
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)						
	Cilindroespermopsina (μg/L)						
	Anatoxina (μg/L)						
	Outra(s) (µg/L)						

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de fluor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDENTIF	ICAÇÃO D	O SAA						
UF SC Munic	ípio Irani					Referência	de 01/10/20	019 à 31/10/2019
Nome do SAA	Irani U	Inidade I				Código SAA (SisAgua) S420780000002		
Instituição Responsáv	el CASA	N						
PARTE II - MONITO	DRAMENTO	O DA QUALIDA	DE DA ÁG	UA (1-T	TRAT. DE	ÁGUA E/OU	2-SIST. DE D	ISTRIBUIÇÃO)
1 - TRATAMENTO I	DA ÁGUA							
Nome da ETA/UTA	ETA Irani	Unidade I		Data d	le preenchi	mento do rel	atório mensal	08/11/2019
Responsável pelas inf		Bruna Favassa C	'hiot		_	Responsável	Engenheira	
			Atonoñ	o: No Si				perou no mês", os
A ETA operou no mê	s?	X Sim Não					icam desabilita	
1.1 - PONTO DE CA	PTACÃO:	Superficial	X Subter	râneo				
	-	- 02) Contra			т	27.0225	T •4	£1.000 <i>55.6</i>
Nome: Rua José Fazo	510, SN (POÇC	3 02) - Centro			Latitude:	-27,0225	Longitud	le: -51,900556
				_				
			Amostr		Amos	tra 2	Amostra 3	Amostra 4
Escherichia coli	Data da	coleta	03/10/20)19			15/10/2019	
	E.coli/1	.00mL	0,0				0,0	
(1)			Amostr	a 1	Amost	ra 2	Amostra 3	Amostra 4
Protozoários -	Data da	coleta						
Cryptosporidium spp.	Oocisto	os/L		1				
			Amosti	·a 1	Amos	tra 2	Amostra 3	Amostra 4
Protozoários -	Data da	- a a la ta	ZKIIIOSU		711103		z mostra 5	7 11110361 4 4
Giardia spp.	Data da							
	Cistos/I	L						
(2)			Amost	ra 1	Amos	stra 2	Amostra 3	Amostra 4
Vírus entéricos	Data da	ı coleta						
	UFP/10	00mL						
			Amost	ra 1	Amos	stra 2	Amostra 3	Amostra 4
Clorofila - a	Data da	coleta						
	UFP/10	00mL						
	011/10		Amostra	a 1	Amost	ra 2	Amostra 3	Amostra 4
			(Células/		(Célula		(Células/mL)	(Células/mL)
		Data da coleta						
	Anabaena	a sp.						
(4)	Aphanoca	apsa sp.						
Cianobactérias	Aphanoth	nece sp.						
		spermopsis sp.						
	Geitlerine	ema sp.						
	Jaaginem	ıa sp.						
	Lyngbya	sp.						

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
40	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	- Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta			Amostra 3	
(5)				Amostra 3	
(5) Cianotoxinas	Data da coleta			Amostra 3	
	Data da coleta Microcistina (µg/L)			Amostra 3	
	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)			Amostra 3	

Nota 1: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-desi	Pós-filtração ou Pré-desinfecção					
	Número de amostras analisadas	0					
	Percentil 95 (uT)	0					
Turbidez	Número de dados > 1,0 uT	0					
	Número de dados > 0,5 uT e ≤ 1,0 uT	0					
	Número de dados > 0,3 uT e ≤ 0,5 uT	0					
	Número de dados ≤ 0,3 uT	0					
	Saída do tratament	to					
Turbidez	Número de amostras analisadas	39					
	Percentil 95 (uT)	0,58					
	Saída do tratamen	to					
	Número de amostras analisadas	4					
Cor	Percentil 95 (uT)	2					
	Número de dados > 15,0 uH	0					
	Número de dados ≤ 15,0 uH	4					

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento					
	Número de amostras analisadas	8				
рН	Número de dados > 9,0	0				
	Número de dados ≥6,0 e ≤ 9,0	8				
	Número de dados < 6,0	0				
	Saída do tratamento					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7				
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0				
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8				
	Número de amostras analisadas	39				
Fluoreto (6)	Percentil 95 (mg/L)	1,13				
Fluoreto	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L	0				
	Número de dados ≤1,5 mg/L	39				
	Referência à Nota Técnica DIVS 002/2017					
	Número de dados > 1,0 mg/L	2				
	Número de dados \geq = 0,7 mg/L e \leq = 1,0 mg/L	33				
	Número de dados < 0,7 mg/L	4				
	Saída do tratamento					
	Número de amostras analisadas	39				
(7)	Percentil 95 (mg/L)	1,55				
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0				
(0.0.0 0.00.00.00.00.00.00)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0				
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	39				
	Número de dados < 0,2mg/L	0				
	Número de amostras analisadas	0				
Desinfecção (7)	Percentil 95 (mg/L)	0				
(Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				
	Número de amostras analisadas	0				
(7)	Percentil 95 (mg/L)	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0				
	Número de dados > 0,2 ≤ 1,0 mg/L	0				
	Número de dados ≤ 0,2 mg/L	0				

	Saída do tratamento					
C lie T 4	Número de amostras analisadas	8				
Coliformes Totais	N° de amostras com presença de coliformes totais	0				
	N° de amostras com ausência de coliformes totais	8				
	Saída do tratamento					
Egghavishia asli	Número de amostras analisadas	8				
Escherichia coli	N° de amostras com presença de Escherichia coli	0				
	N° de amostras com ausência de Escherichia coli	8				

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota₂: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO							
Município / UF Irani			Data	de preenchim	ento do relató	orio mensal	08/11/2019
Responsável pelas informações	Bruna Favassa Ch	iot		Cargo do res	ponsável	Engenheira Ç	uímica
O sistema de distribuição recebeu água no mês ?	X Sim Não						tribuição não recebeu icam desabilitados.
2.1 — Informações relacionadas à i	nfraestrutura e às	condições	opera	acionais (por lo	ocalidade atin	gida) – Núme	ro de eventos
Número de eventos re				RIBUIÇÃO ondições opera	acionais (por	localidade ati	ngida)
Área ou Local	Reparos na Rede	Intermitên	cias	Faltas de Água	Reclamações	de Gosto/Odor	Reclamações na Cor
Zampieri	0	0		0		0	0
Nossa Senhora Aparecida	2	0		0	ı	0	0
Nelson Grisa	0	0		0		0	0
Santo Marcon	0	0		0	ı	0	0
Santo Antonio	1	0		0		0	0
Loteamento Modesto Torteli	0	0		0		0	0
Alto Irani	1	0		0		0	0
Jardim Maria Rosa	0	0		0	1	0	0
Centro	13	0		0		0	0

	Sistema de distribuição					
Turbidez (9)	Número de amostras analisadas	25				
	Número de dados > 5,0 uT (13)	0				
	Número de dados 5,0 uT	25				
	Sistema de distribuição					
(9)	Número de amostras analisadas	7				
Cor	Número de dados > 15,0 uH (13)	0				
	Número de dados 15,0 uH	7				
	Sistema de distribuição					
(9,12)	Número de amostras analisadas	0				
PH .	Número de dados > 9,5 (13)	0				
	Número de dados ≥ 6,0 e ≤ 9,5	0				
	Número de dados < 6,0 (13)	0				
	Sistema de distribuição					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7				
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0				
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8				
(0.40.40)	Número de amostras analisadas	0				
(9,10,12) F luoreto	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L (13)	0				
	Número de dados ≤1,5 mg/L	0				
	Referência à Nota Técnica DIVS 002/2017					
	Número de dados > 1,0 mg/L (13)	0				
	Número de dados \geq = 0,7 mg/L e \leq = 1,0 mg/L	0				
	Número de dados < 0,7 mg/L (13)	0				
	Sistema de distribuição					
	Número de amostras analisadas	25				
Desinfecção (9,11)	Número de dados $> 5,0$ mg/L ⁽¹³⁾	0				
Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0				
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	25				
	Número de dados $< 0.2 \text{ mg/L}^{(13)}$	0				
	Número de amostras analisadas	0				
(9,11) Desinfecção	Percentil 95% (mg/L)	0				
Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				

	Número de amostras analisadas			0		
(9,11) Desinfecção (Dióxido de Cloro)	Percentil 95% (mg/L)		0			
	Número de dados > 1,0 r		0			
,	Número de dados > 0,2 ≤	≤ 1,0 mg/L		0		
	Número de dados ≤ 0,2 n	ıg/L		0		
		Sist	ema de distribuição			
Coliformes Totais	Número de amostras anal			21		
Conformes Totals	N° de amostras com pres	ença de coliformes	totais (13)	0		
		N° de amostras com ausência de coliformes totais				
	Sistema de distribuição					
Escherichia coli	Número de amostras anal	21				
Escnericnia coli	N° de amostras com pres	0				
	N° de amostras com ausê	21				
		Sist	ema de distribuição	io		
Bactérias (9)	Número de amostras anal	lisadas		9		
heterotróficas	Número de dados >500 U	JFC/100mL (13)		0		
	Número de dados <500 U	9				
		Amostra 1	Amostra 2	Amostra 3	Amostra 4	
	Data da coleta					
Cianotoxinas (9)	Microcistina (μg/L)					
	Saxitoxina (μg/L) (g equivalente STX/L)					
	Cilindroespermopsina (μg/L)					
	Anatoxina (μg/L)					
	Outra(s) (µg/L)					

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de fluor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDENTIFICA	ÇÃO D	O SAA								
UF SC Município	Irani					Referênc	ia	de 01/12/20	19 à 31/12/201	9
Nome do SAA	Irani U	nidade I				Código S	SAA (S	SisAgua)	S42078000000	12
Instituição Responsável	CASA	N						•		
PARTE II - MONITORA	MENT	O DA QUALIDA	DE DA ÁGI	J A (1-T	RAT. DE	ÁGUA E/	OU 2-	SIST. DE D	ISTRIBUIÇÃ())
1 - TRATAMENTO DA	ÁGUA									
Nome da ETA/UTA E	ΓΑ Irani	Unidade I		Data d	le preenchi	imento do	relató	rio mensal	26/08/2020	
Responsável pelas inform	ações	Bruna Favassa	Chiot		Cargo do	Responsá	vel	Responsáve	l Técnica/Enge	nheira
A ETA operou no mês?		X Sim Não						ETA não op am desabilita	perou no mês", dos.	os
1.1 - PONTO DE CAPTA	CÃO:	Superficial	X Subtern	âneo						
Nome: Rua José Kades, S	•	<u> </u>	_		Latitude:	-27,0222	222	Longitud	e: -51,894167	,
			Amostra	ı 1	Amos	tra 2	Ar	nostra 3	Amostra	4
Escherichia coli	Data da	coleta	02/12/20	19	09/12/	2019				
	E.coli/1	00mL	0,0		0,0	0				
(1)			Amostra	ı 1	Amost	ra 2	An	ostra 3	Amostra	4
Protozoários - Cryptosporidium spp.	Data da	coleta								
Cryptosportatum spp.	Oocisto	s/L								
(1)			Amostr	a 1	Amos	tra 2	Ar	nostra 3	Amostra	4
Protozoários -	Data da	coleta								
Giardia spp.	Cistos/L									
		_	Amost	ra 1	Amo	stra 2	A	mostra 3	Amostra	. 4
Vírus entéricos	Data da	coleta							1 000-	
v II us circultos	UFP/10									
	011/10	OIIL	A4-	1	A o	-4 3			Amostra	. 1
Clorofila - a	Data da	coleta	Amosti	aı	Amo	stra 2	A	mostra 3	Amostra	1 4
Cioronia - a										<i>,</i>
	UFP/10	OML	Amostra	1	Amost	2		Amostra 3	Amostra	. 4
			(Células/i	1	(Célula			zinostra 5 Zélulas/mL)	(Células/n	
		Data da coleta								
	Anabaena									
(4)	Aphanoca	<u></u>								
Cianobactérias	Aphanoth	·····								
	Geitlerine	spermopsis sp.								
	Jaaginem	·····								
	Lyngbya									

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
(0)	Raphidiopsis sp.				
(4) Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	l			1	
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	Amostra 1	Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
Cianotoxinas (5)	Data da coleta				
	Data da coleta Microcistina (µg/L)				
	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota 1: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-desi	Pós-filtração ou Pré-desinfecção					
	Número de amostras analisadas	0					
	Percentil 95 (uT)	0					
Turbidez	Número de dados > 1,0 uT	0					
	Número de dados > 0,5 uT e ≤ 1,0 uT	0					
	Número de dados > 0,3 uT e ≤ 0,5 uT	0					
	Número de dados ≤ 0,3 uT	0					
	Saída do tratamento						
Turbidez	Número de amostras analisadas	39					
	Percentil 95 (uT)	0,38					
	Saída do tratamen	to					
	Número de amostras analisadas	4					
Cor	Percentil 95 (uT)	2					
	Número de dados > 15,0 uH	0					
	Número de dados ≤ 15,0 uH	4					

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento						
	Número de amostras analisadas	8					
рН	Número de dados > 9,0	0					
	Número de dados ≥ $6.0 \text{ e} \le 9.0$	8					
	Número de dados < 6,0	0					
	Saída do tratamento						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7					
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0					
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8					
	Número de amostras analisadas	39					
Fluoreto (6)	Percentil 95 (mg/L)	1					
riuoreto	Referência à Portaria de Consolidação nº 5						
	Número de dados > 1,5 mg/L	0					
	Número de dados ≤1,5 mg/L	39					
	Referência à Nota Técnica DIVS 002/2017						
	Número de dados > 1,0 mg/L	0					
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	37					
	Número de dados < 0,7 mg/L	2					
	Saída do tratamento						
	Número de amostras analisadas	39					
(7)	Percentil 95 (mg/L)	2					
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0					
(======================================	Número de dados $> 2,0 \le 5,0 \text{ mg/L}$	1					
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	38					
	Número de dados < 0,2mg/L	0					
	Número de amostras analisadas	0					
Desinfecção (7)	Percentil 95 (mg/L)	0					
(Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2,0 \le 4,0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					
	Número de amostras analisadas	0					
(7)	Percentil 95 (mg/L)	0					
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0					
(Número de dados > 0,2 ≤ 1,0 mg/L	0					
	Número de dados ≤ 0,2 mg/L	0					

	Saída do tratamento					
Coliformes Totais	Número de amostras analisadas	8				
	N° de amostras com presença de coliformes totais	0				
	N° de amostras com ausência de coliformes totais	8				
	Saída do tratamento					
Escherichia coli	Número de amostras analisadas	8				
Escnericnia con	N° de amostras com presença de Escherichia coli	0				
	N° de amostras com ausência de Escherichia coli	8				

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria de Consolidação nº 5 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota₂: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE D	ISTRIBUIÇÃ	0						
Município / UF	Irani			Data	de preenchim	ento do relató	orio mensal	26/08/2020
Responsável pelas in	nformações	Bruna Favassa Ch	iot		Cargo do res	ponsável	Responsável	Técnica/Engenheira
O sistema de distrib água no mês ?	uição recebeu	X Sim Não						stribuição não recebeu ficam desabilitados.
2.1 – Informações ro	elacionadas à i	nfraestrutura e às	condições	oper	acionais (por lo	ocalidade atin	gida) – Númo	ero de eventos
Númer	SISTEMA DE DISTRIBUIÇÃO Número de eventos relacionados à infraestrutura e às condições operacionais (por localidade atingida)							
Área ou L	ocal	Reparos na Rede	Intermitê	ncias	Faltas de Água	Reclamações o	de Gosto/Odor	Reclamações na Cor
Zampie	ri	0	0		0	(0	0
Nossa Senhora A	Aparecida	0	0		0	(0	0
Nelson Gi	risa	7	0		0	(0	0
Santo Mar	con	4	0		0	(0	0
Santo Anto	onio	3	0		0	(0	0
Loteamento Mode	esto Torteli	0	0		0	(0	0
Alto Iran	ni	3	0		0	(0	0
Jardim Maria	ı Rosa	0	0		0	(0	0
Centro		3	0		0	(0	0

	Sistema de distribuição					
Turbidez ⁽⁹⁾	Número de amostras analisadas	21				
	Número de dados > 5,0 uT (13)	0				
	Número de dados 5,0 uT	21				
	Sistema de distribuição					
(9)	Número de amostras analisadas	7				
Cor	Número de dados > 15,0 uH (13)	0				
	Número de dados 15,0 uH	7				
	Sistema de distribuição					
(9,12)	Número de amostras analisadas	0				
PH	Número de dados > 9,5 (13)	0				
	Número de dados ≥6,0 e ≤9,5	0				
	Número de dados < 6,0 (13)	0				
	Sistema de distribuição					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7				
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0				
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8				
	Número de amostras analisadas	0				
(9,10,12) Fluoreto	Referência à Portaria de Consolidação nº 5					
	Número de dados > 1,5 mg/L (13)	0				
	Número de dados ≤1,5 mg/L	0				
	Referência à Nota Técnica DIVS 002/2017					
	Número de dados > 1,0 mg/L (13)	0				
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	0				
	Número de dados < 0,7 mg/L (13)	0				
	Sistema de distribuição					
	Número de amostras analisadas	21				
Desinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0				
Cloro Residual Livre)	Número de dados $> 2,0 \le 5,0 \text{ mg/L}^{(13)}$	0				
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	21				
	Número de dados < 0,2 mg/L (13)	0				
	Número de amostras analisadas	0				
(9,11)	Percentil 95% (mg/L)	0				
Desinfecção Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados > 2,0 ≤ 4,0 mg/L	0				
	Número de dados < 2,0 mg/L	0				

	Número de amostras ana	ılisadas		0			
(9,11) Desinfecção (Dióxido de Cloro)	Percentil 95% (mg/L)			0			
	Número de dados > 1,0	mg/L		0			
(Número de dados > 0,2	≤ 1,0 mg/L		0			
	Número de dados ≤ 0,2 r	ng/L		0			
		Sist	tema de distribuição				
(9)	Número de amostras ana			21			
Coliformes Totais	N° de amostras com pres	sença de coliformes	totais (13)	0			
	N° de amostras com aus			21			
		Sist	tema de distribuição				
(9)	Número de amostras ana	lisadas	21				
Escherichia coli	N° de amostras com pres	sença de Escherichia	0				
	N° de amostras com aus	ência de Escherichia	21				
	Sistema de distribuição						
Bactérias (9)	Número de amostras ana	lisadas		5			
heterotróficas	Número de dados >500	UFC/100mL (13)		0			
	Número de dados <500	UFC/100mL		5			
		Amostra 1	Amostra 2	Amostra 3	Amostra 4		
	Data da coleta						
	Microcistina (μg/L)						
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)						
	Cilindroespermopsina (µg/L)						
	Anatoxina (µg/L)						
	Outra(s) (μg/L)						

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de fluor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria de Consolidação nº 5 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PAR	TE I - II	DENTIFICA	ÇAO DO	O SAA									
UF	SC	Município	Irani					Referênci	a	de 01/08/2	019 à .	31/08/2019	
Nome	e do SAA		Irani U	nidade I				Código SA	4A (S	isAgua)	S420	780000002	
Instit	uição Re	esponsável	CASA	N									
													_
PAR'	TE II - N	IONITORA	MENTO	D DA QUALIDA	DE DA ÁG	UA (1-7	ΓRAT. DE A	GUA E/C)U 2-	SIST. DE I	DISTR	IBUIÇÃO)	
1 - T	RATAM	ENTO DA À	ÁGUA										_
Nome	e da ETA	A/UTA ET	`A Irani	Unidade II		Data o	de preenchi	mento do 1	relató	rio mensal	10	/09/2019	
Respo	onsável p	elas inform	ações	Bruna Favassa (Chiot	•	Cargo do	Responsáv	el	Engenheira	a Quím	nica	
A ET	'A opero	u no mês?		X Sim Não			isagua, ao m serção de re					no mês", os	
1.1 -	PONTO	DE CAPTA	CÃO:	Superficial	X Subter	râneo							
			•	N (Poço 4) - Alto	Irani		Latitude:			Longitue	do.		
110111	c. Rua i	violige Joao i	viaria, 51	v (1 0ç0 +) - 7 1110	mann		Latitude.			Longitue	ie.		
					Amostra	a 1	Amost	ra 2	An	nostra 3		Amostra 4	
Esch	herichia (coli	Data da	coleta				<u></u>				23/08/2019	
			E.coli/1	00mL								0,0	
		(1)		<u> </u>	Amostra	a 1	Amost	ra 2	Am	ostra 3		Amostra 4	
	tozoários	-	Data da coleta										
Cryp	otosporia	ium spp.	Oocistos/L										
		(4)			Amostr	a 1	Amost	ra 2	An	nostra 3		Amostra 4	
	tozoários	(1) -	Data da	coleta									
Giar	rdia spp.		Cistos/L										
			CISCOS/L		Amost	ra 1	Amos	tra 2	Δ 1	mostra 3		Amostra 4	
Vírus entéricos Data da coleta		coleta	Amost	141	Amos		A	11031143		Amosti a 4			
V II U	is enterior	.03	UFP/10	***************************************									
			OP1/10	OIIIL	A		_						
Cl		(3)	Doto do	1-4-	Amost	ra I	Amos	tra 2	Al	mostra 3		Amostra 4	
Clor	rofila - a		Data da	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
			UFP/10	0mL									
	Amostra 1 Amostra 2 Amostra 3 Amostra 4 (Células/mL) (Células/mL) (Células/mL) (Células/mL) Data da coleta												
	(Células/mL)(Células/mL)(Células/mL)(Células/mL)Data da coletaAnabaena sp.												
		(4)	Aphanoca	ıpsa sp.									
Cian	iobactéri	ias	Aphanoth	ece sp.									
				permopsis sp.									
			Geitlerine										
			Jaaginem	a sp.									

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
(4)	Pseudoanabaena sp.				
	Radiocystis sp.				
	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	- Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
(5) Cianotoxinas	Data da coleta				
* *	Data da coleta Microcistina (µg/L)				
* *	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota 1: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-desi	nfecção			
	Número de amostras analisadas	0			
	Percentil 95 (uT)	0			
Turbidez	Número de dados > 1,0 uT	0			
	Número de dados > 0,5 uT e ≤ 1,0 uT	0			
	Número de dados > 0,3 uT e ≤ 0,5 uT	0			
	Número de dados ≤ 0,3 uT	0			
	Saída do tratamento				
Turbidez	Número de amostras analisadas	39			
	Percentil 95 (uT)	0,26			
	Saída do tratamento				
	Número de amostras analisadas	4			
Cor	Percentil 95 (uT)	1			
	Número de dados > 15,0 uH	0			
	Número de dados ≤ 15,0 uH	4			

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento					
	Número de amostras analisadas	8				
pН	Número de dados > 9,0	0				
	Número de dados ≥6,0 e ≤9,0	8				
	Número de dados < 6,0	0				
	Saída do tratamento					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7				
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0				
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8				
	Número de amostras analisadas	39				
(6)	Percentil 95 (mg/L)	1,18				
Fluoreto	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L	0				
	Número de dados ≤1,5 mg/L	39				
	Referência à Nota Técnica DIVS 002/2017					
	Número de dados > 1,0 mg/L	3				
	Número de dados \geq = 0,7 mg/L e \leq = 1,0 mg/L	35				
	Número de dados < 0,7 mg/L	1				
	Saída do tratamento					
	Número de amostras analisadas	39				
(7)	Percentil 95 (mg/L)	0,95				
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0				
(,	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0				
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	39				
	Número de dados < 0,2mg/L	0				
	Número de amostras analisadas	0				
Desinfecção (7)	Percentil 95 (mg/L)	0				
(Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				
	Número de amostras analisadas	0				
(7)	Percentil 95 (mg/L)	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0				
(10.11.0 20 0.000)	Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0				
	Número de dados ≤ 0,2 mg/L	0				

	Saída do tratamento				
Coliformes Totais	Número de amostras analisadas	8			
Comormes Totals	N° de amostras com presença de coliformes totais	0			
	Nº de amostras com ausência de coliformes totais	8			
	Saída do tratamento				
Escherichia coli	Número de amostras analisadas	8			
Escherichia coli	N° de amostras com presença de Escherichia coli	0			
	N° de amostras com ausência de Escherichia coli	8			

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota₂: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO							
Município / UF Irani			Data	de preenchimento do relato	ório mensal	10/09/2019	
Responsável pelas informações	Bruna Favassa Chiot			Cargo do responsável	Engenheira (Química	
O sistema de distribuição recebeu água no mês ?	X Sim Não	Atenção: No Sisagua, ao marcar o ícone "O sistema de distribuição não recebeu água no mês", os campos para inserção de resultados dos ficam desabilitados.					
2.1 — Informações relacionadas à infraestrutura e às condições operacionais (por localidade atingida) — Número de eventos							

	Sistema de distribuição					
(9)	Número de amostras analisadas	0				
Turbidez	Número de dados > 5,0 uT (13)	0				
	Número de dados 5,0 uT	0				
	Sistema de distribuição					
(9)	Número de amostras analisadas	0				
Cor	Número de dados > 15,0 uH (13)	0				
	Número de dados 15,0 uH	0				
	Sistema de distribuição					
(9,12)	Número de amostras analisadas	0				
PH	Número de dados > 9,5 (13)	0				
	Número de dados ≥6,0 e ≤ 9,5	0				
	Número de dados < 6,0 (13)	0				
	Sistema de distribuição					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7				
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0				
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8				
(0.40.40)	Número de amostras analisadas	0				
(9,10,12) F luoreto	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L (13)	0				
	Número de dados ≤1,5 mg/L	0				
	Referência à Nota Técnica DIVS 002/2017					
	Número de dados > 1,0 mg/L (13)	0				
	Número de dados \geq = 0,7 mg/L e \leq = 1,0 mg/L	0				
	Número de dados < 0,7 mg/L (13)	0				
	Sistema de distribuição					
	Número de amostras analisadas	0				
Desinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0				
(Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0				
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	0				
	Número de dados < 0,2 mg/L (13)	0				
	Número de amostras analisadas	0				
(9,11) Desinfecção	Percentil 95% (mg/L)	0				
Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				

	Número de amostras ana	lisadas		0		
(9,11) Desinfecção (Dióxido de Cloro)	Percentil 95% (mg/L)			0		
	Número de dados > 1,0 n	ng/L		0		
,	Número de dados > 0,2 ≤	≤ 1,0 mg/L		0		
	Número de dados ≤ 0,2 m	ng/L		0		
		Sist	ema de distribuição			
Coliformes Totais	Número de amostras anal			0		
Comormes Totals	N° de amostras com pres	ença de coliformes t	totais (13)	0		
	N° de amostras com ausê			0		
	Sistema de distribuição					
Escherichia coli	Número de amostras anal	0				
Escnericnia con	N° de amostras com presença de Escherichia coli (13)			0		
	N° de amostras com ausência de Escherichia coli			0		
	Sistema de distribuição					
Bactérias (9)	Número de amostras anal	0				
heterotróficas	Número de dados >500 U	0				
	Número de dados <500 U	0				
		Amostra 1	Amostra 2	Amostra 3	Amostra 4	
	Data da coleta					
10	Microcistina (μg/L)					
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)					
	Cilindroespermopsina (μg/L)					
	Anatoxina (μg/L)					
	Outra(s) (µg/L)					

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de fluor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDENTI	IFICA(ÇÃO DO	O SAA									
UF SC Mun	icípio	Irani					Referência de 01/01/2			2019 à 31/01/2019		
Nome do SAA		Irani Unidade I					Código SAA (SisAgua)			S420780000002		
Instituição Respons	CASAN											
PARTE II - MONI	TORA	MENTO) DA QUALIDA	DE DA ÁG	UA (1-T	TRAT. DE	ÁGUA E/O	OU 2-	SIST. DE D	ISTRI	(BUIÇÃO)	
1 - TRATAMENTO	D DA Á	GUA										
Nome da ETA/UTA	Data de preenchi			imento do relatório mensal			12/02/2019					
Responsável pelas informaçõe			ões Bruna Favassa Chiot			Cargo do Responsável			Engenheira Química			
A ETA operou no mês?						Sisagua, ao marcar o ícone "A ETA na serção de resultados dos ficam desa						
1.1 - PONTO DE C	APTA	CÃO:	Superficial	X Subter	râneo							
Nome: Rua Monge		-	N (Poço 4) - Alto	Irani		Latitude:			Longitud	le:		
Escherichia coli				Amostra 1		Amostra 2		Amostra 3		Amostra 4		
		Data da coleta				10/01/2	2019					*******
		E.coli/1	00mL		0,)					******
Protozoários -				Amostr	a 1	Amost	ra 2	An	iostra 3	A	Amostra 4	
		Data da coleta										
Cryptosporidium spp.	pp	Oocisto										
Protozoários - Giardia spp.		Occisios, E		Amosti	ra 1	Amos	tra 2	Λı	nostra 3		Amostra 4	
		Data da	aolata	Amosti	. a 1	Amostra 2		Α1	110511 4 5		Amostra	
											<i></i>	
		Cistos/L										
Vírus entéricos				Amost	nostra 1 Amos		stra 2	A :	mostra 3		Amostra 4	
		Data da	coleta									
		UFP/10	0mL									
Clorofila - a (3)				Amostra 1		Amostra 2		A	Amostra 3		Amostra 4	
		Data da	coleta									
		UFP/100mL										
				Amostr	a 1	Amost	ra 2	I	Amostra 3		Amostra 4	
				(Células/	(Células/mL) (Cél		ulas/mL) (C		Células/mL)		(Células/mL)	
		Data da coleta										
(4)	ļ	Anabaena sp. Aphanocapsa sp.										
Cianobactérias (4)		Aphanothece sp.										•••••
		Cylindrospermopsis sp.										
		Geitlerine	ā								***************************************	
		Jaaginem	a sp.									
		Lvngbva	sp.									

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
, n	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
				:	
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
Cianotoxinas (5)	Data da coleta				
. /	Data da coleta Microcistina (μg/L)				
. /	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota₁: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-desi	Pós-filtração ou Pré-desinfecção				
	Número de amostras analisadas	0				
	Percentil 95 (uT)	0				
Turbidez	Número de dados > 1,0 uT	0				
	Número de dados > 0,5 uT e ≤ 1,0 uT	0				
	Número de dados > 0.3 uT e ≤ 0.5 uT	0				
	Número de dados ≤ 0,3 uT	0				
	Saída do tratamento					
Turbidez	Número de amostras analisadas	39				
	Percentil 95 (uT)	0,46				
	Saída do tratamen	to				
	Número de amostras analisadas	4				
Cor	Percentil 95 (uT)	3				
	Número de dados > 15,0 uH	0				
	Número de dados ≤ 15,0 uH	4				

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento	
	Número de amostras analisadas	8
рН	Número de dados > 9,0	0
	Número de dados ≥ 6,0 e ≤ 9,0	8
	Número de dados < 6,0	0
	Saída do tratamento	
	Média das temperaturas máximas diárias (°C)	24,0
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0
	Valor ótimo recomendado na Portaria GM/MS nº 635/1975	0,8
	Número de amostras analisadas	39
Fluoreto (6)	Percentil 95 (mg/L)	0,97
riuoreto	Referência à Portaria GM/MS nº 2.914/2011	
	Número de dados > 1,5 mg/L	0
	Número de dados ≤1,5 mg/L	39
	Referência à Portaria GM/MS nº 635/1975	
	Número de dados >[Máximo] mg/L	0
	Número de dados ≥ [Mínimo] mg/L e ≤ [Máximo] mg/L	38
	Número de dados <[Mínimo] mg/L	1
	Saída do tratamento	
	Número de amostras analisadas	39
(7)	Percentil 95 (mg/L)	1
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0
,	Número de dados $> 2,0 \le 5,0 \text{ mg/L}$	0
	Número de dados $\geq 0.2 \text{ e } \leq 2.0 \text{ mg/L}$	39
	Número de dados < 0,2mg/L	0
	Número de amostras analisadas	0
Desinfecção (7)	Percentil 95 (mg/L)	0
(Cioro Residual	Número de dados > 4,0 mg/L	0
Combinado)	Número de dados > 2,0 ≤ 4,0 mg/L	0
	Número de dados < 2,0 mg/L	0
	Número de amostras analisadas	0
(7)	Percentil 95 (mg/L)	0
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0
(Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0
	Número de dados ≤ 0,2 mg/L	0

	Saída do tratamento					
Coliformes Totais	Número de amostras analisadas	8				
Comormes Totals	N° de amostras com presença de coliformes totais	0				
	N° de amostras com ausência de coliformes totais	8				
	Saída do tratamento					
Escherichia coli	Número de amostras analisadas	8				
Escherichia con	N° de amostras com presença de Escherichia coli	0				
	N° de amostras com ausência de Escherichia coli	8				

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota2: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO							
Município / UF	Irani			Data	de preenchimento do relato	ório mensal	12/02/2019
Responsável pelas informações Bruna Favassa Chiot				Cargo do responsável	Engenheira (Química	
O sistema de distribuição recebeu Sim Não		X Sim Não	Atenção água no		sagua, ao marcar o ícone "O s campos para inserção de ro		
2.1 – Informações relacionadas à infraestrutura e às condições operacionais (por localidade atingida) – Número de eventos							

	Sistema de distribuição				
(9)	Número de amostras analisadas	0			
Turbidez	Número de dados > 5,0 uT (13)	0			
	Número de dados 5,0 uT	0			
	Sistema de distribuição				
Cor (9)	Número de amostras analisadas	0			
	Número de dados > 15,0 uH (13)	0			
	Número de dados 15,0 uH	0			
	Sistema de distribuição				
(0.42)	Número de amostras analisadas	0			
(9,12) PH	Número de dados > 9,5 (13)	0			
	Número de dados ≥ 6,0 e ≤ 9,5	0			
	Número de dados < 6,0 (13)	0			
	Sistema de distribuição				
	Média das temperaturas máximas diárias (°C)	24,0			
	Mínimo recomendado na Portaria GM/MS n° 635/1975	0,7			
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0			
	Valor ótimo recomendado na Portaria GM/MS n°635/1975	0,8			
	Número de amostras analisadas	0			
(9,10,12) F luoreto	Referência à Portaria GM/MS nº 2.914/2011				
	Número de dados > 1,5 mg/L (13)	0			
	Número de dados ≤1,5 mg/L	0			
	Referência à Portaria GM/MS nº 635/1975				
	Número de dados >[Máximo] mg/L (13)	0			
	Número de dados ≥[Mínimo] mg/L e ≤[Máximo] mg/L	0			
	Número de dados <[Mínimo] mg/L (13)	0			
	Sistema de distribuição				
	Número de amostras analisadas	0			
esinfecção ^(9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0			
Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0			
	Número de dados ≥ $0.2 \text{ e} \le 2.0 \text{ mg/L}$	0			
	Número de dados < 0,2 mg/L (13)	0			
	Número de amostras analisadas	0			
(9,11)	Percentil 95% (mg/L)	0			
Desinfecção Cloro Residual	Número de dados > 4,0 mg/L	0			
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0			
	Número de dados < 2,0 mg/L	0			

	Número de amostras ana	llisadas		0		
(9,11)	Percentil 95% (mg/L)			0		
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 1	mg/L		0		
,	Número de dados > 0,2 :	≤ 1,0 mg/L		0		
	Número de dados ≤ 0,2 r	ng/L		0		
		Sist	ema de distribuição			
Coliformes Totais	Número de amostras ana			0		
Comormes Totals	N° de amostras com pres	N° de amostras com presença de coliformes totais (13)				
		N° de amostras com ausência de coliformes totais				
		Sist	ema de distribuição			
Escherichia coli	Número de amostras ana	lisadas	0			
Escherichia coli	N° de amostras com pres	sença de Escherichia	0			
	N° de amostras com ausé	ència de Escherichia	coli	0		
		Sist	ema de distribuição	ão		
Bactérias (9)	Número de amostras ana	lisadas		0		
heterotróficas	Número de dados >500	UFC/100mL ⁽¹³⁾		0		
	Número de dados <500	UFC/100mL		0		
		Amostra 1	Amostra 2	Amostra 3	Amostra 4	
	Data da coleta					
	Microcistina (μg/L)					
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)					
	Cilindroespermopsina (µg/L)					
	Anatoxina (μg/L)					
	Outra(s) (µg/L)					

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDEN	TIFICA	ÇÃO DO	O SAA									
UF SC M	unicípio	Irani					Referência		de 01/02/2	019 à 2	8/02/2019	
Nome do SAA		Irani U	nidade I				Código SA	A (Sis	Agua)	S4207	780000002	
Instituição Respo	nsável	CASA	N									
PARTE II - MON	NITORA	MENTO	D DA QUALIDA	DE DA ÁG	UA (1-7	TRAT. DE	ÁGUA E/O	U 2-S	ÍST. DE Γ	ISTRI	BUIÇÃO)	
1 - TRATAMEN	TO DA Á	GUA										
Nome da ETA/UT	га Ет	`A Irani	Unidade II		Data o	le preenchi	mento do r	elatóri	io mensal	13/	03/2019	
Responsável pelas	s informa	ações	Bruna Favassa (Chiot		Cargo do	Responsávo	el E	Engenheira	 ι Quími	ica	
A ETA operou no	mês?		X Sim Não				narcar o ícon esultados dos				no mês", os	
1.1 - PONTO DE	CAPTA	CÃO:	Superficial	Subter	rrâneo							
Nome: Indefinid		Y. ZOV				Latitude:	0		Longitud	le: 0		
				Amostr	·a 1	Amos	tra 2	Amo	ostra 3		Amostra 4	
Escherichia coli		Data da	coleta									
	lan.	E.coli/1	00mL									
(1)				Amostr	·a 1	Amost	ra 2	Amo	stra 3	A	Amostra 4	
Protozoários -		Data da coleta										
Crypiosporiaium		Oocisto	s/L									
(1)				Amost	ra 1	Amos	tra 2	Amo	ostra 3		Amostra 4	
Protozoários -	-	Data da	coleta									
Giardia spp.	-	Cistos/L		·····								
		C15005/1		Amost	tra 1	Amos	stra 2	Am	ostra 3		Amostra 4	
Vírus entéricos	2)	Data da	coleta	7 111030		71110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 8 111			Zinostra	
virus entericos	<u> -</u>											
		UFP/10	UmL									
(3)			_	Amost	ira 1	Amos	stra 2	Am	ostra 3		Amostra 4	
Clorofila - a	-	Data da										
		UFP/10	0mL									
				Amostr (Células		Amost (Célula:			nostra 3 ulas/mL)		Amostra 4 (Células/mL	`
			Data da coleta	(Cciuias)	IIIL)	(Ceruia	5/III L)	(CCI			(Celulas/IIIL)	<i>.</i>
	<u></u>	Anabaena									***************************************	
(4	·)	Aphanoca	ıpsa sp.									
Cianobactérias	ļ	Aphanoth	-									
	ļ··		permopsis sp.									
		Geitlerine										
	-	Jaaginem Lyngbya	·······									
		Lvngbva	SD.				1			1		

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
, n	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
				:	
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
Cianotoxinas (5)	Data da coleta				
. /	Data da coleta Microcistina (μg/L)				
. /	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota₁: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

1.2 - ÁGUA TRAT	ΓADA				
	Pós-filtração ou Pré-desinfecção				
	Número de amostras analisadas	0			
	Percentil 95 (uT)	0			
Turbidez	Número de dados > 1,0 uT	0			
	Número de dados > 0,5 uT e ≤ 1,0 uT	0			
	Número de dados > 0,3 uT e ≤ 0,5 uT	0			
	Número de dados ≤ 0,3 uT	0			
	Saída do tratamento				
Turbidez	Número de amostras analisadas	36			
	Percentil 95 (uT)	0,35			
	Saída do tratamen	to			
	Número de amostras analisadas	4			
Cor	Percentil 95 (uT)	2			
	Número de dados > 15,0 uH	0			
	Número de dados ≤ 15,0 uH	4			

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento	
	Número de amostras analisadas	8
рН	Número de dados > 9,0	0
	Número de dados ≥6,0 e ≤9,0	8
	Número de dados < 6,0	0
	Saída do tratamento	
	Média das temperaturas máximas diárias (°C)	24,0
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0
	Valor ótimo recomendado na Portaria GM/MS nº 635/1975	0,8
	Número de amostras analisadas	36
Fluoreto (6)	Percentil 95 (mg/L)	1,05
riuoreio	Referência à Portaria GM/MS nº 2.914/2011	
	Número de dados > 1,5 mg/L	0
	Número de dados ≤1,5 mg/L	36
	Referência à Portaria GM/MS nº 635/1975	
	Número de dados >[Máximo] mg/L	3
	Número de dados ≥[Mínimo] mg/L e ≤ [Máximo] mg/L	33
	Número de dados <[Mínimo] mg/L	0
	Saída do tratamento	
	Número de amostras analisadas	36
(7)	Percentil 95 (mg/L)	1
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0
()	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0
	Número de dados $\geq 0.2 \text{ e } \leq 2.0 \text{ mg/L}$	36
	Número de dados < 0,2mg/L	0
	Número de amostras analisadas	0
Desinfecção (7)	Percentil 95 (mg/L)	0
(Cloro Residual	Número de dados > 4,0 mg/L	0
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0
	Número de dados < 2,0 mg/L	0
	Número de amostras analisadas	0
(7)	Percentil 95 (mg/L)	0
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0
(Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0
	Número de dados ≤ 0,2 mg/L	0

	Saída do tratamento					
Coliformes Totais	Número de amostras analisadas	8				
Comormes Totals	N° de amostras com presença de coliformes totais	0				
	N° de amostras com ausência de coliformes totais	8				
	Saída do tratamento					
Escherichia coli	Número de amostras analisadas	8				
Escherichia con	N° de amostras com presença de Escherichia coli	0				
	N° de amostras com ausência de Escherichia coli	8				

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota2: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO							
Município / UF	Irani			Data	13/03/2019		
		Bruna Favassa Chi			Cargo do responsável	Engenheira (Química
O sistema de distrib água no mês ?	Cim Não				sagua, ao marcar o ícone "O os campos para inserção de r		
2.1 – Informações relacionadas à infraestrutura e às condições operacionais (por localidade atingida) – Número de eventos							

	Sistema de distribuição					
(9)	Número de amostras analisadas	0				
Turbidez	Número de dados > 5,0 uT (13)	0				
Turbidez (9) Cor (9,12) PH (9,12) Ph (1,10,12) Cloro Residual Livre)	Número de dados 5,0 uT	0				
	Sistema de distribuição					
(9)	Número de amostras analisadas	0				
Cor	Número de dados > 15,0 uH (13)	0				
	Número de dados 15,0 uH	0				
	Sistema de distribuição					
(0.42)	Número de amostras analisadas	0				
	Número de dados > 9,5 (13)	0				
	Número de dados ≥ 6,0 e ≤ 9,5	0				
	Número de dados < 6,0 (13)	0				
	Sistema de distribuição					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado na Portaria GM/MS n° 635/1975	0,7				
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0				
	Valor ótimo recomendado na Portaria GM/MS n°635/1975	0,8				
	Número de amostras analisadas	0				
	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L (13)	0				
	Número de dados ≤1,5 mg/L	0				
	Referência à Portaria GM/MS nº 635/1975					
	Número de dados >[Máximo] mg/L (13)	0				
	Número de dados ≥[Mínimo] mg/L e ≤[Máximo] mg/L	0				
	Número de dados <[Mínimo] mg/L (13)	0				
	Sistema de distribuição					
	Número de amostras analisadas	0				
Desinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0				
Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0				
	Número de dados ≥ $0.2 \text{ e} \le 2.0 \text{ mg/L}$	0				
	Número de dados < 0,2 mg/L (13)	0				
	Número de amostras analisadas	0				
(9,11)	Percentil 95% (mg/L)	0				
Desinfecção Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				

	Número de amostras ana	llisadas		0			
(9,11)	Percentil 95% (mg/L)			0			
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 1	mg/L		0			
,	Número de dados > 0,2 :	≤ 1,0 mg/L		0			
	Número de dados ≤ 0,2 r	ng/L		0			
		Sist	ema de distribuição				
Coliformes Totais	Número de amostras ana			0			
Comormes Totals	N° de amostras com pres	sença de coliformes t	otais (13)	0			
	N° de amostras com aus			0			
		Sist	ema de distribuição				
(9)	Número de amostras ana	lisadas	0				
Escherichia coli	N° de amostras com pres	sença de Escherichia	coli ⁽¹³⁾	0			
	N° de amostras com ausé	ència de Escherichia	coli	0			
	Sistema de distribuição						
Bactérias (9)	Número de amostras ana	lisadas		0			
heterotróficas	Número de dados >500	UFC/100mL ⁽¹³⁾		0			
	Número de dados <500	UFC/100mL		0 0 0 0 0 0 0 0 0 0 0 0			
		Amostra 1	Amostra 2	Amostra 3	Amostra 4		
	Data da coleta						
	Microcistina (μg/L)						
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)						
	Cilindroespermopsina (µg/L)						
	Anatoxina (μg/L)						
	Outra(s) (µg/L)						

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PAR'	TE I - ID	ENTIFICA	ÇÃO DO	O SAA								
UF	SC	Município	Irani					Referênc	ia	de 01/11/2	2019 à	30/11/2019
Nome	e do SAA		Irani U	nidade I				Código S	AA (S	SisAgua)	S42	20780000002
Instit	tuição Res	sponsável	CASA	N								
		•										
PAR'	TE II - M	ONITORA	MENTO	D DA QUALIDA	DE DA ÁO	 GUA (1-	TRAT. DE	ÁGUA E/	OU 2-	SIST. DE	DIST!	RIBUIÇÃO)
		ENTO DA Á										
	e da ETA			Unidade II		Doto	de preenchi	imanta da	rolotá	írio monco		9/12/2019
					~1. ·	Data	T -					
Respo	onsável p	elas informa	ações	Bruna Favassa (~ >1 (Responsá		Engenheir		
A ET	`A operou	no mês?		X Sim Não			sisagua, ao n nserção de re					ı no mês", os
			~_	Superficial	X Subte	-	asoryuo do re	osanaces a	05 1100	ar accumin		
1.1 -	PONTO	DE CAPTA	ÇAO:	Superficial	ĭ∆i Subic	папео						
Nome	e: Rua M	Ionge João N	Maria, Sl	N (Poço 4) - Alto	Irani		Latitude:			Longitu	de:	
					Amost	ra 1	Amos	tra 2	Aı	nostra 3		Amostra 4
Esch	herichia c	oli	Data da	coleta			08/11/	2019	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			E.coli/1	00mI			0,0					
			E.com/100mE		Amostra 1		Amostra 2		Amostra 3			Amostra 4
Prot	tozoários -	1)			Amost	га 1	Aillosi	ıra Z	AII	1081Га 3	ļ	Alliostra 4
	ptosporidi		Data da	coleta								
			Oocistos/L									
	(*	1)			Amostra 1		Amostra 2		Aı	nostra 3		Amostra 4
	tozoários -		Data da	coleta								
Giar	rdia spp.		Cistos/I									
			C13tO3/1		A	-4 1	A a	Amostra 2 A				Amostra 4
		(2)		_	Amos	лга 1	Amo	stra 2	A	mostra 3		Ашовига 4
Víru	ıs entérico	OS	Data da	coleta								
			UFP/10	0mL								
					Amos	stra 1	Amo	stra 2	A	mostra 3		Amostra 4
Clor	rofila - a	3)	Data da	coleta								
			UFP/10	0mL								
					Amost	ra 1	Amost	ra 2		Amostra 3		Amostra 4
					(Célula	s/mL)	(Célula	s/mL)	(0	Células/mL)		(Células/mL)
				Data da coleta								
			Anabaena	ı sp.								
~ :		(4)	Aphanoca	ıpsa sp.								
Cian	10bactéri a	ıs	Aphanoth	ece sp.								
				permopsis sp.								
			Geitlerine									
			Jaaginem	a sp.								
	Lyngbya	sp.										

Microcystis sp.

Planktoly Pseudoar Radiocys Raphidio	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
	Raphidiopsis sp.				
	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*			·	4
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
(5) Cianotoxinas	Data da coleta				
* *	Data da coleta Microcistina (µg/L)				
* *	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota 1: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-desinfecção						
	Número de amostras analisadas	0					
	Percentil 95 (uT)	0					
Turbidez	Número de dados > 1,0 uT	0					
	Número de dados > 0,5 uT e ≤ 1,0 uT	0					
	Número de dados $> 0.3 \text{ uT e} \le 0.5 \text{ uT}$	0					
	Número de dados ≤ 0,3 uT	0					
	Saída do tratamento						
Turbidez	Número de amostras analisadas	38					
	Percentil 95 (uT)	2,02					
	Saída do tratament	to					
	Número de amostras analisadas	4					
Cor	Percentil 95 (uT)	1					
	Número de dados > 15,0 uH	0					
	Número de dados ≤ 15,0 uH	4					

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento							
	Número de amostras analisadas	8						
рН	Número de dados > 9,0	0						
	Número de dados ≥6,0 e ≤ 9,0	8						
	Número de dados < 6,0	0						
	Saída do tratamento							
	Média das temperaturas máximas diárias (°C)	24,0						
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7						
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0						
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8						
	Número de amostras analisadas	38						
Fluoreto (6)	Percentil 95 (mg/L)	1						
riuoreto	Referência à Portaria GM/MS n° 2.914/2011							
	Número de dados > 1,5 mg/L	0						
	Número de dados ≤1,5 mg/L	38						
	Referência à Nota Técnica DIVS 002/2017							
	Número de dados > 1,0 mg/L	1						
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	36						
	Número de dados < 0,7 mg/L	1						
	Saída do tratamento							
	Número de amostras analisadas	38						
(7)	Percentil 95 (mg/L)	1,11						
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0						
(,	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0						
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	38						
	Número de dados < 0,2mg/L	0						
	Número de amostras analisadas	0						
Desinfecção (7)	Percentil 95 (mg/L)	0						
(Cloro Residual	Número de dados > 4,0 mg/L	0						
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0						
	Número de dados < 2,0 mg/L	0						
	Número de amostras analisadas	0						
(7)	Percentil 95 (mg/L)	0						
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0						
,	Número de dados > 0,2 ≤ 1,0 mg/L	0						
	Número de dados ≤ 0,2 mg/L	0						

Coliformes Totais	Saída do tratamento						
	Número de amostras analisadas	8					
	N° de amostras com presença de coliformes totais	0					
	N° de amostras com ausência de coliformes totais	8					
	Saída do tratamento						
Escherichia coli	Número de amostras analisadas	8					
Escherichia con	N° de amostras com presença de Escherichia coli	0					
	N° de amostras com ausência de Escherichia coli	8					

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota₂: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO							
Município / UF	unicípio / UF Irani			Data de preenchimento do relatório mensal 09/12/2019			
Responsável pelas informações Bruna Favassa Chio				Cargo do responsável	Engenheira	Química	
O sistema de distri água no mês ?	buição recebeu	🛚 Sim 🔲 Não	Atenção: No Sisagua, ao marcar o ícone "O sistema de distribuição não água no mês", os campos para inserção de resultados dos ficam desabili				
2.1 – Informações relacionadas à infraestrutura e às condições operacionais (por localidade atingida) – Número de eventos							

	Sistema de distribuição						
Turbidez (9)	Número de amostras analisadas	0					
l'urbidez	Número de dados > 5,0 uT (13)	0					
Cor (9) (9,12) PH (9,12) Pluoreto (9,10,12) Cluoreto	Número de dados 5,0 uT	0					
	Sistema de distribuição						
Cor (9)	Número de amostras analisadas	0					
Cor	Número de dados > 15,0 uH (13)	0					
	Número de dados 15,0 uH	0					
	Sistema de distribuição						
(9,12)	Número de amostras analisadas	0					
PH	Número de dados > 9,5 (13)	0					
	Número de dados ≥6,0 e ≤ 9,5	0					
	Número de dados < 6,0 (13)	0					
	Sistema de distribuição						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7					
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0					
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8					
(0.40.40)	Número de amostras analisadas	0					
Fluoreto	Referência à Portaria GM/MS n° 2.914/2011						
	Número de dados > 1,5 mg/L (13)	0					
	Número de dados ≤1,5 mg/L	0					
	Referência à Nota Técnica DIVS 002/2017						
	Número de dados > 1,0 mg/L (13)	0					
	Número de dados \geq = 0,7 mg/L e \leq = 1,0 mg/L	0					
	Número de dados < 0,7 mg/L (13)	0					
	Sistema de distribuição						
	Número de amostras analisadas	0					
Desinfecção ^(9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0					
(Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0					
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	0					
	Número de dados < 0,2 mg/L (13)	0					
	Número de amostras analisadas	0					
(9,11) Desinfecção	Percentil 95% (mg/L)	0					
Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					

	Número de amostras ana	lisadas		0			
(9,11)	Percentil 95% (mg/L)		0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 r		0				
(=======	Número de dados > 0,2 ≤	≤ 1,0 mg/L		0			
	Número de dados ≤ 0,2 n	ıg/L		0			
		Sist	ema de distribuição				
Coliformes Totais	Número de amostras anal			0			
Comormes Totals	N° de amostras com pres	ença de coliformes t	totais (13)	0			
	N° de amostras com ausência de coliformes totais 0						
Escherichia coli		Sist	ema de distribuição				
	Número de amostras anal	0					
	N° de amostras com pres	0					
	N° de amostras com ausê	ncia de Escherichia	0				
	Sistema de distribuição						
Bactérias (9)	Número de amostras anal	lisadas		0			
heterotróficas	Número de dados >500 U	JFC/100mL ⁽¹³⁾		0			
	Número de dados <500 U	JFC/100mL		0			
		Amostra 1	Amostra 2	Amostra 3	Amostra 4		
	Data da coleta						
	Microcistina (μg/L)						
Cianotoxinas ⁽⁹⁾	Saxitoxina (μg/L) (g equivalente STX/L)						
	Cilindroespermopsina (μg/L)						
	Anatoxina (μg/L)						
	Outra(s) (μg/L)						

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de fluor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDENTIFI	CAÇÃO D	O SAA									
UF SC Municí	pio Irani					Referência	a	de 01/03/20	019 à 31	/03/2019	
Nome do SAA	Irani U	Jnidade I				Código SA	AA (Si	isAgua)	S4207	80000002	
Instituição Responsáve	el CASA	N									
PARTE II - MONITO	RAMENT	O DA QUALIDA	DE DA ÁGI	U A (1-T	TRAT. DE	ÁGUA E/C)U 2-S	SIST. DE D	ISTRII	BUIÇÃO)	
1 - TRATAMENTO D	A ÁGUA										
Nome da ETA/UTA	ETA Irani	Unidade II		Data d	le preenchi	imento do r	elatóı	rio mensal	09/0	04/2019	
Responsável pelas info	rmações	Bruna Favassa (Chiot		Cargo do	Responsáv	el	Engenheira	Químic	za	
A ETA operou no mês	?	X Sim Não				narcar o ícon esultados do				o mês", os	
1.1 - PONTO DE CAP	TACÃO:	Superficial	Subtern	râneo							
Nome: Indefinido	,				Latitude:	0		Longitud	le: 0		
			Amostra	a 1	Amos	tra 2	Am	iostra 3	A	Amostra 4	
Escherichia coli	Data da	ı coleta									
Lisenericita con	E.coli/1	100mL									
(1)				a 1	Amostra 2		Amostra 3		A	mostra 4	
Protozoários - Cryptosporidium spp.	Data da	ı coleta									
Стуріозрогішішт зрр.	Oocisto	Oocistos/L									*****
(1)			Amostra 1		Amostra 2		Amostra 3		A	Amostra 4	
Protozoários -	Data da	ı coleta									
Giardia spp.	Cistos/l	L								<i>-</i>	
			Amostra 1		Amostra 2		Amostra 3		Amostra 4		
Vírus entéricos	Data da	ı coleta									
v II us circo i cos	UFP/10										
	011/10	70III2	Amosti	no 1	Amo	stra 2	A n	nostra 3		Amostra 4	
Clorofila - a	Data da	ı coleta	Amosti	aı	Amo	Sua 2	All	10811 a 5	- F	AIII0811 a 4	
	UFP/10	00mL									****
			Amostra	ı 1	Amost	tra 2	A	mostra 3		Amostra 4	
			(Células/ı	mL)	(Célula	s/mL)	(Cé	elulas/mL)		(Células/mL)	
		Data da coleta	·····					·····			
	Anabaen										
Cianobactérias (4)	Aphanoc		***************************************					***************************************			
Camioonetti ius	Aphanoth	spermopsis sp.							-		
	Geitlerin										
	Jaaginen										
	Lvngbva	·····									

Microcystis sp.

	<u> </u>		Y	}	ĭ
	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	- Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
(5) Cianotoxinas	Data da coleta				
	Data da coleta Microcistina (μg/L)				
	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota₁: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

Pós-filtração ou Pré-desinfecção					
	Número de amostras analisadas	0			
	Percentil 95 (uT)	0			
Turbidez	Número de dados > 1,0 uT	0			
	Número de dados > 0,5 uT e ≤ 1,0 uT	0			
	Número de dados > 0,3 uT e ≤ 0,5 uT	0			
	Número de dados ≤ 0,3 uT	0			
	Saída do tratamento				
Γurbidez	Número de amostras analisadas	39			
	Percentil 95 (uT)	0,38			
	Saída do tratamen	to			
	Número de amostras analisadas	4			
Cor	Percentil 95 (uT)	2			
	Número de dados > 15,0 uH	0			
	Número de dados ≤ 15,0 uH	4			

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento	
	Número de amostras analisadas	8
рН	Número de dados > 9,0	0
	Número de dados ≥ 6,0 e ≤ 9,0	8
	Número de dados < 6,0	0
	Saída do tratamento	
	Média das temperaturas máximas diárias (°C)	24,0
	Mínimo recomendado na Portaria GM/MS nº 635/1975	0,7
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0
	Valor ótimo recomendado na Portaria GM/MS nº 635/1975	0,8
	Número de amostras analisadas	39
Fluoreto (6)	Percentil 95 (mg/L)	1,15
riuoreto	Referência à Portaria GM/MS nº 2.914/2011	
	Número de dados > 1,5 mg/L	0
	Número de dados ≤1,5 mg/L	39
	Referência à Portaria GM/MS nº 635/1975	
	Número de dados >[Máximo] mg/L	5
	Número de dados ≥[Mínimo] mg/L e ≤ [Máximo] mg/L	21
	Número de dados <[Mínimo] mg/L	13
	Saída do tratamento	
	Número de amostras analisadas	39
(7)	Percentil 95 (mg/L)	1
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0
(,	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	39
	Número de dados < 0,2mg/L	0
	Número de amostras analisadas	0
Desinfecção (7)	Percentil 95 (mg/L)	0
(Cloro Residual	Número de dados > 4,0 mg/L	0
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0
	Número de dados < 2,0 mg/L	0
	Número de amostras analisadas	0
(7)	Percentil 95 (mg/L)	0
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0
(Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0
	Número de dados ≤ 0,2 mg/L	0

	Saída do tratamento				
Coliformes Totais	Número de amostras analisadas	8			
Comormes Totals	N° de amostras com presença de coliformes totais	0			
	N° de amostras com ausência de coliformes totais	8			
	Saída do tratamento				
Escherichia coli	Número de amostras analisadas	8			
Escherichia con	N° de amostras com presença de Escherichia coli	0			
	N° de amostras com ausência de Escherichia coli	8			

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota2: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO							
Município / UF	Irani			Data de preenchimento do relatório mensal			09/04/2019
		Bruna Favassa Chi			Cargo do responsável	Engenheira (Química
O sistema de distribuição recebeu água no mês ?		☐ Sim ☐ Não	Atenção água no		sagua, ao marcar o ícone "O s campos para inserção de r		
2.1 – Informações r	elacionadas à i	nfraestrutura e às (condições	opera	cionais (por localidade atir	ngida) – Núm	ero de eventos

	Sistema de distribuição				
(9)	Número de amostras analisadas	0			
Turbidez	Número de dados > 5,0 uT (13)	0			
	Número de dados 5,0 uT	0			
	Sistema de distribuição				
(9)	Número de amostras analisadas	0			
Cor	Número de dados > 15,0 uH (13)	0			
	Número de dados 15,0 uH	0			
	Sistema de distribuição				
(0.42)	Número de amostras analisadas	0			
(9,12) PH	Número de dados > 9,5 (13)	0			
	Número de dados ≥ 6,0 e ≤ 9,5	0			
	Número de dados < 6,0 (13)	0			
	Sistema de distribuição				
	Média das temperaturas máximas diárias (°C)	24,0			
	Mínimo recomendado na Portaria GM/MS n° 635/1975	0,7			
	Máximo recomendado na Portaria GM /MS nº 635/1975	1,0			
	Valor ótimo recomendado na Portaria GM/MS n°635/1975	0,8			
	Número de amostras analisadas	0			
(9,10,12) F luoreto	Referência à Portaria GM/MS nº 2.914/2011				
	Número de dados > 1,5 mg/L (13)	0			
	Número de dados ≤1,5 mg/L	0			
	Referência à Portaria GM/MS nº 635/1975				
	Número de dados >[Máximo] mg/L (13)	0			
	Número de dados ≥[Mínimo] mg/L e ≤[Máximo] mg/L	0			
	Número de dados <[Mínimo] mg/L (13)	0			
	Sistema de distribuição				
	Número de amostras analisadas	0			
esinfecção ^(9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0			
Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0			
	Número de dados ≥ $0.2 \text{ e} \le 2.0 \text{ mg/L}$	0			
	Número de dados < 0,2 mg/L (13)	0			
	Número de amostras analisadas	0			
(9,11)	Percentil 95% (mg/L)	0			
Desinfecção Cloro Residual	Número de dados > 4,0 mg/L	0			
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0			
	Número de dados < 2,0 mg/L	0			

	Número de amostras ana	llisadas		0		
(9,11)	Percentil 95% (mg/L)			0		
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 1	mg/L		0		
,	Número de dados > 0,2 :	≤ 1,0 mg/L		0		
	Número de dados ≤ 0,2 r	ng/L		0		
		Sist	ema de distribuição			
Coliformes Totais	Número de amostras ana			0		
Comormes Totals	N° de amostras com presença de coliformes totais (13)			0		
	N° de amostras com ausência de coliformes totais			0		
		Sist	ema de distribuição			
Escherichia coli	i vanicio de amostras anansadas			0		
Escherichia coli	N° de amostras com pres	sença de Escherichia	coli ⁽¹³⁾	0		
	N° de amostras com ausé	ència de Escherichia	coli	0		
		Sist	ema de distribuição	ão		
Bactérias (9)	Número de amostras ana	lisadas		0		
heterotróficas	Número de dados >500	UFC/100mL ⁽¹³⁾		0		
	Número de dados <500	UFC/100mL		0		
		Amostra 1	Amostra 2	Amostra 3	Amostra 4	
	Data da coleta					
	Microcistina (μg/L)					
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)					
	Cilindroespermopsina (µg/L)					
	Anatoxina (μg/L)					
	Outra(s) (µg/L)					

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PAR	TE I - II	DENTIFICA(ÇAO DO	O SAA								
UF	SC	Município	Irani					Referência	de	01/06/2	019 à 30	0/06/2019
Nome	e do SAA		Irani U	nidade I				Código SA	A (SisA	Agua)	S4207	80000002
Instit	uição Re	sponsável	CASA	N			'					
PAR'	TE II - N	IONITORA	MENTO	O DA QUALIDA	DE DA ÁG	 UA (1-T	TRAT. DE	ÁGUA E/O	U 2-SIS	 5Т. DE Г	DISTRI	BUIÇÃO)
1 - Tl	RATAM	ENTO DA Á	ÁGUA									
Nome	e da ETA	/UTA ET	`A Irani	Unidade II		Data o	de preenchi	mento do re	elatório	mensal	10/0	07/2019
		elas informa		Bruna Favassa (Thiot			Responsáve		ngenheira		
			açocs		Atanaã	o: No Si	U	arcar o ícon				
A ET	'A opero	u no mês?		X Sim Não				sultados dos				
11-1	PONTO	DE CAPTA	CÃO:	Superficial	Subter	râneo						
	e: Indef		Ψ 10.		<u> </u>		T . 494 . J.	0		T •4	1. 0	
Nome	e: maei	inido					Latitude:	0	J	Longitud	1e: 0	
								_		_		
					Amostr	a 1	Amos	tra 2	Amos	itra 3	A	Amostra 4
Escherichia coli		Data da	coleta									
			E.coli/1	00mL								
(1)		(1)			Amostr	a 1	Amost	ra 2	Amost	tra 3	A	mostra 4
Cryptosporidium spp.		Data da	coleta									
		Oocisto	Oocistos/L									
					Amost	ra 1	Amos	tra 2	Amos	stra 3	1	Amostra 4
Prot	tozoários	(1) -	Data da coleta		7411030		711103		2 111105			inosera 4
Giar	rdia spp.											
			Cistos/I	_								
		(2)	***************************************		Amost	ra 1	Amos	stra 2	Amo	stra 3	1	Amostra 4
Víru	ıs entério	os	Data da	coleta								
			UFP/10	00mL								
					Amost	ra 1	Amos	stra 2	Amo	stra 3	1	Amostra 4
Clor	rofila - a	(3)	Data da	coleta								
			UFP/10	00mL								
					Amostr	a 1	Amost	ra 2	Amo	ostra 3		Amostra 4
				7	(Células/	mL)	(Célula:	s/mL)	(Célul	las/mL)		(Células/mL)
				Data da coleta								
			Anabaena									
Ciar	obactéri	(4)	Aphanoca									
Ciali	ionacter	as	Aphanoth									
				spermopsis sp.								
			Geitlerine									
			Jaaginem	ια ομ.								

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
(4)	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				4
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	- Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta			Amostra 3	
(5)				Amostra 3	
(5) Cianotoxinas	Data da coleta			Amostra 3	
	Data da coleta Microcistina (μg/L)			Amostra 3	
	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)			Amostra 3	

(1) Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

Nota 1: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-desi	nfecção			
	Número de amostras analisadas	0			
	Percentil 95 (uT)	0			
Turbidez	Número de dados > 1,0 uT	0			
	Número de dados > 0,5 uT e ≤ 1,0 uT	0			
	Número de dados > 0,3 uT e ≤ 0,5 uT	0			
	Número de dados ≤ 0,3 uT	0			
	Saída do tratamento				
Turbidez	Número de amostras analisadas	38			
	Percentil 95 (uT)	0,27			
	Saída do tratamen	to			
	Número de amostras analisadas	4			
Cor	Percentil 95 (uT)	2			
	Número de dados > 15,0 uH	0			
	Número de dados ≤ 15,0 uH	4			

	Saída do tratamento					
	Número de amostras analisadas	8				
pН	Número de dados > 9,0	0				
	Número de dados ≥6,0 e ≤9,0	8				
	Número de dados < 6,0	0				
	Saída do tratamento					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7				
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0				
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8				
	Número de amostras analisadas	38				
Fluoreto (6)	Percentil 95 (mg/L)	1,18				
Fluoreto	Referência à Portaria GM/MS n° 2.914/2011					
	Número de dados > 1,5 mg/L	0				
	Número de dados ≤1,5 mg/L	38				
	Referência à Nota Técnica DIVS 002/2017					
	Número de dados > 1,0 mg/L	3				
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	35				
	Número de dados < 0,7 mg/L	0				
	Saída do tratamento					
	Número de amostras analisadas	38				
(7)	Percentil 95 (mg/L)	1,82				
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0				
,	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	1				
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	37				
	Número de dados < 0,2mg/L	0				
	Número de amostras analisadas	0				
Desinfecção (7)	Percentil 95 (mg/L)	0				
(Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados > 2,0 ≤ 4,0 mg/L	0				
	Número de dados < 2,0 mg/L	0				
	Número de amostras analisadas	0				
(7)	Percentil 95 (mg/L)	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0				
,	Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0				
	Número de dados ≤ 0,2 mg/L	0				

	Saída do tratamento				
Coliformes Totais	Número de amostras analisadas	8			
Comormes Totals	N° de amostras com presença de coliformes totais	0			
	N° de amostras com ausência de coliformes totais	8			
	Saída do tratamento				
Escherichia coli	Número de amostras analisadas	8			
Escherichia con	N° de amostras com presença de Escherichia coli	0			
	N° de amostras com ausência de Escherichia coli	8			

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota₂: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO								
Município / UF	Irani			Data de preenchimento do relatório mensal			10/07/2019	
		Bruna Favassa Chiot			Cargo do responsável	Engenheira (Química	
O sistema de distribuição recebeu água no mês ?			Atenção: No Sisagua, ao marcar o ícone "O sistema de distribuição não recebe água no mês", os campos para inserção de resultados dos ficam desabilitados.					
2.1 — Informações relacionadas à infraestrutura e às condições operacionais (por localidade atingida) — Número de eventos								

2.2 – MONITORAMEN	NTO DA QUALIDADE DA ÁGUA TRATADA						
	Sistema de distribuição						
(9)	Número de amostras analisadas	0					
Turbidez	Número de dados > 5,0 uT (13)	0					
	Número de dados 5,0 uT	0					
	Sistema de distribuição						
(9)	Número de amostras analisadas	0					
Cor	Número de dados > 15,0 uH (13)	0					
	Número de dados 15,0 uH	0					
	Sistema de distribuição						
(9,12)	Número de amostras analisadas	0					
PH	Número de dados > 9,5 (13)	0					
	Número de dados ≥ 6,0 e ≤ 9,5	0					
	Número de dados < 6,0 (13)	0					
	Sistema de distribuição						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7					
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0					
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8					
(0.40.40)	Número de amostras analisadas	0					
Fluoreto (9,10,12)	Referência à Portaria GM/MS nº 2.914/2011						
	Número de dados > 1,5 mg/L (13)	0					
	Número de dados ≤1,5 mg/L	0					
	Referência à Nota Técnica DIVS 002/2017						
	Número de dados > 1,0 mg/L (13)	0					
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	0					
	Número de dados < 0,7 mg/L (13)	0					
	Sistema de distribuição						
	Número de amostras analisadas	0					
Desinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0					
(Cloro Residual Livre)	Número de dados > 2,0 \leq 5,0 mg/L ⁽¹³⁾	0					
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	0					
	Número de dados < 0,2 mg/L (13)	0					
	Número de amostras analisadas	0					
(9,11) Desinfecção	Percentil 95% (mg/L)	0					
(Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					

	Número de amostras ana	0				
(9,11)	Percentil 95% (mg/L)	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 n	ng/L		0		
,	Número de dados > 0,2 ≤	≤ 1,0 mg/L		0		
	Número de dados ≤ 0,2 m	ng/L		0		
		Sist	ema de distribuição			
Coliformes Totais	Número de amostras anal			0		
Comormes Totals	N° de amostras com pres	ença de coliformes t	totais (13)	0		
	N° de amostras com ausê			0		
		Sist	ema de distribuição			
Escherichia coli	Número de amostras anal	0				
Escherichia coli	N° de amostras com pres	0				
	N° de amostras com ausê	0				
	Sistema de distribuição					
Bactérias (9)	Número de amostras anal	0				
heterotróficas	Número de dados >500 U	0				
	Número de dados <500 U	0				
		Amostra 1	Amostra 2	Amostra 3	Amostra 4	
	Data da coleta					
	Microcistina (μg/L)					
Cianotoxinas ⁽⁹⁾	Saxitoxina (μg/L) (g equivalente STX/L)					
	Cilindroespermopsina (μg/L)					
	Anatoxina (μg/L)					
	Outra(s) (µg/L)					

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de fluor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDENTIFIC	AÇÃO D	O SAA						
UF SC Municípi	o Irani			Referé	ència	de 01/04/2	2019 à 30/04/201	9
Nome do SAA	Irani U	Jnidade I		Códig	o SAA (SisAgua)	S42078000000)2
Instituição Responsável CASAN								
PARTE II - MONITOR	AMENT	O DA QUALIDA	DE DA ÁGUA (1	-TRAT. DE ÁGUA	E/OU 2	-SIST. DE I	DISTRIBUIÇÃ(0)
1 - TRATAMENTO DA	ÁGUA							
Nome da ETA/UTA	ETA Irani	Unidade II	Data	de preenchimento	do relat	ório mensal	13/05/2019	
Responsável pelas infori	nações	Bruna Favassa (Chiot	Cargo do Respor	ısável	Engenheira	a Química	
A ETA operou no mês?		X Sim Não		Sisagua, ao marcar o inserção de resultado				os
1.1 - PONTO DE CAPT	ACÃO:	Superficial	Subterrâneo					
Nome: Indefinido				Latitude: 0		Longitu	de: 0	
			Amostra 1	Amostra 2	A	mostra 3	Amostra	ı 4
Escherichia coli	Data da	ı coleta						
	E.coli/1	l00mL						
(1)			Amostra 1	Amostra 2	Aı	mostra 3	Amostra	4
Protozoários - Cryptosporidium spp.	Data da	ı coleta						
Стурногропинит грр.	Oocisto	os/L						
(1)			Amostra 1	Amostra 2	A	mostra 3	Amostra	ı 4
Protozoários -	Data da	ı coleta						
Giardia spp.	Cistos/l							
	Ciscosi E		Amostra 1	Amostra 2	Δ	Amostra 3	Amostra	9 4
Vírus entéricos	Data da	r coleta	7 mostra 1	7 mostra 2			71110561	• •
vii us cittericos	UFP/10							
	OFF/IC	JOHL						4
(3)	Data da	1 - 4 -	Amostra 1	Amostra 2	A	Amostra 3	Amostra	a 4
Clorofila - a	Data da							
	UFP/10	00mL						
			Amostra 1 (Células/mL)	Amostra 2 (Células/mL)		Amostra 3 Células/mL)	Amostra (Células/n	
		Data da coleta	(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((Contains)	
	Anabaen	a sp.						
(4)	Aphanoc							
Cianobactérias	Aphanoth	-						
		spermopsis sp.						
	Geitlerine Jaaginen							
	Lyngbya	······						

Microcystis sp.

	<u> </u>		Y	}	ĭ
	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	- Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
(5) Cianotoxinas	Data da coleta				
	Data da coleta Microcistina (μg/L)				
	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota₁: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

1.2 - ÁGUA TRAT	TADA					
	Pós-filtração ou Pré-desi	nfecção				
	Número de amostras analisadas	0				
	Percentil 95 (uT)	0				
Turbidez	Número de dados > 1,0 uT	0				
	Número de dados > 0,5 uT e ≤ 1,0 uT	0				
	Número de dados $> 0.3 \text{ uT e} \le 0.5 \text{ uT}$	0				
	Número de dados ≤ 0,3 uT	0				
	Saída do tratament	io .				
Turbidez	Número de amostras analisadas	38				
	Percentil 95 (uT)	0,23				
	Saída do tratamento					
	Número de amostras analisadas	4				
Cor	Percentil 95 (uT)	3				
	Número de dados > 15,0 uH	0				
	Número de dados ≤ 15,0 uH	4				

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento						
	Número de amostras analisadas	8					
pН	Número de dados > 9,0	0					
	Número de dados ≥ 6,0 e ≤ 9,0	8					
	Número de dados < 6,0	0					
	Saída do tratamento						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7					
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0					
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8					
	Número de amostras analisadas	38					
(6)	Percentil 95 (mg/L)	1,37					
Fluoreto (6)	Referência à Portaria GM/MS nº 2.914/2011						
	Número de dados > 1,5 mg/L	1					
	Número de dados ≤1,5 mg/L	37					
	Referência à Nota Técnica DIVS 002/2017						
	Número de dados > 1,0 mg/L	4					
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	28					
	Número de dados < 0,7 mg/L	6					
	Saída do tratamento						
	Número de amostras analisadas	38					
(7)	Percentil 95 (mg/L)	1					
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0					
(0.010 1.00.0	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0					
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	38					
	Número de dados < 0,2mg/L	0					
	Número de amostras analisadas	0					
Desinfecção (7)	Percentil 95 (mg/L)	0					
(Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					
	Número de amostras analisadas	0					
(7)	Percentil 95 (mg/L)	0					
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0					
(Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0					
	Número de dados ≤ 0,2 mg/L	0					

	Saída do tratamento						
Coliformes Totais	Número de amostras analisadas	8					
Colliormes Totals	N° de amostras com presença de coliformes totais	0					
	N° de amostras com ausência de coliformes totais	8					
	Saída do tratamento						
Escherichia coli	Número de amostras analisadas	8					
Escherichia con	N° de amostras com presença de Escherichia coli	0					
	N° de amostras com ausência de Escherichia coli	8					

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota2: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO								
Município / UF	Irani				Data de preenchimento do relatório mensal			
Responsável pelas informações		Bruna Favassa Chiot			Cargo do responsável	Engenheira (Química	
O sistema de distrib água no mês ?	ouição recebeu	☐ Sim ☐ Não	Atenção: água no		sagua, ao marcar o ícone "O os campos para inserção de re		,	
2.1 — Informações relacionadas à infraestrutura e às condições operacionais (por localidade atingida) — Número de eventos								

2.2 – MONITORAMEN	NTO DA QUALIDADE DA ÁGUA TRATADA						
	Sistema de distribuição						
(9)	Número de amostras analisadas	0					
Turbidez	Número de dados > 5,0 uT (13)	0					
	Número de dados 5,0 uT	0					
	Sistema de distribuição						
(9)	Número de amostras analisadas	0					
Cor	Número de dados > 15,0 uH (13)	0					
	Número de dados 15,0 uH	0					
	Sistema de distribuição						
(9,12)	Número de amostras analisadas	0					
PH	Número de dados > 9,5 ⁽¹³⁾	0					
	Número de dados ≥ 6,0 e ≤ 9,5	0					
	Número de dados < 6,0 ⁽¹³⁾	0					
	Sistema de distribuição						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7					
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0					
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8					
(0.40.40)	Número de amostras analisadas	0					
Fluoreto (9,10,12)	Referência à Portaria GM/MS nº 2.914/2011						
	Número de dados > 1,5 mg/L (13)	0					
	Número de dados ≤1,5 mg/L	0					
	Referência à Nota Técnica DIVS 002/2017						
	Número de dados > 1,0 mg/L (13)	0					
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	0					
	Número de dados < 0,7 mg/L (13)	0					
	Sistema de distribuição						
	Número de amostras analisadas	0					
Desinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0					
(Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0					
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	0					
	Número de dados < 0,2 mg/L (13)	0					
	Número de amostras analisadas	0					
(9,11)	Percentil 95% (mg/L)	0					
Desinfecção (Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					

	Número de amostras ana	lisadas		0				
(9,11)	Percentil 95% (mg/L)			0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 r	ng/L		0				
(=,	Número de dados > 0,2 :	≤ 1,0 mg/L		0				
	Número de dados ≤ 0,2 n	ng/L		0				
		Sist	ema de distribuição					
Coliformes Totais	Número de amostras ana			0				
Conformes Totals	N° de amostras com pres	ença de coliformes t	otais (13)	0				
	N° de amostras com ausé			0				
		Sist	ema de distribuição					
(9)	Número de amostras ana	lisadas		0				
Escherichia coli	N° de amostras com pres	ença de Escherichia	coli ⁽¹³⁾	0				
	N° de amostras com ausé	ència de Escherichia	coli	0				
	Sistema de distribuição							
Bactérias (9)	Número de amostras ana	lisadas		0				
heterotróficas	Número de dados >500 U	JFC/100mL ⁽¹³⁾		0				
	Número de dados <500 U	JFC/100mL		0				
		Amostra 1	Amostra 2	Amostra 3	Amostra 4			
	Data da coleta							
	Microcistina (μg/L)							
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)							
	Cilindroespermopsina (µg/L)							
	Anatoxina (μg/L)							
	Outra(s) (μg/L)							

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amost as fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PAR'	TE I - II	DENTIFICA	ÇAO DO	O SAA							
UF	SC	Município	Irani	Irani Referência						019 à 31/07/2019	
Nome	e do SAA	4	Irani U	nidade I				ódigo SAA ((SisAgua)	S420780000002	
Instit	uição R	esponsável	CASA	N							
	,										
PAR	TE II - I	MONITORA	AMENT(O DA QUALIDA	DE DA ÁG	UA (1-T	TRAT. DE ÁO	GUA E/OU 2	S-SIST. DE D	OISTRIBUIÇÃO)	
		IENTO DA								, ,	
Nome	e da ETA	A/UTA E	TA Irani	Unidade II		Data d	le preenchim	ento do rela	tório mensal	07/08/2019	
Respo	onsável	pelas inform	ações	Bruna Favassa (Chiot		Cargo do R	esponsável	Engenheira	Química	
A ET	A opero	u no mês?		X Sim Não			sagua, ao mar serção de resu			perou no mês", os idos.	
11 1	PONTO	DE CAPTA	\CÃO:	Superficial	X Subter	râneo					
			-							_	
Nome	e: Rua	Monge João	Maria, Si	N (Poço 4) - Alto	Iranı		Latitude:		Longitud	le:	
				·						· · · · · · · · · · · · · · · · · · ·	
					Amostr	a 1	Amostra	12 A	mostra 3	Amostra 4	
Esch	herichia	coli	Data da coleta					-	16/07/2019		
			E.coli/100mL						0,0		
		(1)			Amostra 1		Amostra 2		mostra 3	Amostra 4	
	ozoários	: -	Data da	coleta							
Cryp	otosporia	lium spp.	Oocisto								
			Occisio	13/ L	Amosti	1	Amostr	- 0 .	mostra 3	A	
Prot	ozoários	(1) : -			Amosu	гат	Amostr	1	amostra 5	Amostra 4	
	dia spp.		Data da								
			Cistos/I								
		(2)			Amost	ra 1	Amostr	a 2 A	Amostra 3	Amostra 4	
Víru	s entéri	cos (2)	Data da	coleta							
			UFP/10	00mL							
					Amost	ra 1	Amostr	a 2	Amostra 3	Amostra 4	
Clor	ofila - a	(3)	Data da	coleta							
			UFP/10								
			011/10	VIIIE	Amostra	a 1	Amostra	2	Amostra 3	Amostra 4	
					(Células/		(Células/n		Células/mL)	(Células/mL)	
				Data da coleta			***************************************				
			Anabaena	ı sp.							
		(4)	Aphanoca	apsa sp.							
Cian	obactér	ias	Aphanoth	nece sp.							
				spermopsis sp.							
			Geitlerine	ema sp.							
			Jaaginem	ıa sp.							
			Lyngbya	sp.							

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
40	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				φ
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	- Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta			Amostra 3	
(5)				Amostra 3	
(5) Cianotoxinas	Data da coleta			Amostra 3	
	Data da coleta Microcistina (μg/L)			Amostra 3	
	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)			Amostra 3	

(1) Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

Nota 1: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-desi	nfeccão		
	Número de amostras analisadas	0		
	Percentil 95 (uT)	0		
Turbidez	Número de dados > 1,0 uT	0		
	Número de dados > 0,5 uT e ≤ 1,0 uT	0		
	Número de dados > 0,3 uT e ≤ 0,5 uT	0		
	Número de dados ≤ 0,3 uT	0		
	Saída do tratament	to		
Turbidez	Número de amostras analisadas	39		
	Percentil 95 (uT)	0,24		
	Saída do tratamento			
	Número de amostras analisadas	4		
Cor	Percentil 95 (uT)	1		
	Número de dados > 15,0 uH	0		
	Número de dados ≤ 15,0 uH	4		

	Saída do tratamento					
	Número de amostras analisadas	8				
рН	Número de dados > 9,0	0				
	Número de dados ≥6,0 e ≤9,0	8				
	Número de dados < 6,0	0				
	Saída do tratamento					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7				
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0				
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8				
	Número de amostras analisadas	39				
Fluoreto (6)	Percentil 95 (mg/L)	1,02				
riuoreto	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L	0				
	Número de dados ≤1,5 mg/L	39				
	Referência à Nota Técnica DIVS 002/2017					
	Número de dados > 1,0 mg/L	2				
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	35				
	Número de dados < 0,7 mg/L	2				
	Saída do tratamento					
	Número de amostras analisadas	39				
(7)	Percentil 95 (mg/L)	1,2				
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0				
,	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0				
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	39				
	Número de dados < 0,2mg/L	0				
	Número de amostras analisadas	0				
Desinfecção (7)	Percentil 95 (mg/L)	0				
(Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				
	Número de amostras analisadas	0				
(7)	Percentil 95 (mg/L)	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0				
,	Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0				
	Número de dados ≤ 0,2 mg/L	0				

	Saída do tratamento				
Coliformes Totais	Número de amostras analisadas	8			
Comormes Totals	N° de amostras com presença de coliformes totais	0			
	N° de amostras com ausência de coliformes totais	8			
	Saída do tratamento				
Escherichia coli	Número de amostras analisadas	8			
Escherichia con	N° de amostras com presença de Escherichia coli	0			
	N° de amostras com ausência de Escherichia coli	8			

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota₂: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

A CACCETAL DE DACEDIDATACÃO							
2 - SISTEMA DE DISTRIBUIÇÃO							
Município / UF	Irani	Irani			de preenchimento do relato	07/08/2019	
Responsável pelas informações Bruna Favassa Chio				Cargo do responsável	Engenheira (Química	
		Atenção: água no i		sagua, ao marcar o ícone "O os campos para inserção de re			
2.1 — Informações r	elacionadas à i	nfraestrutura e às c	condições	opera	cionais (por localidade atir	ıgida) – Núm	ero de eventos

2.2 – MONITORAMEN	NTO DA QUALIDADE DA ÁGUA TRATADA					
	Sistema de distribuição					
(9)	Número de amostras analisadas	0				
Turbidez	Número de dados > 5,0 uT (13)	0				
	Número de dados 5,0 uT	0				
	Sistema de distribuição					
(9)	Número de amostras analisadas	0				
Cor	Número de dados > 15,0 uH (13)	0				
	Número de dados 15,0 uH	0				
	Sistema de distribuição					
(9,12)	Número de amostras analisadas	0				
PH	Número de dados > 9,5 (13)	0				
	Número de dados ≥ 6,0 e ≤ 9,5	0				
	Número de dados < 6,0 ⁽¹³⁾	0				
	Sistema de distribuição					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7				
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0				
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8				
(9.49.49)	Número de amostras analisadas	0				
(9,10,12) Fluoreto	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L (13)	0				
	Número de dados ≤1,5 mg/L	0				
	Referência à Nota Técnica DIVS 002/2017					
	Número de dados > 1,0 mg/L (13)	0				
	Número de dados \geq = 0,7 mg/L e \leq = 1,0 mg/L	0				
	Número de dados $< 0.7 \text{ mg/L}$ (13)	0				
	Sistema de distribuição					
	Número de amostras analisadas	0				
Desinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0				
(Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0				
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	0				
	Número de dados < 0,2 mg/L (13)	0				
	Número de amostras analisadas	0				
(9,11) Desinfecção	Percentil 95% (mg/L)	0				
(Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				

	Número de amostras analisadas					
(9,11)	Percentil 95% (mg/L)	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 r	ng/L		0		
,	Número de dados > 0,2 ≤	≤ 1,0 mg/L		0		
	Número de dados ≤ 0,2 n	ıg/L		0		
		Sist	ema de distribuição			
Coliformes Totais	Número de amostras anal			0		
Comormes Totals	N° de amostras com pres	N° de amostras com presença de coliformes totais (13)				
	N° de amostras com ausê			0		
		Sist	ema de distribuição			
Escherichia coli	Número de amostras anal	0				
Escnericnia coli	N° de amostras com pres	0				
	N° de amostras com ausê	ncia de Escherichia	coli	0		
		Sist	ema de distribuição	ão		
Bactérias (9)	Número de amostras anal	lisadas		0		
heterotróficas	Número de dados >500 U	JFC/100mL ⁽¹³⁾		0		
	Número de dados <500 U	JFC/100mL		0		
		Amostra 1	Amostra 2	Amostra 3	Amostra 4	
	Data da coleta					
Cianotoxinas (9)	Microcistina (μg/L)					
	Saxitoxina (μg/L) (g equivalente STX/L)					
	Cilindroespermopsina (μg/L)					
	Anatoxina (μg/L)					
	Outra(s) (μg/L)					

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de fluor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTE I - IDENTIFICA	AÇAO DO	O SAA							
UF SC Município	o Irani				Refe	erência	de 01/05/2	019 à	31/05/2019
Nome do SAA	Irani U	nidade I			Cód	igo SAA (S	SisAgua)	S42	0780000002
Instituição Responsável	CASA	N							
, ,									
PARTE II - MONITOR	AMENT(O DA QUALIDA	DE DA ÁGI	J A (1-TRA)	T. DE ÁGU	A E/OU 2.	-SIST. DE I	ISTI	RIBUIÇÃO)
1 - TRATAMENTO DA	ÁGUA								
Nome da ETA/UTA E	TA Irani	Unidade II		Data de pr	eenchiment	o do relat	ório mensal	1	3/06/2019
Responsável pelas inform	nações	Bruna Favassa	Chiot	Cai	rgo do Resp	onsável	Engenheira	Quír	mica
A ETA operou no mês?		X Sim Não					A ETA não o am desabilita		ı no mês", os
1.1 - PONTO DE CAPT.	ACÃO:	Superficial	X Subtern	âneo					
Nome: Rua Monge João	Maria, Sì	N (Poço 4) - Alto	Irani	Lati	itude:		Longitud	le:	
			Amostra	1	Amostra 2	A	mostra 3		Amostra 4
Escherichia coli	Data da	coleta							23/05/2019
E.coli/		00mL							0,0
(4)			Amostra	1	Amostra 2	An	nostra 3		Amostra 4
Protozoários -	Data da	coleta							
Cryptosporidium spp. Data da Oocisto									
	Occisio	/5/ L	Amostr	a 1	Amostra 2	A.	mostra 3		Amostra 4
Protozoários -	D . 1	1 .	Amosu	a 1	Amostra 2	A	mostra 3		Amostra 4
Giardia spp.	Data da								
	Cistos/I	_							
(2)			Amosti	a 1	Amostra 2	A	mostra 3		Amostra 4
Vírus entéricos	Data da	coleta							
	UFP/10	0mL							
			Amosti	a 1	Amostra 2	A	mostra 3		Amostra 4
Clorofila - a	Data da	coleta							
	UFP/10	00mL							
			Amostra	1	Amostra 2		Amostra 3		Amostra 4
			(Células/ı	nL)	(Células/mL)	((Células/mL)		(Células/mL)
		Data da coleta							
(4)	Anabaena								
Cianobactérias (4)	Aphanoca								
Clambacter ias	Aphanoth	spermopsis sp.							
	Geitlerine								
	Jaaginem								
	Lyngbya								
	Microcys								

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
(4)	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	1				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	Amostra 1	Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
Cianotoxinas (5)	Data da coleta				
	Data da coleta Microcistina (µg/L)				
	Data da coleta Microcistina (µg/L) Saxitoxina (µg/L)				

Nota 1: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

1.2 - ÁGUA TRAT	TADA					
	Pós-filtração ou Pré-desi	Pós-filtração ou Pré-desinfecção				
	Número de amostras analisadas	0				
	Percentil 95 (uT)	0				
Turbidez	Número de dados > 1,0 uT	0				
	Número de dados > 0,5 uT e ≤ 1,0 uT	0				
	Número de dados > 0.3 uT e ≤ 0.5 uT	0				
	Número de dados ≤ 0,3 uT	0				
	Saída do tratamento					
Turbidez	Número de amostras analisadas	39				
	Percentil 95 (uT)	0,49				
	Saída do tratamento					
	Número de amostras analisadas	4				
Cor	Percentil 95 (uT)	2				
	Número de dados > 15,0 uH	0				
	Número de dados ≤ 15,0 uH	4				

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento					
	Número de amostras analisadas	8				
рН	Número de dados > 9,0	0				
	Número de dados ≥ 6,0 e ≤ 9,0	8				
	Número de dados < 6,0	0				
	Saída do tratamento					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7				
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0				
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8				
	Número de amostras analisadas	39				
Fluoreto (6)	Percentil 95 (mg/L)	1,11				
riudicio	Referência à Portaria GM/MS n° 2.914/2011					
	Número de dados > 1,5 mg/L	1				
	Número de dados ≤1,5 mg/L	38				
	Referência à Nota Técnica DIVS 002/2017					
	Número de dados > 1,0 mg/L	2				
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	36				
	Número de dados < 0,7 mg/L	1				
	Saída do tratamento					
	Número de amostras analisadas	39				
(7)	Percentil 95 (mg/L)	0,94				
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0				
,	Número de dados $> 2,0 \le 5,0 \text{ mg/L}$	0				
	Número de dados $\geq 0.2 \text{ e } \leq 2.0 \text{ mg/L}$	39				
	Número de dados < 0,2mg/L	0				
	Número de amostras analisadas	0				
Desinfecção (7)	Percentil 95 (mg/L)	0				
(Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				
	Número de amostras analisadas	0				
(7)	Percentil 95 (mg/L)	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0				
,	Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0				
	Número de dados ≤ 0,2 mg/L	0				

	Saída do tratamento				
Coliformes Totais	Número de amostras analisadas	8			
Conformes Totals	N° de amostras com presença de coliformes totais 0				
	N° de amostras com ausência de coliformes totais	8			
	Saída do tratamento				
Escherichia coli	Número de amostras analisadas	8			
Escherichia coli	N° de amostras com presença de Escherichia coli	0			
	N° de amostras com ausência de Escherichia coli	8			

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota₂: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO								
Município / UF	Irani			Data de preenchimento do relatório mensal			13/06/2019	
Responsável pelas informações		Bruna Favassa Chiot			Cargo do responsável	Engenheira (Química	
O sistema de distribuição recebeu água no mês ?		X Sim Não	Atenção: No Sisagua, ao marcar o ícone "O sistema de distribuição não recebágua no mês", os campos para inserção de resultados dos ficam desabilitados					
2.1 — Informações relacionadas à infraestrutura e às condições operacionais (por localidade atingida) — Número de eventos								

	Sistema de distribuição					
(9)	Número de amostras analisadas	0				
Turbidez	Número de dados > 5,0 uT (13)	0				
	Número de dados 5,0 uT	0				
	Sistema de distribuição					
(9)	Número de amostras analisadas	0				
Cor	Número de dados > 15,0 uH (13)	0				
	Número de dados 15,0 uH	0				
	Sistema de distribuição					
(9,12)	Número de amostras analisadas	0				
H	Número de dados > 9,5 (13)	0				
	Número de dados ≥6,0 e ≤ 9,5	0				
	Número de dados < 6,0 (13)	0				
	Sistema de distribuição					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7				
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0				
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8				
	Número de amostras analisadas	0				
(9,10,12) luoreto	Referência à Portaria GM/MS nº 2.914/2011					
	Número de dados > 1,5 mg/L (13)	0				
	Número de dados ≤1,5 mg/L	0				
	Referência à Nota Técnica DIVS 002/2017					
	Número de dados > 1,0 mg/L (13)	0				
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	0				
	Número de dados < 0,7 mg/L (13)	0				
	Sistema de distribuição					
	Número de amostras analisadas	0				
Desinfecção ^(9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0				
Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0				
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	0				
	Número de dados < 0,2 mg/L (13)	0				
	Número de amostras analisadas	0				
(9,11)	Percentil 95% (mg/L)	0				
Desinfecção Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				

	Número de amostras ana	lisadas		0			
(9,11)	Percentil 95% (mg/L)			0			
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 r	ng/L		0			
,	Número de dados > 0,2 ±	≤ 1,0 mg/L		0			
	Número de dados ≤ 0,2 n	ng/L		0			
		Sist	ema de distribuição				
Coliformes Totais	Número de amostras ana			0			
Conformes Totals	N° de amostras com pres	ença de coliformes t	otais (13)	0			
	N° de amostras com ausé			0			
		Sist	ema de distribuição				
(9)	Número de amostras ana	lisadas		0			
Escherichia coli	N° de amostras com pres	ença de Escherichia	coli ⁽¹³⁾	0			
	N° de amostras com ausê	encia de Escherichia	0				
	Sistema de distribuição						
Bactérias (9)	Número de amostras ana			0			
heterotróficas	Número de dados >500 U	JFC/100mL ⁽¹³⁾		0			
	Número de dados <500 U	JFC/100mL		0			
		Amostra 1	Amostra 2	Amostra 3	Amostra 4		
	Data da coleta						
	Microcistina (μg/L)						
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)						
	Cilindroespermopsina (μg/L)						
	Anatoxina (μg/L)						
	Outra(s) (µg/L)						

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PAR'	TE I - II	DENTIFICA	AÇAO D	O SAA							
UF	SC	Município	o Irani				Re	Referência de 01/09/2019 à 30/09/2			
Nome	e do SAA	4	Irani U	Jnidade I			Co	Código SAA (SisAgua) S420780000002			
Instit	uicão R	esponsável	CASA	N							
	,										
PAR'	TE II - I	MONITOR	AMENTO	O DA QUALIDA	DE DA ÁG	UA (1-T	TRAT. DE ÁG	UA E/OU 2	-SIST. DE E	DISTRIBUIÇÃO)	
1 - Tl	RATAN	IENTO DA	ÁGUA								
Nome	e da ETA	A/UTA E	TA Irani	Unidade II		Data d	le preenchime	nto do relat	ório mensal	09/10/2019	
Respo	onsável	pelas inforn	nações	Bruna Favassa (Chiot		Cargo do Re	sponsável	Engenheira	ı Química	
A ET	A opero	ou no mês?		X Sim Não			sagua, ao marc serção de resul			perou no mês", os ados.	
1.1 - 1	PONTO	DE CAPTA	ACÃO:	Superficial	X Subter	râneo					
			-	N (Poço 4) - Alto	Ironi		Latitudo		Lanaitui	1	
Nome	: Kua	Monge Joao	Maria, Si	N (Foço 4) - Alto	11 a 111		Latitude:		Longitud	ie:	
					A4	_ 1	A a a 4 a	2	2	A 4	
				_	Amostr	a 1	Amostra	<u> </u>	mostra 3	Amostra 4	
Esch	herichia	coli	Data da coleta				12/09/2019				
		E.coli/1	00mL			0,0					
		(1)			Amostra 1		Amostra 2		nostra 3	Amostra 4	
	ozoários Hosporio	s - lium spp.	Data da coleta								
Сгур	позрони	uum spp.	Oocisto	os/L							
		/43			Amosti	^a 1	Amostra	2 A	mostra 3	Amostra 4	
	ozoários	(1) S -	Data da coleta								
Giar	dia spp.		ļ	***************************************							
			Cistos/L						_	_	
		(2)			Amost	ra 1	Amostra	12 A	mostra 3	Amostra 4	
Víru	s entéri		Data da	ı coleta							
			UFP/10	00mL							
					Amost	ra 1	Amostra	12 A	mostra 3	Amostra 4	
Clor	ofila - a	(3)	Data da	ı coleta							
			UFP/10	00mL							
					Amostra	a 1	Amostra 2		Amostra 3	Amostra 4	
					(Células/	mL)	(Células/m	L) (Células/mL)	(Células/mL)	
				Data da coleta							
			Anabaena								
Cian	obactér	(4) riae	Aphanoca								
Ciall	ionacter	143	Aphanoth	······································							
			E	spermopsis sp.							
			Geitlerine								
			Jaaginem	······							
			Lyngbya	sp.							

Microcystis sp.

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
4.0	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*			·	4
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	- Amostra 1	- Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
(5) Cianotoxinas	Data da coleta				
* *	Data da coleta Microcistina (µg/L)				
* *	Data da coleta Microcistina (μg/L) Saxitoxina (μg/L)				

Nota 1: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-desinfecção					
	Número de amostras analisadas	0				
	Percentil 95 (uT)	0				
Turbidez	Número de dados > 1,0 uT	0				
	Número de dados > 0,5 uT e ≤ 1,0 uT	0				
	Número de dados > 0,3 uT e ≤ 0,5 uT	0				
	Número de dados ≤ 0,3 uT	0				
	Saída do tratamento					
Turbidez	Número de amostras analisadas	38				
	Percentil 95 (uT)	0,34				
	Saída do tratamento					
	Número de amostras analisadas	4				
Cor	Percentil 95 (uT)	2				
	Número de dados > 15,0 uH	0				
	Número de dados ≤ 15,0 uH	4				

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento						
	Número de amostras analisadas	8					
рН	Número de dados > 9,0	0					
	Número de dados ≥6,0 e ≤9,0	8					
	Número de dados < 6,0	0					
	Saída do tratamento						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7					
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0					
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8					
	Número de amostras analisadas	38					
Fluoreto (6)	Percentil 95 (mg/L)	1					
riuoreto	Referência à Portaria GM/MS nº 2.914/2011						
	Número de dados > 1,5 mg/L	0					
	Número de dados ≤1,5 mg/L	38					
	Referência à Nota Técnica DIVS 002/2017						
	Número de dados > 1,0 mg/L	1					
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	32					
	Número de dados < 0,7 mg/L	5					
	Saída do tratamento						
	Número de amostras analisadas	38					
(7)	Percentil 95 (mg/L)	1					
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0					
,	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0					
	Número de dados ≥ 0,2 e ≤ 2,0 mg/L	38					
	Número de dados < 0,2mg/L	0					
	Número de amostras analisadas	0					
Desinfecção (7)	Percentil 95 (mg/L)	0					
(Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					
	Número de amostras analisadas	0					
(7)	Percentil 95 (mg/L)	0					
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0					
	Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0					
	Número de dados ≤ 0,2 mg/L	0					

	Saída do tratamento					
Coliformes Totais	Número de amostras analisadas	8				
Collormes Totals	N° de amostras com presença de coliformes totais	0				
	N° de amostras com ausência de coliformes totais	8				
	Saída do tratamento					
Easkaviakia aali	Número de amostras analisadas	8				
Escherichia coli	N° de amostras com presença de Escherichia coli	0				
	N° de amostras com ausência de Escherichia coli	8				

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria GM/MS nº 2.914 /2011 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota₂: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO								
Município / UF	Irani	ani			de preenchimento do relato	09/10/2019		
Responsável pelas informações Bruna Fa		Bruna Favassa Chi	una Favassa Chiot		Cargo do responsável	Engenheira	Química	
O sistema de distribuição recebeu agua no mês ?			Atenção: No Sisagua, ao marcar o ícone "O sistema de distribuição não receberágua no mês", os campos para inserção de resultados dos ficam desabilitados.					
2.1 — Informações relacionadas à infraestrutura e às condições operacionais (por localidade atingida) — Número de eventos								

2.2 – MONITORAMEN	TTO DA QUALIDADE DA ÁGUA TRATADA						
	Sistema de distribuição						
Turbidez (9)	Número de amostras analisadas	0					
	Número de dados > 5,0 uT ⁽¹³⁾	0					
	Número de dados 5,0 uT	0					
	Sistema de distribuição						
(9)	Número de amostras analisadas	0					
Cor	Número de dados > 15,0 uH (13)	0					
	Número de dados 15,0 uH	0					
	Sistema de distribuição						
(9,12)	Número de amostras analisadas	0					
PH	Número de dados > 9,5 (13)	0					
	Número de dados ≥6,0 e ≤ 9,5	0					
	Número de dados < 6,0 (13)	0					
	Sistema de distribuição						
	Média das temperaturas máximas diárias (°C)	24,0					
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7					
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0					
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8					
	Número de amostras analisadas	0					
(9,10,12) Fluoreto	Referência à Portaria GM/MS nº 2.914/2011						
	Número de dados > 1,5 mg/L (13)	0					
	Número de dados ≤1,5 mg/L	0					
	Referência à Nota Técnica DIVS 002/2017						
	Número de dados > 1,0 mg/L (13)	0					
	Número de dados $\geq 0.7 \text{ mg/L e} \leq 1.0 \text{ mg/L}$	0					
	Número de dados < 0,7 mg/L (13)	0					
	Sistema de distribuição						
	Número de amostras analisadas	0					
Desinfecção (9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0					
(Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0					
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	0					
	Número de dados < 0,2 mg/L (13)	0					
	Número de amostras analisadas	0					
(9,11)	Percentil 95% (mg/L)	0					
Desinfecção (Cloro Residual	Número de dados > 4,0 mg/L	0					
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0					
	Número de dados < 2,0 mg/L	0					

	Número de amostras ana		0				
(9,11)	Percentil 95% (mg/L)		0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 r	ng/L		0			
(=,	Número de dados > 0,2 ≤	≤ 1,0 mg/L		0			
	Número de dados ≤ 0,2 n	ıg/L		0			
		Sist	ema de distribuição				
Coliformes Totais	Número de amostras anal			0			
Comormes Totals	N° de amostras com pres	ença de coliformes t	totais (13)	0			
	N° de amostras com ausê			0			
		Sist	ema de distribuição				
Escherichia coli	Número de amostras anal	0					
Escnericnia coli	N° de amostras com pres	0					
	N° de amostras com ausê	ncia de Escherichia	0				
	Sistema de distribuição						
Bactérias (9)	Número de amostras anal		0				
heterotróficas	Número de dados >500 U		0				
	Número de dados <500 U	JFC/100mL		0			
		Amostra 1	Amostra 2	Amostra 3	Amostra 4		
	Data da coleta						
	Microcistina (μg/L)						
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)						
	Cilindroespermopsina (μg/L)	Cilindroespermopsina (µg/L)					
	Anatoxina (μg/L)						
	Outra(s) (μg/L)						

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo a Portaria GM nº 635/1975, que dispõe sobre a adição de fluor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria 2.914/2011 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARTET-ID	ENTIFICA	ÇAU DU	J SAA					
UF SC	Município	Irani				Referência	de 01/10/20	019 à 31/10/2019
Nome do SAA		Irani U	nidade I			Código SAA	(SisAgua)	S420780000002
Instituição Res	sponsável	CASA	N					
PARTE II - M	IONITORA	MENT(D DA QUALIDA	DE DA ÁGI	U A (1-TRAT. DE	E ÁGUA E/OU 2	2-SIST. DE D	ISTRIBUIÇÃO)
1 - TRATAMI	ENTO DA Â	ÁGUA						
Nome da ETA	JUTA ET	A Irani	Unidade II		Data de preencl	himento do relat	tório mensal	06/04/2021
Responsável p	elas inform	ações	Bruna Favassa	Chiot	Cargo d	o Responsável	Responsáve	el Técnica Lab. de
A ETA operou	ı no mês?		X Sim Nã		o: No Sisagua, ao para inserção de			perou no mês", os dos.
1.1 - PONTO	DE CAPTA	ÇÃO:	Superficial	X Subtern	râneo			
Nome: Rua M	Monge João N	Maria, Sì	N (Poço 4) - Alto	Irani	Latitude	:	Longitud	e:
				Amostra	1 Amo	ostra 2 A	amostra 3	Amostra 4
Escherichia c	oli	Data da	coleta	09/10/20	19			
		E.coli/1	00mL	0,0				
				Amostra	ı 1 Amo	stra 2 A	mostra 3	Amostra 4
Protozoários -		Data da	coleta					
Cryptosporidi	ium spp.							
		Oocistos/L					_	
Protozoários ·	1)			Amostr	a 1 Amo	ostra 2 A	amostra 3	Amostra 4
Giardia spp.	-	Data da	coleta					
		Cistos/L						
				Amosti	a 1 Am	ostra 2	Amostra 3	Amostra 4
Vírus entéric	(2) OS	Data da	coleta					
		UFP/10	0mI					
		011,10		A oct-	1	ostro 2	1 mastus 3	A-mostro 4
	3)	D-4- 1-	1 - 4 -	Amosti	AIII AIII	ostra 2	Amostra 3	Amostra 4
Clorofila - a		Data da						
		UFP/10	0mL					
				Amostra (Cálulas/		ostra 2 las/mL) (Amostra 3 Células/mL)	Amostra 4
			Data da coleta	(Células/ı	nL) (Ceiu	ias/iiiL) (Ceiuias/IIIL)	(Células/mL)
		Anabaena						
	(4)	Aphanoca						
Cianobactéria		Aphanoth						
			permopsis sp.					
		Geitlerine						
		Jaaginem	a sp.					
		Lyngbya	sp.					
		Microcys	tis sp.					

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
(4)	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	1				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	Amostra 1	Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
Cianotoxinas (5)	Data da coleta				
	Data da coleta Microcistina (µg/L)				
	Data da coleta Microcistina (µg/L) Saxitoxina (µg/L)				

Nota 1: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

	Pós-filtração ou Pré-desi	nfecção			
	Número de amostras analisadas	0			
	Percentil 95 (uT)	0			
Γurbidez	Número de dados > 1,0 uT	0			
	Número de dados > 0,5 uT e ≤ 1,0 uT	0			
	Número de dados > 0,3 uT e ≤ 0,5 uT	0			
	Número de dados ≤ 0,3 uT	0			
	Saída do tratamento				
Γurbidez	Número de amostras analisadas	39			
	Percentil 95 (uT)	0,36			
	Saída do tratamen	to			
	Número de amostras analisadas	4			
Cor	Percentil 95 (uT)	1			
	Número de dados > 15,0 uH	0			
	Número de dados ≤ 15,0 uH	4			

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento	
	Número de amostras analisadas	8
рН	Número de dados > 9,0	0
	Número de dados ≥6,0 e ≤9,0	8
	Número de dados < 6,0	0
	Saída do tratamento	
	Média das temperaturas máximas diárias (°C)	24,0
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8
	Número de amostras analisadas	39
Fluoreto (6)	Percentil 95 (mg/L)	1,15
riuoreto	Referência à Portaria de Consolidação nº 5	
	Número de dados > 1,5 mg/L	1
	Número de dados ≤1,5 mg/L	38
	Referência à Nota Técnica DIVS 002/2017	
	Número de dados > 1,0 mg/L	5
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	30
	Número de dados < 0,7 mg/L	4
	Saída do tratamento	
	Número de amostras analisadas	39
(7)	Percentil 95 (mg/L)	1,1
Desinfecção ⁽⁷⁾ (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0
(0.010 1.000.000.000)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	0
	Número de dados ≥ 0.2 e ≤ 2.0 mg/L	39
	Número de dados < 0,2mg/L	0
	Número de amostras analisadas	0
Desinfecção (7)	Percentil 95 (mg/L)	0
(Cloro Residual	Número de dados > 4,0 mg/L	0
Combinado)	Número de dados $> 2,0 \le 4,0 \text{ mg/L}$	0
	Número de dados < 2,0 mg/L	0
	Número de amostras analisadas	0
(7)	Percentil 95 (mg/L)	0
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0
(= 10.1140 410 01010)	Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0
	Número de dados ≤ 0,2 mg/L	0

	Saída do tratamento				
Coliformes Totais	Número de amostras analisadas	8			
Conformes Totals	N° de amostras com presença de coliformes totais	0			
	N° de amostras com ausência de coliformes totais	8			
	Saída do tratamento				
Escherichia coli	Número de amostras analisadas	8			
Escherichia coli	N° de amostras com presença de Escherichia coli	0			
	N° de amostras com ausência de Escherichia coli	8			

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo o Anexo XX da PRC 05/2017, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria de Consolidação nº 5 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota₂: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE DISTRIBUIÇÃO							
Município / UF	Irani			Data	de preenchimento do relató	orio mensal	06/04/2021
	Responsável pelas informações Bruna Favassa Chiot				Cargo do responsável	Responsável	Técnica Lab. de
		Atenção: água no		sagua, ao marcar o ícone "O os campos para inserção de re			
2.1 – Informações r	elacionadas à i	nfraestrutura e às	condições	opera	cionais (por localidade atin	gida) – Núm	ero de eventos

	Sistema de distribuição				
(9)	Número de amostras analisadas	0			
Turbidez	Número de dados > 5,0 uT (13)	0			
	Número de dados 5,0 uT	0			
	Sistema de distribuição				
(9)	Número de amostras analisadas	0			
Cor	Número de dados > 15,0 uH (13)	0			
	Número de dados 15,0 uH	0			
	Sistema de distribuição				
(0.42)	Número de amostras analisadas	0			
(9,12) PH	Número de dados > 9,5 (13)	0			
	Número de dados ≥6,0 e ≤ 9,5	0			
	Número de dados < 6,0 (13)	0			
	Sistema de distribuição				
	Média das temperaturas máximas diárias (°C)	24,0			
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7			
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0			
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8			
	Número de amostras analisadas	0			
(9,10,12) Fluoreto	Referência à Portaria de Consolidação nº 5				
	Número de dados > 1,5 mg/L (13)	0			
	Número de dados ≤1,5 mg/L	0			
	Referência à Nota Técnica DIVS 002/2017				
	Número de dados > 1,0 mg/L (13)	0			
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	0			
	Número de dados < 0,7 mg/L (13)	0			
	Sistema de distribuição				
	Número de amostras analisadas	0			
Desinfecção ^(9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0			
Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0			
	Número de dados ≥ $0.2 \text{ e} \le 2.0 \text{ mg/L}$	0			
	Número de dados < 0,2 mg/L (13)	0			
	Número de amostras analisadas	0			
(9,11)	Percentil 95% (mg/L)	0			
Desinfecção Cloro Residual	Número de dados > 4,0 mg/L	0			
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0			
	Número de dados < 2,0 mg/L	0			

	Número de amostras ana	alisadas		0		
(9,11)	Percentil 95% (mg/L)		0			
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0	mg/L		0		
(Dioxido de Cioro)	Número de dados > 0,2	≤ 1,0 mg/L		0		
	Número de dados ≤ 0,2 i	Júmero de dados ≤ 0,2 mg/L				
		Sist	tema de distribuição)		
(9)	Número de amostras ana			0		
Coliformes Totais	N° de amostras com pres	sença de coliformes t	totais (13)	0		
	N° de amostras com aus			0		
		Sist	tema de distribuição			
Escherichia coli	Número de amostras ana	llisadas	0			
Escnericnia con	N° de amostras com pres	sença de Escherichia	0			
	N° de amostras com aus	ência de Escherichia	0			
		Sist	tema de distribuição	ão		
Bactérias (9)	Número de amostras ana			0		
heterotróficas	Número de dados >500	UFC/100mL ⁽¹³⁾		0		
	Número de dados <500	UFC/100mL		0		
		Amostra 1	Amostra 2	Amostra 3	Amostra 4	
	Data da coleta					
	Microcistina (μg/L)					
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)					
	Cilindroespermopsina (µg/L)					
	Anatoxina (μg/L)					
	Outra(s) (µg/L)					

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo o Anexo XX da PRC 05/2017, que dispõe sobre a adição de fluor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria de Consolidação nº 5 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

CONTROLE MENSAL - SISTEMA DE ABASTECIMENTO DE ÁGUA

PARIEI-IL	PENTIFICA	ÇAU D	U SAA						
UF SC	Município	Irani				Referência	de 01/12/2	019 à 31/	12/2019
Nome do SAA	<u> </u>	Irani U	nidade I			Código SAA	(SisAgua)	S42078	30000002
Instituição Re	esponsável	CASA	N			'		!	
PARTE II - N	MONITORA	MENTO	O DA QUALIDA	ADE DA ÁG	J A (1-TRAT. DI	E ÁGUA E/OU 2	2-SIST. DE D	ISTRIB	UIÇÃO)
1 - TRATAM	ENTO DA Â	ÁGUA							
Nome da ETA	A/UTA ET	A Irani	Unidade II		Data de preenc	himento do rela	tório mensal	06/04	4/2021
Responsável p	oelas inform	ações	Bruna Favassa	Chiot	Cargo d	o Responsável	Responsáv	el Técnic	a Lab. de
A ETA opero	u no mês?		X Sim Não		o: No Sisagua, ao para inserção de				mês", os
1.1 - PONTO	DE CAPTA	ÇÃO:	Superficial	X Subter	âneo				
Nome: Rua N	Monge João M	Maria, Sì	N (Poço 4) - Alto	Irani	Latitude	:	Longitud	le:	
				Amostra	1 Amo	ostra 2	Amostra 3	A	mostra 4
Escherichia (coli	Data da	coleta	06/12/20	19				
		E.coli/1	00mL	0,0					
	(1)			Amostra	ı 1 Amo	stra 2 A	mostra 3	An	nostra 4
Cryptosporidium spp.		Data da coleta						<u> </u>	
		Oocistos/L							
			5, 2	Amostr	9.1 Am	ostra 2	Amostra 3	Λ.	mostra 4
Protozoários	(1) -	D-4- 1-	- 1 - 4 -	Amosti	aı Am	osti a 2	Amosti a 5	A	111USU 4 4
Giardia spp.		Data da							
		Cistos/I	_						
	(2)			Amost	a 1 Am	ostra 2	Amostra 3	A	mostra 4
Vírus entério	cos	Data da	coleta						
		UFP/10	UFP/100mL						
				Amost	a 1 Am	ostra 2	Amostra 3	A	mostra 4
Clorofila - a	(3)	Data da	coleta						
		UFP/10	00mL						
				Amostra	1 Amo	ostra 2	Amostra 3		Amostra 4
				(Células/	nL) (Célu	ılas/mL) ((Células/mL)	(Células/mL)
		A 1	Data da coleta						
	(4)	Anabaena Aphanoca							
Cianobactéri		Aphanoth							
			spermopsis sp.						
		Geitlerine							***************************************
		Jaaginem							
		Lyngbya							
		Microcys							

	Planktothrix sp.				
	Planktolyngbya sp.				
	Pseudoanabaena sp.				
	Radiocystis sp.				
(4)	Raphidiopsis sp.				
Cianobactérias	Synechococcus sp.				
Cianobacterias	Synechocystis sp.				
	Tychonema sp.				
	Dolichospermum sp.				
	Sphaeropermopsis sp.				
	Outro(s) gênero(s)*				
	1				
	Total de Cianobactérias	-	-	-	-
	Total de Cianobactérias	Amostra 1	Amostra 2	Amostra 3	- Amostra 4
	Total de Cianobactérias Data da coleta				
(5)					
Cianotoxinas (5)	Data da coleta				
	Data da coleta Microcistina (µg/L)				
	Data da coleta Microcistina (µg/L) Saxitoxina (µg/L)				

Nota 1: Caso exista mais de um ponto de captação, preencher os dados de cada um em uma tabela.

1.2 - ÁGUA TRAT	ΓADA					
	Pós-filtração ou Pré-desi	Pós-filtração ou Pré-desinfecção				
	Número de amostras analisadas	0				
	Percentil 95 (uT)	0				
Turbidez	Número de dados > 1,0 uT	0				
	Número de dados > 0,5 uT e ≤ 1,0 uT	0				
	Número de dados > 0,3 uT e ≤ 0,5 uT	0				
	Número de dados ≤ 0,3 uT	0				
	Saída do tratamento					
Turbidez	Número de amostras analisadas	39				
	Percentil 95 (uT)	0,37				
	Saída do tratamen	to				
	Número de amostras analisadas	4				
Cor	Percentil 95 (uT)	2				
	Número de dados > 15,0 uH	0				
	Número de dados ≤ 15,0 uH	4				

⁽¹⁾ Deverá ser monitorado caso a captação seja em manancial superficial e tenha sido identificada média geométrica anual igual ou superior a 1.000 Escherichia coli/100mL; (2) Recomenda-se monitorar caso a captação seja em manancial superficial; (3) Recomenda-se monitorar caso a captação seja em manancial superficial, como indicador de potencial aumento da densidade de cianobactérias; (4) Deverá ser monitorado em frequência mensal caso a captação seja em manancial superficial. Se a concentração encontrada for superior a 10.000 células/mL, a frequência deve ser alterada para semanal (5) Deve-se realizar análise em frequência semanal quando a densidade de cianobactérias exceder 20.000 células/mL.

	Saída do tratamento					
	Número de amostras analisadas	8				
рН	Número de dados > 9,0	0				
	Número de dados ≥ 6,0 e ≤ 9,0	8				
	Número de dados < 6,0	0				
	Saída do tratamento					
	Média das temperaturas máximas diárias (°C)	24,0				
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7				
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0				
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8				
	Número de amostras analisadas	39				
Fluoreto (6)	Percentil 95 (mg/L)	0,98				
riuoreto	Referência à Portaria de Consolidação nº 5					
	Número de dados > 1,5 mg/L	0				
	Número de dados ≤1,5 mg/L	39				
	Referência à Nota Técnica DIVS 002/2017					
	Número de dados > 1,0 mg/L	1				
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	35				
	Número de dados < 0,7 mg/L	3				
	Saída do tratamento					
	Número de amostras analisadas	39				
(7)	Percentil 95 (mg/L)	1,7				
Desinfecção (7) (Cloro Residual Livre)	Número de dados > 5,0 mg/L	0				
,	Número de dados $> 2.0 \le 5.0 \text{ mg/L}$	1				
	Número de dados $\geq 0.2 \text{ e} \leq 2.0 \text{ mg/L}$	38				
	Número de dados < 0,2mg/L	0				
	Número de amostras analisadas	0				
Desinfecção (7)	Percentil 95 (mg/L)	0				
(Cloro Residual	Número de dados > 4,0 mg/L	0				
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0				
	Número de dados < 2,0 mg/L	0				
	Número de amostras analisadas	0				
(7)	Percentil 95 (mg/L)	0				
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0 mg/L	0				
,	Número de dados $> 0.2 \le 1.0 \text{ mg/L}$	0				
	Número de dados ≤ 0,2 mg/L	0				

	Saída do tratamento				
Coliformes Totais	Número de amostras analisadas	8			
Conformes Totals	N° de amostras com presença de coliformes totais	0			
	N° de amostras com ausência de coliformes totais	8			
	Saída do tratamento				
Escherichia coli	Número de amostras analisadas	8			
Escherichia coli	N° de amostras com presença de Escherichia coli	0			
	N° de amostras com ausência de Escherichia coli	8			

⁽⁶⁾ Os valores recomendados para concentração de fluoreto são calculados segundo o Anexo XX da PRC 05/2017, que dispõe sobre a adição de flúor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o Valor Máximo Permitido (VMP) expresso na Portaria de Consolidação nº 5 é de 1,5 mg/L. (7) Habilitado conforme cadastro do SAA (dados de desinfecção). (8) Dispensada a análise na saída do tratamento caso as concentrações de cianotoxinas no manancial forem menores que seus respectivos VMP para água tratada.

Nota₂: Caso exista mais de uma ETA ou UTA, preencher os dados de cada ETA em um formulário.

2 - SISTEMA DE D	OISTRIBUIÇÃ	0					
Município / UF	Irani			Data	de preenchimento do relató	orio mensal	06/04/2021
Responsável pelas i	•	Bruna Favassa Chi			Cargo do responsável	Responsável	Técnica Lab. de
O sistema de distrib água no mês ?	ouição recebeu	X Sim Não	Atenção: água no		sagua, ao marcar o ícone "O os campos para inserção de re		
2.1 – Informações r	elacionadas à i	nfraestrutura e às	condições	opera	cionais (por localidade atin	gida) – Núm	ero de eventos

	Sistema de distribuição	
(9)	Número de amostras analisadas	0
Turbidez	Número de dados > 5,0 uT (13)	0
	Número de dados 5,0 uT	0
	Sistema de distribuição	
(9)	Número de amostras analisadas	0
Cor	Número de dados > 15,0 uH (13)	0
	Número de dados 15,0 uH	0
	Sistema de distribuição	
(0.42)	Número de amostras analisadas	0
(9,12) PH	Número de dados > 9,5 (13)	0
	Número de dados ≥6,0 e ≤ 9,5	0
	Número de dados < 6,0 (13)	0
	Sistema de distribuição	
	Média das temperaturas máximas diárias (°C)	24,0
	Mínimo recomendado Nota Técnica DIVS 002/2017	0,7
	Máximo recomendado Nota Técnica DIVS 002/2017	1,0
	Valor ótimo recomendado Nota Técnica DIVS 002/2017	0,8
	Número de amostras analisadas	0
(9,10,12) Fluoreto	Referência à Portaria de Consolidação nº 5	
	Número de dados > 1,5 mg/L (13)	0
	Número de dados ≤1,5 mg/L	0
	Referência à Nota Técnica DIVS 002/2017	
	Número de dados > 1,0 mg/L (13)	0
	Número de dados >= 0,7 mg/L e <= 1,0 mg/L	0
	Número de dados < 0,7 mg/L (13)	0
	Sistema de distribuição	
	Número de amostras analisadas	0
Desinfecção ^(9,11)	Número de dados > 5,0 mg/L ⁽¹³⁾	0
Cloro Residual Livre)	Número de dados $> 2.0 \le 5.0 \text{ mg/L}^{(13)}$	0
	Número de dados ≥ $0.2 \text{ e} \le 2.0 \text{ mg/L}$	0
	Número de dados < 0,2 mg/L (13)	0
	Número de amostras analisadas	0
(9,11)	Percentil 95% (mg/L)	0
Desinfecção Cloro Residual	Número de dados > 4,0 mg/L	0
Combinado)	Número de dados $> 2.0 \le 4.0 \text{ mg/L}$	0
	Número de dados < 2,0 mg/L	0

	Número de amostras ana	alisadas		0	
(9,11)	Percentil 95% (mg/L)			0	
Desinfecção (Dióxido de Cloro)	Número de dados > 1,0	mg/L		0	
(Dioxido de Cioro)	Número de dados > 0,2	≤ 1,0 mg/L		0	
	Número de dados ≤ 0,2 i	ng/L		0	
		Sist	tema de distribuição)	
(9)	Número de amostras ana			0	
Coliformes Totais	N° de amostras com pres	sença de coliformes t	totais (13)	0	
	N° de amostras com aus			0	
		Sist	tema de distribuição		
Escherichia coli	Número de amostras ana	llisadas		0	
Escnericnia con	N° de amostras com pres	sença de Escherichia	coli (13)	0	
	N° de amostras com aus	ência de Escherichia	coli	0	
		Sist	tema de distribuição		
Bactérias (9)	Número de amostras ana			0	
heterotróficas	Número de dados >500	UFC/100mL ⁽¹³⁾		0	
	Número de dados <500	UFC/100mL		0	
		Amostra 1	Amostra 2	Amostra 3	Amostra 4
	Data da coleta				
	Microcistina (μg/L)				
Cianotoxinas (9)	Saxitoxina (μg/L) (g equivalente STX/L)				
	Cilindroespermopsina (µg/L)				
	Anatoxina (μg/L)				
	Outra(s) (µg/L)				

(9) Caso existam amostras fora do padrão para o parâmetro, deverão ser informados os dados detalhados das amostras conforme tabela de amostras fora do padrão; (10) Os valores recomendados para concentração de fluoreto são calculados segundo o Anexo XX da PRC 05/2017, que dispõe sobre a adição de fluor (fluoretação) na água de sistemas públicos de abastecimento. Ressalta-se que o VMP expresso na Portaria de Consolidação nº 5 é de 1,5 mg/L; (11) Habilitado conforme cadastro do SAA (dados de desinfecção); (12) Análise não obrigatória. (13) Caso existam resultados nessa faixa (fora do padrão ou fora da faixa recomendada), devem ser preenchidas as informações da tabela da próxima página.

Nota 3: Caso exista mais de um Município abastecido, preencher os dados de cada um em uma tabela.

Amostras fora do padrão ou da faixa recomendada no Sistema de distribuição

RESUMO DOS RESULTADOS DA AMOSTRA Nº 90575/2019-0

Processo Comercial N° 28818/2017-7

	DADOS REFERENTES AO CLIENTE
Empresa solicitante:	Companhia Catarinense de Águas e Saneamento
Endereço:	Rua Emilio Blum, 83 - Predio - Centro - Florianópolis - SC - CEP: 88.020-010
Nome do Solicitante:	Ricardo Kazuo Furuya

		DADOS REFER	ENTES A AMOSTRA	
Identificação do item de ensa	io:	7459848		
Identificação do Cliente:	Irani	Unidade I - SD -Rua Eilírio	de Gregori, 142	
Amostra Rotulada como:	Água	Tratada		
Coletor:	Intere	essado		
Data da amostragem:	08/04	1/2019 12:55:00		
Data da entrada no laborató	io:	10/04/2019 10:24	Data de Elaboração do RRA:	29/04/2019

RESULTADOS PARA A AMOSTRA

Parâmetros	Unidade	LQ/ Faixa	Resultados analíticos	PRC N°5/2017 - VMP	Data do Ensaio
Ácidos Haloacéticos Totais (PRC-05-anexo XX)	mg/L	0,033	< 0,033	0,08	12/04/2019 17:25
Cloraminas Totais	mg/L	0,01	0,05	4,0	10/04/2019 14:45
2,4,6-Triclorofenol	mg/L	0,0001	< 0,0001	0,2	15/04/2019 08:38
Trihalometanos Totais	mg/L	0,004	< 0,004	0,1	12/04/2019 15:56

PRC N°5/2017 - VMP Portaria de Consolidação N°5/2017 do Ministério da Saúde

Notas "Mérieux NutriSciences" é nome fantasia, a razão social permanece Bioagri Ambiental Ltda.

Este Relatório de Ensaio só pode ser reproduzido por inteiro e sem nenhuma alteração. LQ/ Faixa = Limite de Quantificação ou Faixa de Trabalho, quando aplicável.

Informações do Cliente

Cloro 1,04

Os resultados se aplicam somente a amostra conforme recebida. Informações relevantes à validade do ensaio, como a data da amostragem, são de responsabilidade do interessado. **Plano de Amostragem**

Plano de amostragem de responsabilidade do interessado.

Dados de Origem

Resumo dos resultados da amostra nº 90575/2019-0 preparado com os dados dos relatórios de ensaio: 90575/2019-0 - Piracicaba, 90575/2019-0 - Paraná / Santa Catarina anexados a este documento. Declaração de Conformidade

Comparando-se os resultados obtidos para a amostra com os valores estabelecidos pela Portaria de Consolidação Nº5/2017 do Ministério da Saúde podemos observar que: O(s) parâmetro(s) satisfazem os limites permitidos.

Referências Metodológicas e Locais de Execução
Bioagri Ambiental Ltda. – Filial Curitiba: Rua Alferes Ângelo Sampaio, 1357 – Batel – Curitiba/PR, registrada no CRQ 9ª Região sob nº 35.419/2013 e responsabilidade técnica da profissional Gabrielle Bendotti.

Cloro e Cloraminas: POP PA 010 - Rev.06

Bioagri Ambiental Ltda. - Matriz: Rua Aljovil Martini, 177/201, Bairro Dois Córregos - Piracicaba/SP, registrada no CRQ 4ª Região sob nº 16082-F e responsabilidade técnica do profissional Marcos Donizete Ceccatto.

HAAs: EPA 552.3:2003

VOC: Determinação: EPA 8260 C: 2006 / Preparo: EPA 5021 A: 2014 SVOC: Determinação: EPA 8270 D:2014, POP PA 076 - Rev. 17 / Preparo: EPA 3510 C:1996, 3535

A:2007, 3510 C: 1996

Chave de Validação: c2fc29aae4ec1b53b3001401222ab801

S Gilceni Machado Controle de Qualidade CRQ 004481956 - 4º Região

eane Maria Bülow Gerente Técnica CRO 09200516 - 9ª Região

RELATÓRIO DE ENSAIO Nº 90575/2019-0 - Piracicaba

Processo Comercial Nº 28818/2017-7

	DADOS REFERENTES AO CLIENTE
Empresa solicitante:	Companhia Catarinense de Águas e Saneamento
Endereço:	Rua Emilio Blum, 83 - Predio - Centro - Florianópolis - SC - CEP: 88.020-010
Nome do Solicitante:	Ricardo Kazuo Furuya

		DADOS REFER	ENTES A AMOSTRA	
Identificação do item de ensa	iio:	7459848		
Identificação do Cliente:	Irani	Unidade I - SD -Rua Eilírio	de Gregori, 142	
Amostra Rotulada como:	Água	Tratada		
Coletor:	Intere	essado		
Data da amostragem:	08/04	1/2019 12:55:00		
Data da entrada no laborató	rio:	10/04/2019 10:24	Data de Elaboração do RE:	29/04/2019

RESULTADOS PARA A AMOSTRA

Parâmetros	CAS	Unidade	LQ/ Faixa	Resultados analíticos	Incerteza	PRC N°5/2017 - VMP	Data do Ensaio
Ácidos Haloacéticos Totais (PRC-05- anexo XX)		mg/L	0,033	< 0,033	n.a.	0,08	12/04/2019 17:25
2,4,6-Triclorofenol	88-06-2	mg/L	0,0001	< 0,0001	n.a.	0,2	15/04/2019 08:38
Trihalometanos Totais		mg/L	0,004	< 0,004	n.a.	0,1	12/04/2019 15:56

CONTROLE DE QUALIDADE DO LABORATÓRIO

Controle de Qualidade - VOC - Água

Ensaios de Recuperação

Parâmetros	Quantidade Adicionada	Unidade	Resultado da Recuperação (%)	Faixa Aceitável de Recuperação (%
93490/2019-0 - Amostra Controle - VOC - Água				
1,1-Dicloroeteno	20	μg/L	100	70 - 130
Benzeno	20	μg/L	85	70 - 130
Tricloroeteno	20	μg/L	90	70 - 130
Tolueno	20	μg/L	80	70 - 130
Clorobenzeno	20	μg/L	90	70 - 130
urrogates 90575/2019-0 - Irani Unidade I - SD -Rua Eilírio	• •			
p-Bromofluorbenzeno	20	%	107	70 - 130
Dibromofluorometano	20	%	112	70 - 130
93490/2019-0 - Amostra Controle - VOC - Água				
p-Bromofluorbenzeno	20	%	98,7	70 - 130
Dibromofluorometano	20	%	88,3	70 - 130
90575/2019-0 - Irani Unidade I - SD -Rua Eilírio	de Gregori, 142			
Dibromofluorometano	20	%	121	70 - 130

Controle de Qualidade - Ácidos Haloacéticos

Ensaios de Recuperação

Parâmetros	Quantidade Adicionada	Unidade	Resultado da Recuperação (%)	Faixa Aceitável de Recuperação (%)
94811/2019-0 - Amostra Controle - HAA				
Ácido Cloroacético (MCAA)	0,007475	mg/L	102	50 - 150
Ácido Bromoacético (MBAA)	0,00504	mg/L	101	50 - 150
Ácido Dicloroacético (DCAA)	0,007465	mg/L	102	50 - 150
Ácido Tricloroacético (TCAA)	0,00249	mg/L	118	50 - 150
Ácido Dibromoacético (DBAA)	0,002465	mg/L	96	50 - 150
Surrogates 90575/2019-0 - Irani Unidade I - SD -Rua Eilíri	io de Gregori, 142			
Ácido 2,3-Dibromopropiônico	0.0125	%	64	50 - 150

94811/2019-0 - Amostra Controle - HAA

Ácido 2,3-Dibromopropiônico	0,0125	%	103	50 - 150
90575/2019-0 - Irani Unidade I - SD -Rua Eilíri	o de Gregori, 142			

PRC N°5/2017 - VMP Portaria de Consolidação N°5/2017 do Ministério da Saúde

Notas "Mérieux NutriSciences" é nome fantasia, a razão social permanece Bioagri Ambiental Ltda. Este Relatório de Ensaio só pode ser reproduzido por inteiro e sem nenhuma alteração. LQ! Faixa = Limite de Quantificação ou Faixa de Trabalho, quando aplicável.

n.a. = Não Aplicável.

Incerteza = Incerteza expandida (U), que é baseada na incerteza padrão combinada, com um nível de confiança de 95% (k=2).

Laboratório cadastrado no IAP segundo número de documento IAPCCL 028

Os resultados se aplicam somente a amostra conforme recebida.

Informações relevantes à validade do ensaio, como a data da amostragem, são de responsabilidade do interessado.

Plano de Amostragem
Plano de amostragem de responsabilidade do interessado.

Responsabilidade Técnica
Os ensaios foram realizados na unidade da Bioagri Ambiental Ltda. - Matriz, situada na Rua Aljovil Martini, 177/201, Bairro Dois Córregos, Cep. 14420-833, Piracicaba/SP, registrada no CRQ 4ª Região sob nº 16082-F e responsabilidade técnica do profissional Marcos Donizete Ceccatto, CRQ nº 04364387, 4ª Região.

Referências Metodológicas

NAS: EPA 552.3:2003
VOC: Determinação: EPA 8260 C: 2006 / Preparo: EPA 5021 A: 2014
SVOC: Determinação: EPA 8270 D:2014, POP PA 076 - Rev. 17 / Preparo: EPA 3510 C:1996, 3535 A:2007, 3510 C: 1996

Chave de Validação: c2fc29aae4ec1b53b3001401222ab801

Cilcen mockado Gilceni Machado Controle de Qualidade CRQ 004481956 - 4º Região

ane Maria Bülow Gerente Técnica CRQ 09200516 - 9º Região

PORTARIA nº 177 - de 22/08/2016

O SECRETÁRIO DE ESTADO DO DESENVOLVIMENTO ECONÔMICO SUSTENTÁVEL, no uso de suas atribuições que lhe conferem o art. 72, inciso VII, da Lei Complementar nº 381, de 7 de maio de 2007, com a redação dada pela Lei Complementar nº 534, de 20 de abril de 2011, e art. 3º, parágrafo único, do Decreto Estadual nº 4.778, de 11 de outubro de 2006,

Considerando o disposto na Portaria SDS nº 25, de 3 de agosto de 2006 e nas Resoluções do Conselho Estadual de Recursos Hídricos — CERH nºs 02 e 03, ambas de 14 de agosto de 2014;

Considerando que a outorga de direito de uso de recursos hídricos tem por objetivo assegurar o controle quantitativo e qualitativo dos usos da água e disciplinar o exercício dos direitos de acesso à água, bem como garantir a prioridade ao abastecimento da população e a dessedentação de animais:

Considerando a solicitação de outorga de direito de uso de recursos hídricos requerida por **Companhia Catarinense de Águas e Saneamento - CASAN**, situada na Rua Emilio Blum, 83, Bairro Centro, município de Florianópolis/SC, Processo DSUST 279/2016,

RESOLVE:

Art. 1º Outorgar o Direito de Uso de Recursos Hídricos à Companhia Catarinense de Águas e Saneamento - CASAN, CNPJ nº 82.508.433/0001-17, a captação de água subterrânea, em 4 poços tubulares profundos, no município de Irani/SC, com as seguintes características:

```
1 – coordenadas geográficas dos pontos de captação: 27°01'20,29"–S e 51°53'39,74"–W (Poço 1); 27°01'21,87"-S e 51°54'02,31"-W (Poço 2); 27°01'18,73"–S e 51°54'07,78"-W (Poço 3); 27°01'09,78"-S e 51°54'09,15"-W (Poço 4);
```

II - vazão máxima captada por hora:

16 m³/hora (Poço 1); 21,35 m³/hora (Poço 2); 22,25 m³/hora (Poço 3); 16,85 m³/hora (Poço 4);

III - volume máximo diário captado:

200 m³/dia (Poço 1); 362,95 m³/dia (Poço 2); 278,125 m³/dia (Poço 3); 269,60 m³/dia (Poço 4);

IV - finalidade do uso: abastecimento público;

V - regime de operação: captação diária,

Rod. SC 401, km 5, nº 4756 - Ed. Office Park - Bloco 2 - 2º andar - Saco Grande II 88032-005 - Florianópolis - SC

Fone: (48) 3665 4200 - sds@sds.sc.gov.br - www.sds.sc.gov.br

12,5 horas por dia (Poço 1): 17 horas por dia (Poco 2); 12,5 horas por dia (Poço 3); 16 horas por dia (Poco 4);

- Vi Bacia Hidrográfica onde se situa a captação: Rio Jacutinga;
- VII Região Hidrográfica: RH 03 Vale do Rio do Peixe;
- VIII manancial (aquífero): Formação Serra Geral...
- Art. 2º A Outorga de Direito de Uso dos recursos hídricos, objeto desta Portaria:
- I Tem prazo de validade de 10 (dez) anos, contados a partir da data de publicação do extrato desta Portaria, podendo ser renovada mediante apresentação de requerimento à SDS, com antecedência mínima de 90 (noventa) dias do término de sua validade;
- II poderá ser revogada ou suspensa a qualquer tempo, independentemente de indenização, nos casos expressos nos artigos 42 e 43 do Decreto nº 4.778, de 11 de outubro de 2006;
- III poderá ser revista após a aprovação do Plano Estadual de Recursos Hídricos, da elaboração do Plano da Bacia, ou ainda por alteração dos critérios de . outorga;
- IV obriga o outorgado a recolher os valores referentes à cobrança. pelo uso dos recursos hídricos, quando exigível.
- Art. 3º A captação deverá ser operada de modo a garantir a qualidade da água e a preservação ambiental, respeitando também as seguintes condicionantes:
- I observar a recomendação técnica de melhoria na eficiência dos processos de captação, tratamento e distribuição, visando à redução do desperdício e a sobre-explotação do poço;
- II atender a legislação em relação ao uso a ser dado para a água captada, em especial a Portaria do Ministério da Saúde nº 2914 de 12 de dezembro de 2011, quando tratar-se de água destinada ao consumo humano;
- III existência permanente e em perfeito funcionamento, de equipamentos de medição para monitoramento contínuo das vazões captadas e quando solicitado, deverá enviar o relatório operacional do poço, ao órgão gestor de recursos hídricos.
- Art. 4º Esta Outorga de Direito de Uso não dispensa, nem substitui a obtenção, pelo outorgado, de certidões, alvarás ou licenças de qualquer natureza, exigidos pela legislação federal, estadual ou municipal.

Rod. SC 401, km 5, nº 4756 - Ed. Office Park - Bloco 2 - 2º andar - Saco Grande II 88032-005 - Florianópolis - SC Fone: (48) 3665 4200 - sds@sds.sc.gov.br - www.sds.sc.gov.br

ESTADO DE SANTA CATARINA SECRETARIA DE ESTADO DO DESENVOLVIMENTO ECONÔMICO SUSTENTÁVEL GABINETE DO SECRETÁRIO ADJUNTO

Art. 5º As informações sobre o empreendimento são de exclusiva responsabilidade do outorgado, sendo que as infrações e penalidades se encontram caracterizadas no artigo 20 da Resolução CERH 02 de 14 de agosto de 2014.

Art. 6º Esta Portaria entra em vigor na data de publicação do respectivo extrato.

MARÇO AURÉLIO DUTRA Secretário Adjunto

ATO nº 2076 - de 10/10/2016 CONSIDERAR DESIGNADO, de acordo com o art. 38, da Lei nº CONSIDERAR DESIGNADO, de acordo com o art. 38, de Lei m.
6.745/85, conforme processo nº SOR26 1661/2016, CHARLES
PALMA SCHLISTING, mai. nº 0373333-5-01, que respondeu pelo
cargo de GERENTE DE ADMINISTRAÇÃO FINANÇAS E CONTABILIDADE, nível DGS/FTG - 2, de ADR-SÃO JOAQUÍM, em
substituição ao titular, Luiz Gonzaga Coste, mai. nº 0685546-7,
durante o usufrulo de licença seúde, no período de 01.09.18 a

ATO nº 2077 - de 10/10/2016

DESIGNAR, de acordo com o art. 71, inciso VI, da Constituição Estaduel, conforme processo nº SDR04 5925/2016, MARIA DE LURDES SEBEN, mat. nº 0170942-9-01, GERENTE DE EDUCA-LORUES SIBEN, Mar. MOT/1942/5-01, GERENTE DE EDUCA-ÇÃO, pera esponder, cumulativamente, peto cargo da SECRE-TÁRIO EXECUTIVO DE AGÊNCIA DE DESENVOLVIMENTO REGIONAL, do ADR-CHAPECO, em substituição va titular, Amé-rico do Nascimento Junior, matricular nº 0679133-5-02, durante o usufruto de térias, no período de 10/10/2016 a 27/10/2016.

ATO nº 2078 - de 10/10/2016 CONCEDER EXONERAÇÃO, de acordo com o art. 169, da Lei n° 6,745/85, conforme processo n° FCC 2749/2016, a IVO ANTO-NIO PAGAMINI, mat. n° 0967250-5-01, do cargo de GERENTE DE APOIO OPERACIONAL, nível DGS/FTG-2, da FCC, a contar de 21/09/2016.

ATO nº 2079 - de 10/10/2016

AIO m 2079 - de 10/10/2016 NOMEAR, de abordo com os arts. 9° e 11, da Lei nº 6.745/86, DAVID CHRISTIAN BUSARELLO, mat. nº 09575/98-3-03, para exercer o cargo de ASSISTENTE DO SECRETARIO, nível DGS/ FTG-2/FTG, da SEA.

JOAO RAIMUNDO COLOMBO Governador do Estado

JOAO BATISTA MATOS Secretário de Estado da Administração

Cod. Mat.: 406057

ATO nº 1786 - de 17/08/2016

DESIGNAR, de acordo com o art. 38, da Lei rf 6.745/85, conforme processon" SEA 4168/2016, AMÉRICO GONÇALVES DA COSTA, mat. nº 021955/-7-01, para responder pelo cargo de GERENTE DE ATUARIA E ESTATÍSTICA DO PLANO DE SAÚDE, nível FG - 2, AI DARIA E ESTATISTICA DO FEARO ESAGUE, IMA PO-1-2, de SEA, em substituição à titular, MARIA IDALINA LEMOS BOHM, mat. nº 379-277-8-01, durante o usufruto da térias, no periodo de 08/08/2018 a 30/08/2018. (republicado por incorreção)

JOAO RAIMUNDO COLOMBO

JOAO BATISTA MATOS

Secretário de Estado da Administração

Cod. Mat.: 406091

ATO nº 2041 - de 05/10/2016

TORNAR SEM EFEITO, de acordo com o art. 18, da Lai nº 8.843/86, conforme consta no processo PCSC 111749/2016, a nomeação por concurso dos abaixo relacionados, efetuada pelo Ato nº 1596, publicado no DO de 02.08.16, para o exercício do cargo de provimento efetivo de AGENTE DE POLÍCIA CIVIL. no âmbito da SSP, por não terem tomado posse no prazo legat:

GABRIELLA NORBERTO LOURENÇATTO PATRICK SESTELO LEAHY FERNANDO LOPES DA SILVA LUDMILA INDALENCIO NASPOLINI PRIMO ALVES BRIRIO ALVES
WITOR CARDOSO DUTRA
STEFAN HANATZKI SIGLINSKI
CAMILA WASEM FREDO
GUSTAVO CAVALCANTI SILVA DE OLIVEIRA
JOSÉ ALEXANDRO DUARTE
ALCEU FRANCISCO KUNZ ANDERSON DA SILVA

JOAO RAIMUNDO COLOMBO emador do Estado

JOAO BATISTA MATOS Secretário de Estado da Administração

Cod. Mat.: 406097

Gabinete do Governador

Procuradoria Geral do Estado

Extrato de Termo de Compromisso do Programa "Adimplência Gerai - PAG", de PROCURADORIA GERAL DO ESTADO, referente ao convênio celebrado com a UNOESC conforme Decrete Estadual nº 1,756, de 26 de setembro de 2013. Estaglária: Cabinela Urack Machado; OPF: 094,327,399-21; TC 125/2016; Inicia: Dri/093/CSC Valor: 1,000,00; Lotação: REGIONAL DE CHAPECÓISC.

Extrato de Rescisão de Termo de Compromisso do Programa "NOVOS VALORES", referente ao projeto atividade 008083 DA PROCURADORIA GERAL DO ESTADO, conforme Decreto Estadual nº 781/782/2012, de 25.01.2012. Estaglário: Rubana Aparecido de Oliveira Junior, CPF: 107.888.539-70; Termo de Compromisso nº 001/2016; Data da Rescisão: 06/10/2016.

Cod. Mat.: 405979

Extrato de Rescisão de Termo de Compromisso do Programa "Adâmplência Geral - PAG", da PROCURADORIA GERAL DO ESTADO, referente ao convênio celebrado com a UFSC conforme eto Estadual nº 1.756, de 26.09.2013. Estaglário: Tiago Luiz Tambosi; CPF; 085,253,919-30; TC 041/2015; Data da Rescisão: 07/10/2016.

Cod. Mat.: 405980

Extrato de Rescisão de Termo de Compromisso de Programa "Adimplência Geral - PAG", da PROCURADORIA GERAL DO ESTADO, referente ao convêrio celebrado com a UFSC conforme Decreto Estaduato" 1.756, de 26.09.2013. Estaglário: Victor Burgo Cesa; CPF, 092.575.779-96; TC 072/2014; Data da Rescisão: 08/10/2016.

Cod. Mat.: 405983

Secretarias de Estado

Administração

PORTARIA nº 811 - de 05/10/2016

FAZER CESSAR, conforme rocesso nº SEA 5033/2016, os efeitos da Portaria nº 597, publicada em 19.08.16, que concedeu afasta-mento a ROBERTO LUIZ SALUM, mat. nº 0188809-9-01, totado na SSP, para exercer mandato eletivo de Deputado Estadual, a contar de 29.09.16

JOÃO BATISTA MATOS O BATISTA MATOS retário de Estado da Administração Cod. Mat.: 406059

Agricultura e da Pesca

Extrato de Termo de Compromisso do Programa "Novos Valores" referente ao projeto atividade 1373 da Secretaria de Estedo de Anticultura e de Pesca, conforme Decreto Estadual n/781/782/2012.de 26.01.2012 Estagiário: Wednes Marcellus: CPF: 071680111-82; Termo de Compromisso nº143/2016 (Inf cio:13/10/2016 valor:500,00;Lotação: Garência de Assuntos

Cod. Mat.: 405895

Assistência Social, Trabalho e Habitação

EXTRATO DE RESCISAO de Termo de Compromisso do Programa "Novos Valores", referente ao projeto atividade de SECRETARIA DE ESTADO DA ASSISTENCIA SOCIAL TRABALHO E HABITA- CAO, conforme Decreto Estadual nº 781/782/2012, de 25.01.2012.

041971539-86 CAMILA SANJA MACHADO: Termo de Compromisso nº 022/2016; Inicio:24/10/2016;

Cod. Mat.: 405970

Desenvolvimento Econômico Sustentável

EXTRATO DA PORTARIA SOS nº 177 de 22/08/2016. OB. Outorga de Direito de Uso de Recursos Hídricos, OUTORGANTE: Secretaria de Estado do Desenvolvimento Econômico Sustentável - SDS, OUTORGADO: Companhia Catarinanse de Águas e Sane--505, 00 (OrtoAddD0: Companias Cadameiras de Aguas e Sele-amento - CASAN, CNPJ: 82,508 433/0001-17, MUNICIPIO: Irani. BACIA HIDROGRÁFICA: Rio Jacutinga - RHO3, COORDENADAS Geográficas: Poço 01: -27°01'20,29'S e -51°53'39,74"W, Poço 02: -27°01'21,87'S e -51°54'02,31"W, Poço 03: -27°01'18,73'S -51°54'07,78"W e Poço 04: -27'01'09,78"S e -51°54'09,15"W VAZÃO OUTORGADA (consuntiva): Poço 1: 18 m²/hora, Poço 2: 21,35 m³/hora, Poço 3: 22,25 m²/hora e Poço 4: 18,85 m³/hora. VALIDADE: 10 (DEZ) anos. FINALIDADE: Capteção de água subterrânea em poço tubular profundo com finalidade de uso em abastecimento público. OBRIGAÇÕES DO OUTORGADO: Respettar a legislação ambiental e de Recursos Hidricos, SECRETÁRIO ADJUNTO DE ESTADO: MARCO AURÉLIO DUTRA. Cod. Mat.: 405950

EXTRATO DA PORTARIA SDS nº 184 de 25/08/2016. OBJETO: Outorga de Direito de Uso de Recursos Hídricos, OUTORGANTE: Secretaria de Estado do Desenvolvimento Económico Sustentável - SDS, OUTORGADO: Aliença Transporte Multimodel Ltda. CNPJ: 31.447.188/0008-10. MUNICÍPIO: Ilapoa. BACIA HIDROGRÁFICA: Rio Itapocu -- RH 06. COORDENADAS Geográficas: 26°08' 16"S ė 48°37'25'W, VAZÃO OUTORGADA (consuntiva): 2 m³/hora. VALIDADE: 10 (DEZ) anos. FINALIDADE: Captação de água subterránea em poço tubular profundo com finalidade de uso em lavação de conteineres, OERIGAÇÕES DO OUTORGADO: Res-peitar a legistação ambiental e de Recursos Hidricos, SECRETÁRIO ADJUNTO DE ESTADO: MARCO AURÉLIO DUTRA

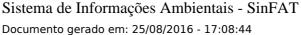
Cod. Mat.: 405952

EXTRATO DA PORTARIA SDS nº 201 de 14/09/2016. OBJETO: Outorga de Direito de Uso de Recursos Hidricos, OUTORGANTE: Secretaria de Estado do Desenvolvimento Econômico Sustentável SDS, DUTORGADO: Antônio Mozart Kemerich, CPF: 131,750,849- MUNICÍPIO: Chapecó, BACIA HIDROGRÁFICA: Rio Chapecó – RH 02. COORDENADAS Geográficas: -27°09'01,08'S e -52°38'29,44"W. VAZÃO OUTORGADA (consuntiva): 1 m²/ hora. VALIDADE: 10 (DEZ) anos, FINALIDADE: Captação de água subterrânea em poço tubular profundo com finalidade de uso em consumo humano de três familias. OBRIGAÇÕES DO OUTORGADO: Respeltar a tegistação ambiental a de Recursos Hídricos, SECRETÁRIO ADJUNTO DE ESTADO: MARCO AU-RÉLIO DUTRA.

Cod. Mat: 405954

EXTRATO DA PORTARIA SDS nº 204 de 19/09/2016. OBJE-TO: Outorga de Direito de Uso de Recursos Hídricos. OUTÓR-GANTE: Secretaria de Estado do Desenvolvimento Econômico Sustentável - SDS. OUTÓRGADO: Padreira Treze Tilias Ltda., CNPJ: 75,815,787/0001-49. MUNICÍPIO: Treze Tilas, BACIA HIDROGRÁFICA: Rio do Peixe - RH 03. COORDENADAS Ge-ográficas: -27°01'28,57°S e -51"25'47,11"W, VAZÃO OUTOR-GADA (consuntiva): 0.58 m⁴/hora. VALIDADE: 10 (DEZ) anos FINALIDADE: Captação de água subtenânea em poço tubula: profundo com finalidade de uso em consumo humano e em briambiental e de Recursos Hidricos. SECRETÁRIO ADJUNTO DE ESTADO: MARCO AURÉLIO DUTRA.

EXTRATO DA PORTARIA SOS nº 213 de 23/09/2016. Objeto: Outorga de Direito de Uso de Recursos Hídricos. Outorgante: Secretaria de Estado do Desenvolvimento Económico Sustentávei - SDS. Dutorgado: Karsten S.A., CNPJ: 82.640.558/0001-04. Município: Skanenau, Coordenadas Geográficas: -26*517*S e -49°9'11"W, Vazão Outorgada: 217 m³/h. Validade: 10 (DEZ) ANOS. Finalidade: Caplação superficial de água para uso como insumo de processo produtivo. Obrigações do Outorgado: Respellar a legislação ambiental e de Recursos Hidricos; providendar cerádões, alvarás ou licenças de qualquer natureza, exigidos pela legislação federal, estadual ou municipal. Secretário Adjunto de Estado - MARCO AURÉLIO DUTRA.


Cod. Mat.: 405956

Doc. nº: 4847326

GOVERNO DO ESTADO DE SANTA CATARINA

FUNDAÇÃO DO MEIO AMBIENTE - FATMA

RECIBO DE DOCUMENTOS (FCEI Nº 412105)

Recebemos do empreendedor COMPANHIA CATARINENSE DE ÁGUAS E SANEAMENTO - CASAN na data 08/03/2016 os documentos listados abaixo, relativos ao empreendimento CASAN SAA IRANI, estabelecido(a) AV. GOV. IVO SILVEIRA - SN no município de IRANI.

Processo FATMA N°SAN/14348/CAU - Tipo de licença LICENCA AMBIENTAL DE OPERAÇÃO DE CORREÇÃO

Protocolo	Descrição
	- REQUERIMENTO DA LICENÇA AMBIENTAL PRÉVIA/INSTALAÇÃO/OPERAÇÃO com confirmação da localização do empreendimento segundo suas coordenadas geográficas ou planas CNPJ OU CPF (CÓPIA).
	- CONSULTA DE VIABILIDADE EXPEDIDA PELO MUNICÍPIO COM VALIDADE DE 90 ATÉ DIAS . - OUTORGA DE DIREITO DE USO DE RECURSOS HÍDRICOS (CÓPIA).
4589688	- Projeto arquitetônico e de locação, com memorial descritivo do empreendimento
	 PROJETO EXECUTIVO COM MEMORIAL DESCRITIVO E DE CÁLCULO DAS UNIDADES DE CONTROLE AMBIENTAL. ECA, EM 2 VIAS IMPRESSAS E UMA VIA EM FORMATO DIGITAL (CD).
	- ART PARA ELABORAÇÃO DO ECA.

25/08/2016

Atendente do SinFAT

Anexo 03

Relatórios ARIS

Agência Reguladora Intermunicipal de Saneamento

RELATÓRIO DE FISCALIZAÇÃO DO SISTEMA DE ABASTECIMENTO DE ÁGUA DO MUNICÍPIO DE IRANI

(RF-SAA - IRANI-002)

FLORIANÓPOLIS, JANEIRO DE 2017.

SUMÁRIO

	1.	INTRO	ODUÇÃO	4
	2.	ENQU	JADRAMENTO LEGAL	5
	3.	IDENT	ΓΙΓΙCAÇÃO DA AGÊNCIA REGULADORA E DA PRESTADOR.	A DE
SERV	IÇO:	S		6
	3.1.	Agênci	ia Reguladora	6
	3.2.	Presta	ndora de Serviços	6
	4.	INFOR	RMAÇÕES DA Ouvidoria da aris	7
	4.1.	Manife	estações dos Prestadores	7
	4.2.	Manife	estações dos Usuários	7
	5.	Qualida	lade da água	8
	6.	SISTE	EMA DE ABASTECIMENTO DE ÁGUA	10
	6.1.	Descri	ição Geral do Sistema de Abastecimento de Água	10
	6.2.	Dados	Gerais do Sistema de Abastecimento de Água (SAA)	10
	6.3.	Capaci	cidade Instalada Versus Demandas do SAA	11
		6.3.1.	Demanda de Consumo	11
		6.3.2.	Demanda de Reservação	12
		6.3.3.	Demanda de Captação de Água Bruta	12
	6.4.	Consta	atações in loco do Sistema de Abastecimento de Água	13
		6.4.1.	Captação de Água Subterrânea	13
		Captaç	ção Poço 01/Poço 01	13
		Captaç	ção Poço 02/Poço 02	15
		Captaç	ção Poço 03/Poço 03	18
		Captaç	ção Poço 04/Poço Unidade 02	19
		6.4.2.	Tratamento	21
		ETA I	Irani Unidade 01	21
		ETA I	Irani Unidade 02	26
		6.4.3.	Reservação	28

	Reservatório 01 - Centro	28
	Reservatório R2 – Bairro COAB	30
	Reservatório R3	33
7.	CONSIDERAÇÕES FINAIS E RECOMENDAÇÕES	36
8.	ANEXOS	37

1. INTRODUÇÃO

Por meio da Lei Municipal nº **1.512/2009**, aprovada em **03 de Abril de 2013**, o município de **Irani** se consorciou e delegou os serviços de regulação e fiscalização do saneamento básico à Agência Reguladora Intermunicipal de Saneamento (ARIS), entidade que goza de independência decisória, administrativa e orçamentária, em consonância com o Art. 21 da Lei Federal n. 11.445/2007.

No dia **16 de dezembro de 2016,** a Agência Reguladora Intermunicipal de Saneamento (ARIS) fiscalizou o Sistema de Abastecimento de Água (SAA) do município de **Irani**. A ação conduzida pelo Engenheiro Sanitarista e Ambiental William, teve como objetivo verificar as condições técnicas do sistema de abastecimento de água e ainda, de acordo com a Resolução Normativa/ARIS nº 002/2011, art. 3º, incisos I a IV:

- I verificar as condições, os instrumentos, as instalações e os procedimentos utilizados pelo prestador de serviços;
- II zelar para que a prestação dos serviços se faça de forma adequada;
- III verificar as condições da prestação dos serviços dos sistemas fiscalizados, no que se refere ao atendimento aos usuários e;
- IV identificar os pontos de não conformidade com as exigências da legislação aplicável.

A fiscalização teve início por meio de reunião realizada no gabinete do prefeito da prefeitura de Irani. Além do representante da ARIS, participaram da reunião:

- Fiscal da Vigilância Sanitária, Altair Pasquali;
- Representante da CASAN de Irani, Hermes M. Knobloch;
- Representante da CASAN Regional de Chapecó, Carolina de Abreu Smaniotto;

Após a reunião de abertura, o Sr. Hermes e a Sra. Carolina permaneceram acompanhando a equipe da ARIS durante a fiscalização.

Imagem 1: Reunião de abertura da Fiscalização.

2. ENQUADRAMENTO LEGAL

Os trabalhos de fiscalização e regulação dos municípios consorciados à ARIS estão amparados, principalmente, nas seguintes legislações vigentes:

Tabela 1: Principais leis, decretos, resoluções e portarias que norteiam as fiscalizações realizadas pela ARIS.

LEGISLAÇÃO	DESCRIÇÃO			
Lei federal nº	Estabelece diretrizes nacionais para o saneamento básico e para a política federal de			
11.445/2007	saneamento básico e dá outras providências.			
Decreto federal nº	Regulamenta a Lei nº 11.445, de 05 de janeiro de 2007, que estabelece diretrizes nacionais			
7.217/2010	para o saneamento básico, e dá outras providências.			
Resolução CONAMA	Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu			
nº 357/2005	enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes,			
	e dá outras providências.			
Resolução CONAMA	Dispõe sobre a classificação e diretrizes ambientais para o enquadramento das águas			
nº 396/2008	subterrâneas e dá outras providências.			
Resolução CONAMA	Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a			
nº 430/2011	Resolução nº 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente -			
	CONAMA.			
Portaria MS nº	Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para			
2914/2011	consumo humano e seu padrão de potabilidade.			
	Estabelece os requisitos sanitários mínimos a serem obedecidos no projeto, construção,			
Portaria MS nº	operação e manutenção dos serviços de abastecimento público de água para consumo			
443/BSB/ 1978				
	1977.			
Resolução ARIS nº	Prestação dos Serviços de Abastecimento de Água e de Esgotamento Sanitário.			
001/2011				
Resolução ARIS nº	Procedimentos de Fiscalização de Prestação dos Serviços de Abastecimento de Água e de			
002/2011	Esgotamento Sanitário, de Aplicação de Penalidades e Dá Outras Providências.			
Resolução ARIS nº	Penalidades Aplicáveis aos Prestadores de Serviços de Abastecimento de Água e de			
003/2011	Esgotamento Sanitário.			
Resolução ARIS nº	Procedimentos de Consultas e Reclamações dos Usuários dos Serviços de Abastecimento			
004/2012	de Água e Esgotamento Sanitário, Coleta, Transporte e Disposição Final de Resíduos,			
	Limpeza Urbana e Sistema de Drenagem.			

Além do enquadramento legal citado na tabela acima, a ARIS utiliza como base diversas normas técnicas da ABNT.

3. IDENTIFICAÇÃO DA AGÊNCIA REGULADORA E DA PRESTADORA DE SERVIÇOS

3.1. Agência Reguladora

Agência Reguladora Intermunicipal de Saneamento (ARIS):

Rua General Liberato Bitencourt, nº 1.885, 12° andar, Bairro Estreito. Florianópolis/SC.

CEP: 88.070-800.

Fone: (48) 3954-9100.

3.2. Prestadora de Serviços

Companhia Catarinense de Águas e Saneamento (CASAN)

Rua Emílio Blum, nº 83, Centro, Florianópolis/SC.

CEP: 88.020-010 - Caixa Postal: 83.

Fone: (049) 3221-5000

Superintendência Regional de Negócios Oeste (SRO):

Avenida Getúlio Vargas, nº 990 – S, Centro, Chapecó/SC.

CEP: 89.814-000.

Fone: (049) 89.814-000.

Agência de Irani

Rua Rua Governador Ivo Silveira, nº 1.318, Centro, Irani/SC.

Fone: (49) 3432-0092.

CEP: 89.680-000.

4. INFORMAÇÕES DA OUVIDORIA DA ARIS

Município: Irani;

Período: 01/01/2016 a 07/12/2016.

4.1. Manifestações dos Prestadores

Não houve comunicado dos prestadores no período.

4.2. Manifestações dos Usuários

Não houve comunicado dos prestadores no período.

5. QUALIDADE DA ÁGUA

A fim de fiscalizar a qualidade do serviço de abastecimento de água sob a ótica do atendimento aos padrões de potabilidade estabelecidos pela Portaria nº 2.914/2011 do Ministério da Saúde, a ARIS utiliza como ferramenta as informações preenchidas no Sistema de Informações sobre Saneamento da ARIS – SISARIS. Em obediência a Instrução/Diretor Geral nº 001/2016, os prestadores de serviços de abastecimento de água preenchem o SISARIS e encaminham mensalmente à ARIS os dados compilados das análises de controle da qualidade da água.

Para avaliar o atendimento aos valores máximos permitidos, a ARIS utiliza a Tabela de Padrão Microbiológico da Água para Consumo Humano (Anexo I da Portaria nº 2.914/2011 do Ministério da Saúde), o Índice Físico Químico (IFQ) e o Índice Bacteriológico (IB), sendo que o IFQ e o IB são calculados respectivamente pelas fórmulas que seguem:

$$IFQ = \frac{n^{o} de \ amostras \ de \ acordo \ com \ o \ padrão}{n^{o} \ de \ amostras \ coletadas} \ x \ 100$$

* IB =
$$\frac{n^{o}$$
 de amostras com ausência de coliformes n^{o} de amostras coletadas x 100

Consideram-se como ideais o IFQ e o IB (para coliformes totais na rede de distribuição de sistemas que abasteçam a partir de 20.000 habitantes) iguais a 100% e os mínimos tolerados não inferiores a 95%.

* Considera-se IB ideal para o parâmetro coliformes totais no sistema de distribuição: resultado positivo em apenas uma amostra/mês – critério adotado em Sistemas que abastecem menos de 20.000 habitantes. Para os parâmetros coliformes totais na saída do tratamento e *Escherichia coli* (tanto na saída do tratamento quanto na rede de distribuição), o IB mínimo tolerado é de 100% (todas as amostras devem ter resultado negativo).

Em análise ao SISARIS dos meses de fevereiro a outubro do **SAA Irani**, foi constatado que:

SAA_IRANI_UNIDADE_I

- Em todos os meses o número de amostras realizadas pelo prestador foi inferior ao número de amostras aprovadas pela Vigilância Sanitária para os seguintes parâmetros de monitoramento da água distribuída: turbidez, cloro residual livre, coliformes totais e *Escherichia coli*.
- O IFQ do parâmetro cloro residual livre na saída do tratamento e no sistema de distribuição no mês de maio foi respectivamente de apenas 2,7 e 14,28%;

- Em uma amostra coletada no mês de fevereiro houve presença de coliformes totais na saída do tratamento;
- Os resultados dos demais parâmetros atingiram ou superaram o IFQ e IB mínimo tolerado, ou ainda, estão de acordo com o estabelecido no Anexo I da Portaria nº 2.914/2011 do Ministério da Saúde.

SAA_IRANI_UNIDADE_II

- Em uma amostra coletada no mês de julho houve presença de coliformes totais na saída do tratamento;
- Os resultados dos demais parâmetros atingiram ou superaram o IFQ e IB mínimo tolerado, ou ainda, estão de acordo com o estabelecido no Anexo I da Portaria nº 2.914/2011 do Ministério da Saúde.

Considerações finais:

A análise do SISARIS de fevereiro a outubro do ano de 2016 do SAA IRANI UNIDADE 01 e UNIDADE 02 permite afirmar que a qualidade da água do sistema de abastecimento é SATISFATÓRIA, quanto ao atendimento dos padrões estabelecidos pela Portaria nº 2.914/2011 do Ministério da Saúde. Porém, para a frequência de analises, que resulta no Índice de Coletas – IC, em relação ao plano de amostragem, não foi atendido.

6. SISTEMA DE ABASTECIMENTO DE ÁGUA

6.1. Descrição Geral do Sistema de Abastecimento de Água

O SAA da área urbana do município é suprido por captações subterrâneas através de quatro poços tubulares profundos.

A água captada nos três primeiros poços é recalcada diretamente para a ETA, sendo as captações subterrâneas acionadas automaticamente, passando na ETA apenas por desinfecção e fluoretação. Cabe salientar que a ETA funciona em média 16 horas por dia e com vazão média de 21,50 m³/hora.

A água tratada é direcionada para reservatório de alvenaria localizados ao lado da ETA com capacidade de 40 m³, então segue para rede de abastecimento, sendo uma parte recalcada pela ERAT 03 para reservatório de alvenaria de 20 m³, localizado no Bairro Popular.

Também já está em funcionamento outro sistema, chamado de Unidade 02, com captação no poço 04, de onde a água é recalcada até reservatório de alvenaria com 40 m³ situado ao lado da Rodovia 153, onde na entrada é realizada a dosagem de cloro e flúor para tratamento da água.

Em anexo ao relatório há informações dos sistemas de abastecimento de água rural.

6.2. Dados Gerais do Sistema de Abastecimento de Água (SAA)

A seguir são apresentados dados gerais do Sistema de Abastecimento de Água (SAA).

SNIS	DADOS GERAIS DO SISTEMA DE ABASTECIMENTO DE ÁGUA			
G12A	População total (hab.)	10.228		
G06A	População urbana (hab.)	7.320		
	População rural (hab.)	2.908		
	População total flutuante (hab.)			
AG001	População total atendida (hab.)	7.720		
	População urbana atendida (hab.)	7.320		
	Consumo per capita médio¹ (l/hab. dia)	137,38		
AG002	Total de ligações ativas (unid.)	2.315		
AG003	Total de economias (unid.)	2.609		
AG005	Extensão da rede de água (m)	47.382		
	Período de funcionamento diário da ETA (h/dia)	13,64		
	Índice de perdas totais	28,16%		

Fonte: Relatórios de Fiscalização da ARIS, SISARIS, BADOP.

O tempo de operação da ETA foi alterado, considerado 16 horas, conforme relato do operador. Quanto ao índice de perdas podemos notar que está em 28,16%, estando razoável, mas com potencial de redução, principalmente se trabalhando no controle das pressões.

6.3. Capacidade Instalada Versus Demandas do SAA

6.3.1. Demanda de Consumo

Logo abaixo é realizada a estimativa da demanda de consumo considerando o consumo *per capita* efetivo e as perdas observadas no Sistema de Abastecimento de Água. Os dados utilizados para o cálculo da demanda de consumo foram obtidos no SISARIS, Questionário respondido pelo prestador, BADOP.

SNIS	DEMANDA DE CONSUMO					
	População total atendida (hab.)	7720				
	Vazão de operação da ETA (l/s)	21,49				
	Vazão de projeto da ETA (l/s)	22,00				
	Consumo per capita médio atual (l/hab. x dia)	137,38				
IN022	Consumo per capita efetivo atual (l/hab. x dia) ¹	98,69				
	Consumo per capita efetivo adotado (l/hab.dia)	150,00				
	Coeficiente do dia de maior consumo (k_1)	1,20				
	Estimativa da demanda (l/s) ²	Estimativa não necessária				
	Incremento mínimo necessário na capacidade da	NA				
	DEMANDA DE CONSUMO — IMPACTO) DA REDUÇÃO DE PERI				
	Meta em curto prazo para o índice de perdas (P	29%				
	Consumo per capita efetivo com redução (l/hab. x dia)	97,54				
	Estimativa da demanda com redução de perdas (l/s)	22,65				

¹ Consumo per capita médio atual x (1- Índice de perdas totais);

Observados os dados da tabela, concluímos que há ETA está operando no limite do que foi projetada, sendo a vazão de operação de 21,49 l/s e de projeto 22,00 l/s. Isto é, em situação de

² (Consumo per capita efetivo adotado/(1-i)) x População total atendida) x Coeficiente do dia de maior consumo.

aumento da demanda a vazão de projeto será superada. Observa-se que a população é crescente, assim, a demanda futura será maior e pode colocar em risco a eficiência da estação de tratamento.

6.3.2. Demanda de Reservação

Na estimativa da demanda de reservação de água, empregou-se o método que considera o volume mínimo de reservação igual a 1/3 do volume consumido no dia de maior consumo. Os dados utilizados foram obtidos SISARIS, Questionário respondido pelo prestador, BADOP.

Z	DEMANDA DE RESERVAÇÃO	
Sistemas atendidos pela CASAN	População total atendida (hab.)	7720,00
a C	Consumo per capita (l/hab. dia)	137,38
s pel	Coeficiente do dia de maior consumo (k ₁)	1,20
dido	Demanda do dia de maior consumo (m³)	1272,69
atend	Volume de reservação mínimo do sistema (m³)	424,23
mas	Volume de reservação atual do sistema (m ³)	100,00
Sister	Déficit de reservação (m³)	324,23
91	Déficit com redução de perdas (m³)*	329,25

Analisando a tabela acima, percebe-se que há déficit de reservação no SAA. Isto é, em situação operacional regular, o sistema não consegue amortecer as variações horárias de vazão sem incorrer em problemas de desabastecimento. Observa-se que a população é crescente, assim, a demanda futura será ainda maior. O sistema atual está bastante defasado quanto a capacidade de reservação, havendo apenas 100 m³, visto que a necessidade é de 424,23 m³, então é necessário aumentar a capacidade. Outra opção complementar é o controle ativo e redução de perdas, de forma que maior parte do volume disponibilizado possa ser efetivamente utilizado (reduzindo-se o consumo per capita total, apresentado na tabela acima), também gerando eficiência econômica do SAA.

6.3.3. Demanda de Captação de Água Bruta

Logo abaixo é realizada a estimativa da demanda de captação de água bruta. Os dados utilizados para o cálculo da demanda de captação de água bruta foram obtidos SISARIS, Questionário respondido pelo prestador, BADOP.

ESTIMATIVA DA VAZÃO DE CAPTAÇÃO E CAPACIDADE DE					
ADUÇÃO DE ÁGUA BRUTA					
Vazão de captação ¹ - estimativa da demanda					
atual + perdas de processo (l/s) 21,49					

³Estimativa da demanda x Coeficiente do dia de maior consumo x 1,05

6.4. Constatações in loco do Sistema de Abastecimento de Água

6.4.1. Captação de Água Subterrânea

Captação Poço 01/Poço 01

A captação de água subterrânea no Poço 01 localizado ao lado do parque de eventos esportivos ocorre por meio de tubulação de tomada com bomba submersa, sendo encaminhado a água diretamente para a ETA, possui vazão média de 16 m³/hora e opera em aproximadamente 12 horas/dia de acordo com o representante da CASAN local.

ITEM	SIM/NC OU REC.	NÃO	NÃO APLICÁVEL	OBSERVAÇÃO
Existência de vazamentos aparentes.		X		
Inexistência de conjunto motobomba reserva em estoque.	X			
As instalações da captação (tubo de revestimento, cavalete e/ou acessórios) estão em condições inadequadas de conservação e/ou operação.		Х		
Inexistência de medidor de vazão.		X		
Medidor de vazão danificado.		X		
Captação de água sem outorga ou outorga vencida.		X		
Inexistência de tubo para medição do nível de água.		X		
Inexistência de equipamento medidor do nível de água.		Х		
A área não está devidamente cercada.		X		
O portão é mantido deschaveado ou sem dispositivo (cadeado) para impedir o acesso de pessoas não autorizadas à área.		Х		
Inexistência de laje de proteção envolvendo o tubo de revestimento do poço.				
O acesso à unidade está em condições inadequadas de uso, colocando em risco de acidentes a circulação de pessoas e/ou a movimentação de equipamentos e materiais.		X		
A cerca está em condições inadequadas de conservação.		Х		
Inexistência de tampa no tubo de revestimento do poço.		х		

A área está em condições inadequadas de limpeza.		X		
Inexistência de tampa no tubo para medição do nível de água do poço.		X		
Inexistência de grelha sobre câmaras de registros de manobra e/ou de outros equipamentos.		X		
Inexistência de extintor de incêndio e/ou equipamento com validade expirada.			X	
Inexistência de identificação da área.		X		
Inexistência de pintura ou pintura em condições inadequadas de conservação.	X			

Imagem 2: Captação 01.

Imagem 4: Quadro de comando.

Imagem 3: Poço 01.

Imagem 5: Poço 01.

Imagem 6: Instalações hidráulicas do poço.

Imagem 7: Medidor de pressão na saída do poço.

Imagem 8: Macromedidor.

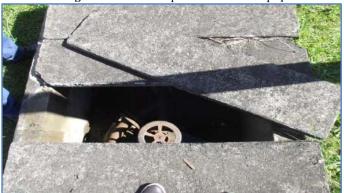


Imagem 9: Caixa de registro de manobra.

Captação Poço 02/Poço 02

A captação de água subterrânea no Poço 02 está localizado ao lado do lago municipal, ocorre por meio de tubulação de tomada com bomba submersa, sendo encaminhada a água diretamente para a ETA, operando em média 13 horas/dia e com vazão aproximada de 21 m³/h, conforme operador local da CASAN.

ITEM	SIM/NC OU REC.	NÃO	NÃO APLICÁVEL	OBSERVAÇÃO
Existência de vazamentos aparentes.		X		
Inexistência de conjunto motobomba reserva em estoque.	Х			
As instalações da captação (tubo de revestimento, cavalete e/ou acessórios) estão em condições inadequadas de conservação e/ou operação.		X		
Inexistência de medidor de vazão.		X		
Medidor de vazão danificado.		X		
Captação de água sem outorga ou outorga vencida.		X		
Inexistência de tubo para medição do nível de água.	X			
Inexistência de equipamento medidor do nível de água.		X		
A área não está devidamente cercada.	X			
O portão é mantido deschaveado ou sem dispositivo (cadeado) para impedir o acesso de pessoas não autorizadas à área.			X	Não tem portão
Inexistência de laje de proteção envolvendo o tubo de revestimento do poço.		X		
O acesso à unidade está em condições inadequadas de uso, colocando em risco de acidentes a circulação de pessoas e/ou a movimentação de equipamentos e materiais.		х		
A cerca está em condições inadequadas de conservação.			X	Não há cerca no local
Inexistência de tampa no tubo de revestimento do poço.		Х		
A área está em condições inadequadas de limpeza.		X		
Inexistência de tampa no tubo para medição do nível de água do poço.		X		
Inexistência de grelha sobre câmaras de registros de manobra e/ou de outros equipamentos.		X		
Inexistência de extintor de incêndio e/ou equipamento com validade expirada.			X	
Inexistência de identificação da área.	X			
Inexistência de pintura ou pintura em condições inadequadas de conservação.	X			

Imagem 10: Captação 02

Imagem 11: Instalações hidráulicas do poço.

Imagem 12: Macromedidor.

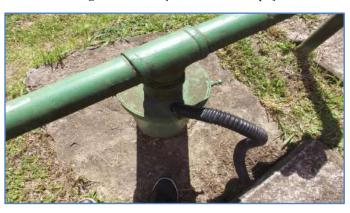


Imagem 13: Instalações elétricas.

Imagem 14: Identificação.

Imagem 15: Casa de quadro de comando.

 ${\bf Imagem~16:}~{\bf Quadro~de~comando~e~medidor~de~press\~ao}.$

Captação Poço 03/Poço 03

A captação de água subterrânea no Poço 03 está localizado ao lado do lago municipal, próximo ao poço 03, a captação ocorre por meio de tubulação de tomada com bomba submersa, sendo encaminhada a água diretamente para a ETA, operando em média 15 horas/dia e com vazão aproximada de 14 m³/h, segundo operador da CASAN.

ITEM	SIM/NC OU REC.	NÃO	NÃO APLICÁVEL	OBSERVAÇÃO
Existência de vazamentos aparentes.		X		
Inexistência de conjunto motobomba reserva em estoque.	Х			
As instalações da captação (tubo de revestimento, cavalete e/ou acessórios) estão em condições inadequadas de conservação e/ou operação.		х		
Inexistência de medidor de vazão.		X		
Medidor de vazão danificado.		X		
Captação de água sem outorga ou outorga vencida.		X		
Inexistência de tubo para medição do nível de água.				
Inexistência de equipamento medidor do nível de água.		X		
A área não está devidamente cercada.		X		
O portão é mantido deschaveado ou sem dispositivo (cadeado) para impedir o acesso de pessoas não autorizadas à área.		X		
Inexistência de laje de proteção envolvendo o tubo de revestimento do poço.		X		
O acesso à unidade está em condições inadequadas de uso, colocando em risco de acidentes a circulação de pessoas e/ou a movimentação de equipamentos e materiais.		X		
A cerca está em condições inadequadas de conservação.		X		
Inexistência de tampa no tubo de revestimento do poço.		X		
A área está em condições inadequadas de limpeza.		X		
Inexistência de tampa no tubo para medição do nível de água do poço.		X		
Inexistência de grelha sobre câmaras de registros de manobra e/ou de outros equipamentos.	Х			

Inexistência de extintor de incêndio e/ou equipamento com validade expirada.		X	
Inexistência de identificação da área.	X		
Inexistência de pintura ou pintura em condições inadequadas de conservação.	X		

Imagem 17: Captação 03.

Imagem 18: Instalações hidráulicas.

Imagem 19: Caixa de manobra de registros e medidor de vazão.

Imagem 20: Macromedidor.

Imagem 21: Identificação.

Imagem 22: Quadro de comando.

Captação Poço 04/Poço Unidade 02

A captação de água subterrânea no Poço 04 ocorre por meio de tubulação de tomada com bomba submersa, sendo encaminhada a água diretamente para o reservatório R03, onde há casa de

química para tratamento da água na entrada com cloração e fluoretação, operando em média 14 horas/dia e com vazão aproximada de 16,5 m³/h, segundo relato do operador.

	•	_	•	
ITEM	SIM/NC OU REC.	NÃO	NÃO APLICÁVEL	OBSERVAÇÃO
Existência de vazamentos aparentes.		X		
Inexistência de conjunto motobomba reserva em estoque.	Х			
As instalações da captação (tubo de revestimento, cavalete e/ou acessórios) estão em condições inadequadas de conservação e/ou operação.		Х		
Inexistência de medidor de vazão.		X		
Medidor de vazão danificado.		X		
Captação de água sem outorga ou outorga vencida.		X		
Inexistência de tubo para medição do nível de água.				
Inexistência de equipamento medidor do nível de água.		X		
A área não está devidamente cercada.		X		
O portão é mantido deschaveado ou sem dispositivo (cadeado) para impedir o acesso de pessoas não autorizadas à área.		X		
Inexistência de laje de proteção envolvendo o tubo de revestimento do poço.		X		
O acesso à unidade está em condições inadequadas de uso, colocando em risco de acidentes a circulação de pessoas e/ou a movimentação de equipamentos e materiais.		х		
A cerca está em condições inadequadas de conservação.		X		
Inexistência de tampa no tubo de revestimento do poço.		X		
A área está em condições inadequadas de limpeza.		X		
Inexistência de tampa no tubo para medição do nível de água do poço.		Х		
Inexistência de grelha sobre câmaras de registros de manobra e/ou de outros equipamentos.	Х			
Inexistência de extintor de incêndio e/ou equipamento com validade expirada.			X	
Inexistência de identificação da área.		X		

Imagem 23: Captação 04.

Imagem 24: Quadro de comando.

Imagem 25: Identificação.

Imagem 26: Instalações hidráulicas do poço.

Imagem 27: Medidor de nível e instalação elétrica.

Imagem 28: Câmara de registro de manobra.

6.4.2. Tratamento

ETA Irani Unidade 01

A ETA Irani, é do tipo casa de química com desinfecção e fluoretação, operando em média 16 horas/dia. Recebe em canal de chegada tubulação dos Poços 01,02 e 03, então direciona a água

para vertedor onde são dosados os produtos químicos, seguindo para câmara de contato e recalque para reservatório R1.

ITEM	SIM/NC OU REC.	NÃO	NÃO APLICÁVEL	OBSERVAÇÃO
A água tratada não atende aos padrões de potabilidade estabelecidos na Portaria 2.914/2011.		X		
Inexistência de sistema de filtração para tratamento de águas provenientes de manancial superficial.			X	
Não realização de desinfecção da água tratada.		X		
Não realização de fluoretação da água tratada.		X		
A ETA está operando com vazão média superior à estabelecida em projeto.		X		
A ETA está operando em períodos diários superiores a 20 horas, mostrando-se economicamente ineficiente.		X		
Existência de vazamentos aparentes.		X		
Inexistência de medidor de vazão de entrada.	X			
Inexistência de medidor de vazão de água tratada.		X		
O acesso à unidade está em condições inadequadas de uso, colocando em risco de acidentes a circulação de pessoas e/ou a movimentação de equipamentos e materiais.		Х		
Há estrutura(s) da ETA (unidades de tratamento, casa de química e demais dependências) em condições inadequadas de conservação e/ou operação.		х		
Há equipamentos em condições inadequadas de conservação.		Х		
Apresentar equipamentos e sistemas de dosagem de produtos químicos com tecnologia defasada.		X		Sistema adotado se justifica, devido operar com três poços de maneira variada, para operação seria necessário seis dosadoras. E atualmente está atendendo os padrões de potabilidade conforme SISARIS.
Há equipamentos de dosagem e/ou dutos condutores de produtos químicos instalados de forma a colocar em risco a integridade deles.		X		
As instalações do depósito não propiciam as condições adequadas para armazenamento dos produtos químicos.	X			Está exposto ao sol, e pela elevação dificuldade de preparo das soluções

Há produtos químicos estocados de maneira inadequada.		X	
Há produtos químicos (destinados ao uso no tratamento ou na realização de análises de qualidade da água) com validade expirada.		х	
Há produtos químicos preparados em uma única tina e dosados por um mesmo equipamento.		X	
A tampa da abertura de inspeção da câmara de contato não propicia a estanqueidade adequada para preservar a qualidade da água nela contida.		X	
As bordas da abertura de inspeção da câmara de contato estão a menos de 10 cm da superfície em que ela se encontra.		X	
Drenagem inadequada de água de lubrificação de gaxetas.		X	
As instalações do laboratório prejudicam a qualidade das atividades nele realizadas.	Х		Necessitaria de local especifico, deixando no espaço atualmente utilizado apenas para estoque de materiais, visto que há peças junto com a ERAT
Não realização de alguma(s) das análises físico- químicas de controle operacional do tratamento (pH, turbidez, cor, fluoreto ou cloro residual livre).		X	
A área está em condições inadequadas de limpeza		X	
A área não está devidamente cercada.		X	
A cerca está em condições inadequadas de conservação.		X	
O portão é mantido deschaveado ou sem dispositivo (cadeado) para impedir o acesso de pessoas não autorizadas à área.		Х	
Existência de locais potencialmente perigosos sem guarda-corpos ou escadas.	X		
Existência de escadas e/ou guarda-corpos em condições inadequadas de instalação e/ou conservação.	Х		
Inexistência de chuveiros de emergência e/ou lava- olhos no laboratório.		X	Lava olhos manual.
Inexistência de EPIs para os operadores (óculos, luvas, máscaras, etc.).		X	
Inexistência de extintor de incêndio e/ou equipamento com validade expirada.	X		
Inexistência de grelha sobre câmaras de registros de manobra e/ou de outros equipamentos.	X		

Inexistência de tratamento e/ou destinação correta dos subprodutos do tratamento (efluente da lavagem dos filtros, sólidos removidos dos decantadores, etc.).		x	
Inexistência de identificação da área.	X		
Inexistência de pintura ou pintura em condições inadequadas de conservação.	X		

Imagem 29: ETA.

Imagem 30: Canal de chegada e dosagem de produtos químicos.

Imagem 31: Tampa de inspeção da câmara de contato.

Imagem 32: Estoque de produtos químicos.

Imagem 33: Estoque de produtos químicos.

Imagem 34: FISP dos produtos químicos.

Imagem 35: Local das tinas de preparo das soluções.

Imagem 36: Tina de preparo de cloro e flúor.

Imagem 37: Equipamentos para análise de água.

Imagem 38: Mascara.

Imagem 39: Lava olhos.

Imagem 40: Estoque de materiais (tubulações).

ETA Irani Unidade 02

A ETA Irani Unidade 02, está localizada próximo a rodovia 153, juntamente com o reservatório R3, é do tipo casa de química com desinfecção e fluoretação. Na tubulação de entrada proveniente do Poço 04, é dosado os produtos químicos, então a água é direcionada para o reservatório R3.

ITEM	SIM/NC OU REC.	NÃO	NÃO APLICÁVEL	OBSERVAÇÃO
A água tratada não atende aos padrões de potabilidade estabelecidos na Portaria 2.914/2011.		X		
Inexistência de sistema de filtração para tratamento de águas provenientes de manancial superficial.			X	
Não realização de desinfecção da água tratada.		X		
Não realização de fluoretação da água tratada.		X		
A ETA está operando com vazão média superior à estabelecida em projeto.		X		
A ETA está operando em períodos diários superiores a 20 horas, mostrando-se economicamente ineficiente.		X		
Existência de vazamentos aparentes.		X		
Inexistência de medidor de vazão de entrada.		X		
Inexistência de medidor de vazão de água tratada.		X		
O acesso à unidade está em condições inadequadas de uso, colocando em risco de acidentes a circulação de pessoas e/ou a movimentação de equipamentos e materiais.		x		
Há estrutura(s) da ETA (unidades de tratamento, casa de química e demais dependências) em condições inadequadas de conservação e/ou operação.		Х		Está em fase final de construção, será efetuado o reboco e pintura da casa de química
Há equipamentos em condições inadequadas de conservação.		X		
Apresentar equipamentos e sistemas de dosagem de produtos químicos com tecnologia defasada.		X		
Há equipamentos de dosagem e/ou dutos condutores de produtos químicos instalados de forma a colocar em risco a integridade deles.		х		
As instalações do depósito não propiciam as condições adequadas para armazenamento dos produtos químicos.		Х		

Há produtos químicos estocados de maneira inadequada.		X		
Há produtos químicos (destinados ao uso no tratamento ou na realização de análises de qualidade da água) com validade expirada.		X		
Há produtos químicos preparados em uma única tina e dosados por um mesmo equipamento.		X		
A tampa da abertura de inspeção da câmara de contato não propicia a estanqueidade adequada para preservar a qualidade da água nela contida.		Х		
As bordas da abertura de inspeção da câmara de contato estão a menos de 10 cm da superfície em que ela se encontra.		Х		
Drenagem inadequada de água de lubrificação de gaxetas.			X	
As instalações do laboratório prejudicam a qualidade das atividades nele realizadas.	X			
Não realização de alguma(s) das análises físico- químicas de controle operacional do tratamento (pH, turbidez, cor, fluoreto ou cloro residual livre).		X		
A área está em condições inadequadas de limpeza		X		
A área não está devidamente cercada.		X		
A cerca está em condições inadequadas de conservação.		X		
O portão é mantido deschaveado ou sem dispositivo (cadeado) para impedir o acesso de pessoas não autorizadas à área.		Х		
Existência de locais potencialmente perigosos sem guarda-corpos ou escadas.		Х		
Existência de escadas e/ou guarda-corpos em condições inadequadas de instalação e/ou conservação.		Х		
Inexistência de chuveiros de emergência e/ou lava- olhos no laboratório.		X		
Inexistência de EPIs para os operadores (óculos, luvas, máscaras, etc.).		X		
Inexistência de extintor de incêndio e/ou equipamento com validade expirada.			х	
Inexistência de grelha sobre câmaras de registros de manobra e/ou de outros equipamentos.	X			
Inexistência de tratamento e/ou destinação correta dos subprodutos do tratamento (efluente da lavagem dos filtros, sólidos removidos dos decantadores, etc.).			Х	
Inexistência de identificação da área.	X			

Imagem 41: Casa de Química.

Imagem 42: Dosadora.

Imagem 43: Dosadora.

Imagem 44: Tina de preparo.

6.4.3. Reservação

Reservatório 01 - Centro

O Reservatório 01 Centro, está localizado junto a ETA, no centro da cidade, possui capacidade de 40 m³, sendo elevado e em alvenaria.

ITEM	SIM/NC OU REC.	NÃO	NÃO APLICÁVEL	OBSERVAÇÃO
Existência de vazamentos aparentes.		X		
A estrutura civil do reservatório está em condições inadequadas de conservação.		X		
As instalações hidráulicas (tubulações, válvulas, etc.) do reservatório estão em condições inadequadas de conservação.		х		
A área não está devidamente cercada.		X		

O portão é mantido deschaveado ou sem dispositivo (cadeado) para impedir o acesso de pessoas não autorizadas à área.		Х	
A cerca está em condições inadequadas de conservação		х	
Inexistência de dispositivo de travamento da tampa da abertura de inspeção		Х	
A tampa da abertura de inspeção não propicia a estanqueidade adequada para preservar a qualidade da água.		х	Foi colocado tampa nova em alumínio.
As bordas da abertura de inspeção do reservatório estão a menos de 10 cm da cobertura.		Х	
Inexistência de dispositivo indicador do nível da água (mangueira ou sensor que alimente sistema supervisório).		х	
O acesso à unidade está em condições inadequadas de uso, colocando em risco de acidentes a circulação de pessoas e/ou a movimentação de equipamentos e materiais.		х	
Dutos de ventilação desprovidos de tela e/ou cobertura que impeça a entrada de água da chuva e limite a entrada de poeira.		х	
Inexistência de dutos de ventilação.		Х	
Inexistência de extravasor.		х	
Inexistência de medidor de vazão.		Х	
Medidor de vazão danificado.		х	
A área está em condições inadequadas de limpeza.		Х	
Inexistência de grelha sobre câmaras de registros de manobra e/ou de outros equipamentos.		Х	
Inexistência de identificação da área.		Х	
Inexistência de pintura ou pintura em condições inadequadas de conservação.	X		
Inexistência de escada de acesso à cobertura do reservatório.		Х	
Escadas com mais de 6,00 m de altura desprovidas de guarda-corpo ou em desacordo com as demais recomendações da NBR 12.217/1994.	х		
Reservatório elevado desprovido de guarda-corpo entre o ponto de chegada da escada e a abertura de inspeção.	Х		

Imagem 45: Escada de acesso.

Imagem 46: Subida de água e estrutura de apoio do reservatório.

Imagem 47: Tampa de inspeção.

Imagem 48: Tampa de inspeção.

Imagem 49: Dutos de ventilação.

Imagem 50: Tela de proteção no duto de ventilação.

Reservatório R2 - Bairro COAB

O Reservatório 02, está localizado no Bairro da COAB, possui capacidade de 20 m³, sendo elevado e em alvenaria.

ITEM	SIM/NC OU REC.	NÃO	NÃO APLICÁVEL	OBSERVAÇÃO
Enistênsia de comunitar accountes				
Existência de vazamentos aparentes.		X		
A estrutura civil do reservatório está em condições inadequadas de conservação.		Х		
As instalações hidráulicas (tubulações, válvulas, etc.) do reservatório estão em condições inadequadas de conservação.		х		
A área não está devidamente cercada.		х		
O portão é mantido deschaveado ou sem dispositivo (cadeado) para impedir o acesso de pessoas não autorizadas à área.		X		
A cerca está em condições inadequadas de conservação		х		
Inexistência de dispositivo de travamento da tampa da abertura de inspeção		X		
A tampa da abertura de inspeção não propicia a estanqueidade adequada para preservar a qualidade da água.		X		
As bordas da abertura de inspeção do reservatório estão a menos de 10 cm da cobertura.		х		
Inexistência de dispositivo indicador do nível da água (mangueira ou sensor que alimente sistema supervisório).		х		
O acesso à unidade está em condições inadequadas de uso, colocando em risco de acidentes a circulação de pessoas e/ou a movimentação de equipamentos e materiais.		х		
Dutos de ventilação desprovidos de tela e/ou cobertura que impeça a entrada de água da chuva e limite a entrada de poeira.		х		
Inexistência de dutos de ventilação.		X		
Inexistência de extravasor.		X		
Inexistência de medidor de vazão.		х		
Medidor de vazão danificado.		x		
A área está em condições inadequadas de limpeza.		X		
Inexistência de grelha sobre câmaras de registros de manobra e/ou de outros equipamentos.	X			
Inexistência de identificação da área.	X			
Inexistência de pintura ou pintura em condições inadequadas de conservação.	X			

Inexistência de escada de acesso à cobertura do reservatório.		Х	
Escadas com mais de 6,00 m de altura desprovidas de guarda-corpo ou em desacordo com as demais recomendações da NBR 12.217/1994.	X		

Reservatório elevado desprovido de guarda-corpo entre o ponto de chegada da escada e a abertura de inspeção.

	X	
X		
X		

Imagem 51: Reservatório 02.

Imagem 52: Escada de acesso.

Imagem 53: Proteção lateral na cobertura.

Imagem 54: Tampa de inspeção.

Imagem 55: Duto de ventilação.

Imagem 56: Macromedidor.

Reservatório R3

O Reservatório, que está localizado próximo à rodovia 153, possui capacidade de 40 m³, é elevado e em alvenaria.

ITEM	SIM/NC OU REC.	NÃO	NÃO APLICÁVEL	OBSERVAÇÃO
Existência de vazamentos aparentes.		X		
A estrutura civil do reservatório está em condições inadequadas de conservação.		X		
As instalações hidráulicas (tubulações, válvulas, etc.) do reservatório estão em condições inadequadas de conservação.		х		
A área não está devidamente cercada.		X		
O portão é mantido deschaveado ou sem dispositivo (cadeado) para impedir o acesso de pessoas não autorizadas à área.		х		
A cerca está em condições inadequadas de conservação		X		
Inexistência de dispositivo de travamento da tampa da abertura de inspeção		Х		
A tampa da abertura de inspeção não propicia a estanqueidade adequada para preservar a qualidade da água.		X		
As bordas da abertura de inspeção do reservatório estão a menos de 10 cm da cobertura.		X		
Inexistência de dispositivo indicador do nível da água (mangueira ou sensor que alimente sistema supervisório).		Х		
O acesso à unidade está em condições inadequadas de uso, colocando em risco de acidentes a circulação de pessoas e/ou a movimentação de equipamentos e materiais.		Х		
Dutos de ventilação desprovidos de tela e/ou cobertura que impeça a entrada de água da chuva e limite a entrada de poeira.		х		
Inexistência de dutos de ventilação.		X		
Inexistência de extravasor.		Х		
Inexistência de medidor de vazão.		Х		
Medidor de vazão danificado.		х		
A área está em condições inadequadas de limpeza.		х		

Inexistência de grelha sobre câmaras de registros de manobra e/ou de outros equipamentos.	X		
Inexistência de identificação da área.	Х		
Inexistência de pintura ou pintura em condições inadequadas de conservação.	X		
Inexistência de escada de acesso à cobertura do reservatório.		Х	
Escadas com mais de 6,00 m de altura desprovidas de guarda-corpo ou em desacordo com as demais recomendações da NBR 12.217/1994.	X		
Reservatório elevado desprovido de guarda-corpo entre o ponto de chegada da escada e a abertura de inspeção.	х		

Imagem 57: Portão de acesso.

Imagem 58: Cercado.

Imagem 59: Reservatório R3.

Imagem 60: Macromedidor.

Imagem 61: Caixa de registro de manobra.

Imagem 62: Tampa de inspeção.

Imagem 63: Duto de ventilação.

Imagem 64: Sistema de controle de nível via rádio frequência.

7. CONSIDERAÇÕES FINAIS E RECOMENDAÇÕES

De acordo com a fiscalização "in loco" e as verificações realizadas, expostas no presente

relatório, é fundamental salientar que atualmente o SAA não enfrenta problemas de

disponibilidade de água. Porém, é necessário buscar aumentar a quantidade de reservação

disponível, visto que atualmente no geral há um déficit 324 m³, mas principalmente no sistema

que atende a região do centro da cidade, que atualmente é abastecida apenas por um reservatório

com 40 m³, porém, a maioria das ligações do sistema está neste setor. Tal fato compromete a

continuidade de abastecimento do sistema, se houver qualquer problema no operacional, visto a

baixa capacidade de suprir o abastecimento pelo reservatório, aproximadamente 2 horas, conforme

constatação realizado com o relato do responsável do sistema.

Por fim, salienta-se a necessidade de atender todos os apontamentos expostos no Relatório

de Fiscalização, nos prazos estabelecidos. A fim de obter melhorias tanto na qualidade quanto na

eficiência do serviço prestado de abastecimento público de água.

O prestador deve manter cópia do presente Relatório de Fiscalização junto ao escritório

local, à disposição para consulta pública dos usuários.

Remete-se cópia do presente relatório ao Prefeito de Irani e à prestadora, estando este

disponível para consulta pública no site da ARIS.

Florianópolis, 10 de janeiro de 2017.

William Dill Arenhardt

Engenheiro Sanitarista e Ambiental CREA/SC 117981-7

36/37

8. ANEXOS

Termos de abertura e de encerramento

SISARIS

Sistemas de Abastecimento de Água da Área Rural (SAA-R)

De acordo com o Fiscal da Vigilância Sanitária Sr. Altair Pasquali o município de Irani não possui levantamento dos poços existentes na área rural. Mas, tem conhecimento da existência de vários poços, sendo todos administrados por associações de moradores. Dos sistemas não se tem conhecimento de nenhum com tratamento e controle de qualidade da água consumida.

Relatório de Fiscalização RF-SAA-CVD-IRANI-002/201

Código nº 689.036.537.986

Companhia Catarinense de Águas e Saneamento -**CASAN** (via WEB)

Município Município de Irani COFIS - Coordenadoria de Fiscalização

Em 06/03/2019 às 17:11

Relatório de Fiscalização

Sistema de Abastecimento de Água

INTRODUÇÃO

Por meio da Lei Municipal nº 1512, aprovada em 18 de dezembro de 2009, o município de Irani se consorciou e delegou a regulação e a fiscalização dos serviços de saneamento básico à Agência Reguladora Intermunicipal de Saneamento (ARIS), entidade que goza de independência decisória, administrativa e orçamentária, em consonância com o Art. 21 da Lei Federal nº 11.445/2007.

Um dos objetivos da regulação é garantir o cumprimento de condições e metas estabelecidas para padrões e indicadores de qualidade da prestação dos serviços, assim como para a expansão deles (Art. 22 c/c Art. 23 da Lei Federal nº 11.445/2007). Assim, visando avaliar se a capacidade das unidades atende às demandas de abastecimento de água do município, a ARIS emite este relatório com base em dados fornecidos pelo próprio prestador dos serviços.

Este relatório diz respeito ao SAA_IRANI e tem 2017 como ano de referência.

Dados de população, ligações, economias, extensão de rede, vazão de projeto e capacidade de reservação têm base no último mês do ano de referência. Os dados referentes aos volumes do balanço hídrico compreendem o total anual. Os demais dados (indicadores) são médias anuais ou incrementos relativos (necessários para adequação das unidades).

ENQUADRAMENTO LEGAL

Os trabalhos de fiscalização e regulação dos municípios consorciados à ARIS estão amparados, principalmente, nas seguintes legislações vigentes:

Tabela: Principais leis, decretos, resoluções e portarias que norteiam as fiscalizações realizadas pela ARIS.

LEGISLAÇÃO	DESCRIÇÃO
Lei Federal nº 11.445/2007	Estabelece diretrizes nacionais para o saneamento básico e para a política federal de saneamento básico e dá outras providências.
Decreto Federal nº 7.217/2010	Regulamenta a Lei nº 11.445, de 05 de janeiro de 2007, que estabelece diretrizes nacionais para o saneamento básico, e dá outras providências.
Resolução CONAMA nº 357/2005	Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências.
Resolução CONAMA nº 396/2008	Dispõe sobre a classificação e diretrizes ambientais para o enquadramento das águas subterrâneas e dá outras providências.

Resolução CONAMA nº 430/2011	Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução no 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente - CONAMA.
Portaria MS nº 2.914/2011	Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade.
Portaria MS nº 443/BSB/ 1978	Estabelece os requisitos sanitários mínimos a serem obedecidos no projeto, construção, operação e manutenção dos serviços de abastecimento público de água para consumo humano, em obediência ao disposto no artigo 9° do Decreto no 79.367 de 09 de março de 1977.
Resolução ARIS nº 001/2011	Prestação dos Serviços de Abastecimento de Água e de Esgotamento Sanitário.
Resolução ARIS nº 002/2011	Procedimentos de Fiscalização de Prestação dos Serviços de Abastecimento de Água e de Esgotamento Sanitário, de Aplicação de Penalidades e Dá Outras Providências.
Resolução ARIS nº003/2011	Penalidades Aplicáveis aos Prestadores de Serviços de Abastecimento de Água e de Esgotamento Sanitário.
Resolução ARIS nº004/2012	Procedimentos de Consultas e Reclamações dos Usuários dos Serviços de Abastecimento de Água e Esgotamento Sanitário, Coleta, Transporte e Disposição Final de Resíduos, Limpeza Urbana e Sistema de Drenagem.

IDENTIFICAÇÃO DAS PARTES

Agência Reguladora Intermunicipal de Saneamento (ARIS):

Rua General Liberato Bittencourt, nº 1.885, 12º andar, Bairro Estreito. Florianópolis/SC.

CEP: 88.070-800.

Fone: (48) 3954-9100.

Prestador de Serviços:

Companhia Catarinense de Águas e Saneamento - CASAN

Rua Emílio Blum, nº 83, Centro. Florianópolis/SC.

CEP: 88.020-010 - Caixa Postal: 83.

Fone: (049) 3221-5000

Superintendência Regional de Negócios do Oeste - SRO

Avenida Getúlio Vargas, 990 – S, Centro. Chapecó/SC.

CEP: 89.814-000.

Fone: (049) 89.814-000.

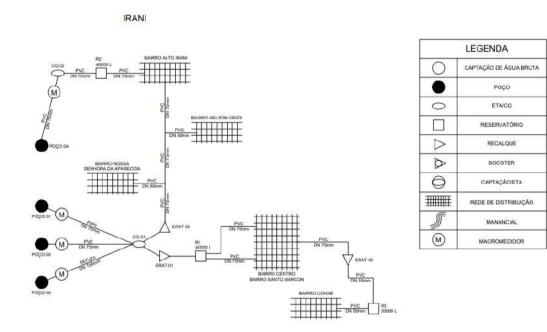
Agência de Irani

Rua Governador Ivo Silveira, nº 1.318, Centro. Irani/SC

Fone: (49) 3432-0092

CEP: 89.680-000

SISTEMA DE ABASTECIMENTO DE ÁGUA


DESCRIÇÃO GERAL DO SISTEMA

O SAA da área urbana do município é suprido por captações subterrâneas através de quatro pocos tubulares profundos.

A água captada nos três primeiros poços é recalcada diretamente para a ETA, sendo as captações subterrâneas acionadas automaticamente, passando na ETA apenas por desinfecção e fluoretação.

Parte da água tratada é direcionada para reservatório de alvenaria localizados ao lado da ETA com capacidade de 40 m³, então segue para rede de abastecimento, sendo uma parte recalcada pela ERAT 03 para reservatório de alvenaria de 20 m³, localizado no Bairro Cohab.

A Unidade 02 possui captação no poço 04, de onde a água é recalcada até reservatório de alvenaria com 40 m³ situado ao lado da Rodovia 153, onde na entrada é realizada a dosagem de cloro e flúor para tratamento da água.

DADOS GERAIS DO SISTEMA

DADOS GERAIS DO SISTEMA DE ABASTECIMENTO DE ÁGUA	VALOR	UNIDADE
População total atendida	8146	habitantes
População urbana atendida	7655	habitantes
Produção per capita média	134,97	l/hab.dia
Total de ligações ativas	2420	unidade
Total de economias	2740	unidade
Extensão da rede de água	48.250	km
Índice de perdas totais	27,38	%

CAPACIDADE INSTALADA versus DEMANDA

Pelo fato de os prestadores não estarem apurando os valores do coeficiente do dia de maior consumo (K1) anualmente, de forma que ele possa ser obtido a partir da média móvel dos últimos 5 anos (como recomenda a ABNT NBR 12.211/1992), a ARIS adotou o valor de 1,2, usualmente empregado e recomendado pela literatura

(considerando um volume máximo diário 20% superior à média anual). Idealmente, o prestador deverá monitorar os volumes disponibilizados diariamente ao longo do ano e, neste caso, informar à ARIS para que possa atualizar as informações referentes a este SAA no próximo ano de referência.

Demanda de Consumo 2017

DEMANDA DE CONSUMO	VALOR	UNIDADE
População total atendida	8146	habitantes
Vazão média produzida/distribuída no SAA	12,73	l/s
Produção per capita média distribuída	134,97	l/hab.dia
Consumo médio das unidades de tratamento	0	%
Índice de Perdas na Distribuição	27,38	%
Consumo per capita efetivo atual (calculado)	97,98	l/hab.dia
Consumo per capita efetivo adotado (PMSB/contrato)	150,00	l/hab.dia
Coeficiente do dia de maior consumo (K1)	1,2	-
Demanda do sistema	23,37	l/s
Vazão de projeto das unidades de tratamento	22,00	l/s
Índice de comprometimento da capacidade de produção instalada nas unidades de tratamento	106,65	%

Analisando a tabela acima, percebe-se que a vazão média produzida é **inferior** à capacidade nominal do SAA. Com base no consumo per capita efetivo adotado (decorrente do planejamento municipal) e pelo fato de poder haver consumo reprimido no SAA, calculou-se a estimativa da demanda baseada no nível de perdas atual. A razão entre esta demanda do sistema e a vazão de projeto das unidades do tratamento resulta no "Índice de comprometimento da capacidade de produção instalada".

Demanda de Reservação (Nível de Perdas Atuais e Normativo)

A seguir, há duas tabelas que resultam no cálculo da demanda de reservação. A primeira leva em conta os volumes atualmente distribuídos no município, que implicam capacidade necessária sem considerar a possibilidade de haver demanda reprimida. O segundo método emprega o consumo per capita efetivo adotado (juntamente com o nível de perdas atuais, da mesma forma que o Método 1). Na sequência, em cada tabela, o cálculo do incremento necessário de reservação é refeito levando-se em conta a redução de perdas à meta estabelecida no instrumento de planejamento municipal.

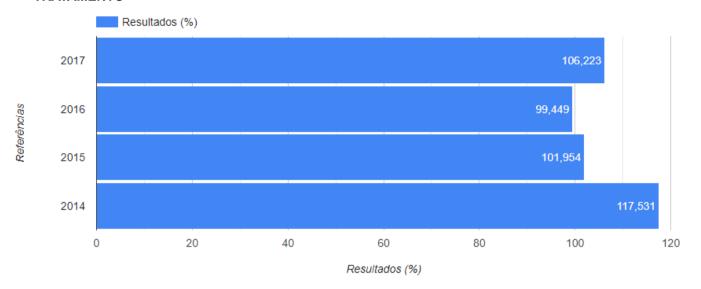
DEMANDA DE RESERVAÇÃO (MÉTODO 1)	VALOR	UNIDADE
Volume de água produzido	401,31	1.000 m³/ano
Volume de água tratada importada	0	1.000 m³/ano
Volume de água tratada exportada	0	1.000 m³/ano
Volume de reservação mínimo do sistema (método 01)	439,79	m³
Volume de reservação disponível total do sistema	100,00	m³
Incremento necessário de reservação (Método 1)	339,79	m³

Com base nos volumes atualmente distribuídos, bem como no percentual de perdas do ano de referência, constatou-se que **há** déficit de reservação no SAA. Empregou-se o método que considera o volume mínimo de reservação igual a um terço do volume disponibilizado no dia de maior consumo (dado um K1 de 1,2). Da literatura, percebe-se que os métodos da curva de consumo acumulado e de volumes incrementais resultam demandas semelhantes, portanto, optou-se pelo mais prático.

DEMANDA DE RESERVAÇÃO (MÉTODO 2)	VALOR	UNIDADE
População residente total atendida pelo SAA	8146	hab.
Índice de Perdas na Distribuição	27,38	%
Consumo per capita efetivo adotado (PMSB/contrato)	150,00	l/hab.dia
Volume de reservação mínimo do sistema (Método 2)	673,03	m³
Volume de reservação disponível total do sistema	100,00	m³
Incremento necessário de reservação (Método 2)	573,03	m³

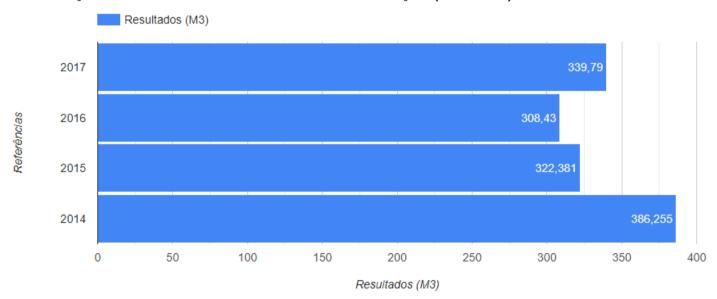
Seguindo a mesma lógica do Método 1, o Método 2 considera o volume mínimo igual a um terço do volume disponibilizado no dia de maior consumo (dado um K1 de 1,2). No entanto, a demanda é calculada tendo como base o consumo per capita normativo (definido no planejamento municipal). Este método leva em conta a existência de possível demanda reprimida. Por ele, constatou-se que **há** déficit de reservação no SAA.

Vazão de Captação Necessária 2017

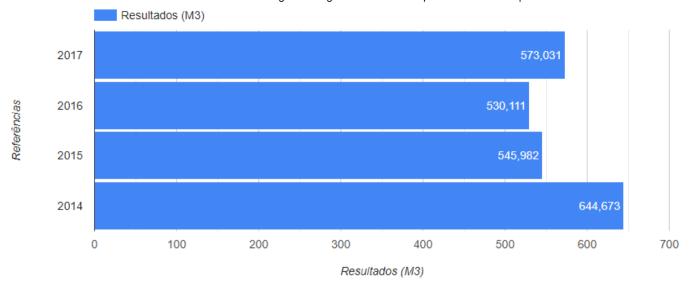

Dado o atual consumo das unidades de tratamento do SAA, calculou-se a vazão de captação necessária por dois métodos distintos: o primeiro utiliza o consumo per capita efetivo adotado (considerando demandas reprimidas), enquanto o segundo emprega a vazão média distribuída (atualmente) acrescida do consumo na unidade de tratamento. Tais vazões são comparadas com a vazão de projeto das captações (somadas) para cálculo do incremento necessário (com base na demanda atual). Na sequência, em cada tabela, o cálculo do incremento necessário na captação é refeito levando-se em conta a redução de perdas à meta estabelecida no instrumento de planejamento municipal.

VAZÃO DE CAPTAÇÃO NECESSÁRIA (MÉTODO 1)	VALOR	UNIDADE
População residente total atendida pelo SAA	8146	hab.
Índice de Perdas na Distribuição	27,38	%
Consumo médio das unidades de tratamento	0	%
Coeficiente do dia de maior consumo (K1)	1,2	-
Vazão de captação necessária calculada (Método 1)	23,37	l/s

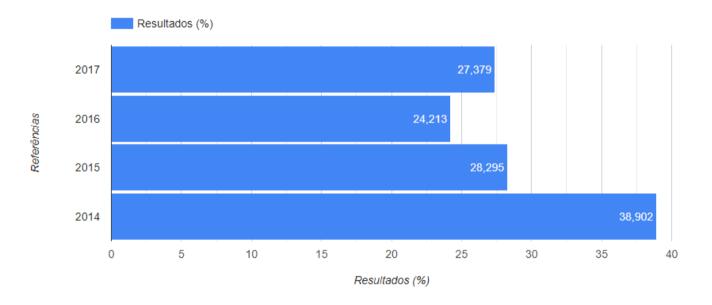
VAZÃO DE CAPTAÇÃO NECESSÁRIA (MÉTODO 2)	VALOR	UNIDADE
Volume de água produzido	401,31	1.000 m³/ano
Volume de água tratada importada	0	1.000 m³/ano
Volume de água tratada exportada	0	1.000 m³/ano
Consumo médio das unidades de tratamento	0	%
Coeficiente do dia de maior consumo (K1)	1,2	-
Vazão de captação necessária calculada (Método 2)	15,27	l/s


EVOLUÇÃO TEMPORAL DAS DEMANDAS FACE À CAPACIDADE INSTALADA

• EVOLUÇÃO DO ÍNDICE DE COMPROMETIMENTO DA CAPACIDADE INSTALADA NAS UNIDADES DE TRATAMENTO


Para este indicador, o valor ideal é abaixo de 100%.

• EVOLUÇÃO DO INCREMENTO NECESSÁRIO DE RESERVAÇÃO (MÉTODO 1)


Para este indicador, o ideal é que o valor seja menor ou igual a zero.

• EVOLUÇÃO DO INCREMENTO NECESSÁRIO DE RESERVAÇÃO (MÉTODO 2)

Para este indicador, o ideal é que o valor seja menor ou igual a zero.

• EVOLUÇÃO DO ÍNDICE DE PERDAS NA DISTRIBUIÇÃO

CONSIDERAÇÕES FINAIS E RECOMENDAÇÕES

Este relatório objetivou apurar a atual situação da capacidade instalada face às demandas do Sistema de Abastecimento de Água **SAA_IRANI** do município de **Irani**. Ressalta-se que a base de dados foi fornecida pela prestadora e a metodologia empregada deriva de fontes consagradas na doutrina do saneamento básico. Ainda, faz comparativo anual para registro da evolução dos principais indicadores de desempenho operacional e de aproveitamento das unidades do SAA.

Com base na análise da capacidade instalada face às demandas atuais, o SAA apresentou as seguintes características básicas de desempenho:

- 1. **Não há** déficit na produção de água tratada, tendo sido observada uma tendência de **crescimento** no Índice de Comprometimento da Capacidade Instalada nas Unidades de Tratamento;
- 2. Com base no Método 1, que levou em conta o volume distribuído no ano de referência, **há** déficit na capacidade de reservação do SAA. Com base no Método 2 (pressupõe a existência de demanda reprimida),

constatou-se que **há** déficit na capacidade de reservação do SAA. Portanto, pode-se dizer que ambos os métodos convergem para a **existência** de déficit neste quesito

Os apontamentos deste Relatório de Fiscalização devem ser considerados pelo prestador de serviços a fim de orientar as melhorias a serem executadas no sistema, bem como pelo município na atualização de metas e definição de linhas de atuação no escopo do planejamento do abastecimento de água.

O prestador de serviços deve manter cópia do presente Relatório de Fiscalização junto ao escritório local, à disposição para consulta pública dos usuários.

Remete-se cópia do presente Relatório de Fiscalização ao Prefeito do município de **Irani** e ao prestador, estando este disponível para consulta pública no site da ARIS.

Valdir Eduardo Olivo

Engenheiro Sanitarista e Ambiental

1Doc • Comunicação Interna, Atendimento, Documentos e Tarefas • www.1doc.com.br

« Voltar - Central de Atendimento

Poços cadastrados no município - CPRM - SIAGAS

													Diâmetro					Tipo							
Ponto	Localização	Data	Cota	utmo	utmn	Natureza	Nome	Situação	Uso da água	Data	Método	Perfurador	boca do tubo	Condição	Profundidade	Tipo	Data	teste	surgencia	Unidade de	Nível	Nível	Vazão	Vazão	Tipo
I onto	Localização	Instalação	terreno) """	uuiiii	I I I I I I I I I I I I I I I I I I I	Nome	Oituação	Oso da agua	perfuração	Perfuração	Feridiadoi		Condição	final	formacao	teste		oui gencia	bombeamento	dinâmico	estático	específica	estabilização	bomba
4300003354	LINHA ALTO CASCALHO			401776								CIDASC	milimetros					bombeamento					1.784		
4300003354		21/03/1996	526 566	401776		Poço tubular Poço tubular	IU583 IU552 LNDS-02-CIDA	Bombeando	Abastecimento doméstico/animal	21/03/1996	Percussao	IMPAGROSS	152,4 152.4	Confinado	86	Formacao serra geral	01/01/1996	Rebaixamento	N	Bomba submersa	21	2,5	1,784	33	Bomba submersa
4300003713	LINHA QUINZE DE NOVEMBRO ALTO CASCALHO	01/01/1997 21/03/1996	566			Poço tubular Poco tubular	IU552 LNDS-02-CIDA IRN-04 CIDA	Bombeando	Abastecimento doméstico/animal	05/08/1997 21/03/1996	Percussao	CIDASC	152,4 152,4	Confinado	60	Formacao serra geral	11/08/1997 21/03/1996	Rebaixamento	N	Bomba submersa	21,14	5,12 2.5	0,705	11,3	Bomba submersa Bomba centrifuga
4300003715								Equipado	Abastecimento doméstico/animal		Percussao				75	Formacao serra geral		Rebaixamento	N					33	
	LINHA ALTO CASCALHO	15/07/1997	557			Poço tubular	IU585 IRN-05-CIDA	Bombeando	Abastecimento doméstico/animal	15/07/1997	Percussao	CIDASC	152,4	Confinado	54 47	Formacao serra geral	15/07/1997	Rebaixamento	N		15,68	8,45	3,043	22 16	Bomba submersa
4300003717	LINHA ALTO CASCALHO ALTO CASCALHO	01/01/1986 19/08/1997	559	401136		Poço tubular Poco tubular	IU584 IRN-06-CIDA IRN-08 CIDA	Bombeando Não instalado	Abastecimento doméstico/animal	12/02/1986	Percussao Percussao	CIDASC	152,4 152.4	Confinado Confinado	47	Formacao serra geral	15/06/1986 20/08/1997	Rebaixamento Rebaixamento	N N		3,22	3,2 5 14	800	16	Compressor de ar
			772			Poço tubular Poco tubular								Confinado	187	Formacao serra geral	20/08/1997	Rebaixamento	N		29,35	5,14		9	
4300003720 4300003721	ALTO CASCALHO LINHA GORETTI	13/05/1997 01/01/1986	772			Poço tubular Poco tubular	IRN-09 CIDA IRN-10 CIDA	Abandonado Seco		13/05/1997 22/05/1986	Roto-percussao Percussao	CIDASC	152,4 152.4	Confinado	187	Formacao serra geral									
4300003721	LINHA GURETTI	01/01/1986	/63	403355	/00662/	Poço tubular	IU587 IRN-11-CIDA	5000		22/05/1986	Percussão	CIDASC	152,4	Continado	108	Formacao serra geral									
					l			l			_					l									l
4300003722	SEDE SEDE	10/12/1992	1028	410556		Poço tubular Poço tubular	00000279/2016 POÇO 03	Bombeando Bombeando	Abastecimento doméstico	10/12/1992	Percussao	CIDASC T.IANER	152,4 152.4	Confinado	133	Formacao serra geral	10/12/1992	Rebaixamento	N	Romba submersa	38.3	3	0.737	55	Bomba submersa
									Abastecimento doméstico		Percussao					Formacao serra geral	10/03/1977	Rebaixamento	N	Bomba submersa		19,8		13,63	Bomba submersa
4300003724	SEDE	01/01/1988	1038			Poço tubular	IU588 IRN-13-CIDA	Bombeando	Abastecimento doméstico	10/05/1988	Percussao	CIDASC	152,4	Confinado	120	Formacao serra geral	01/01/1988	Rebaixamento	N		23	5	0,889	16	Bomba submersa
4300003725	COHAB	17/09/1993	1043			Poço tubular	IRN-14 CIDA	Não instalado		17/09/1993	Roto-percussao	CIDASC	152,4	Confinado	122	Formacao serra geral	17/09/1993	Rebaixamento	N		87,46	3,47	0,024	2	
4300003726	LINHA FRAGOSO		1015			Poço tubular	IRN-15	Equipado	Abastecimento doméstico/animal	18/11/1994			152,4	Confinado	100	Formacao serra geral	18/11/1994	Rebaixamento	N			3,4		16	Bomba submersa
4300003727	ALTO ENGANO	27/03/1992	849	404028		Poço tubular	IRN-16 CIDA	Seco		27/03/1992		CIDASC	152,4	Confinado	100	Formacao serra geral									
4300003778	LINHA QUINZE DE NOVEMBRO	11/03/1997	566	401151		Poço tubular	IU553 LNDS-4-CIDA	Bombeando	Abastecimento doméstico/animal	11/03/1997	Percussao	CIDASC	152,4	Confinado	93	Formacao serra geral	10/03/1997	Rebaixamento	N		23,4	18,37	3,022	15,2	Bomba submersa
4300003779	LINHA MIMOSA		802			Poço tubular	LNDS-5 CIDA	Seco		30/06/1997	Percussao	CIDASC	152,4	Confinado	125	Formacao serra geral									
4300003791	LAJEADO CASAGRANDE		615	408990		Poço tubular	IRN-01 CIDA	Seco		25/11/1997	Roto-percussao		152,4	Confinado	125	Formacao serra geral									
4300003792	LAJEADO DO MEIO	01/01/1990	584	407641		Poço tubular	IRN-02 CIDA	Colmatado		07/04/1990	Percussao	CIDASC	152,4	Confinado	85	Formacao serra geral	07/04/1990	Rebaixamento	N			34,7		0,5	
4300003793	LAJEADO DO MEIO		571	407191		Poço tubular	IRN-03 CIDA	Seco		18/05/1992	Percussao	CIDASC	152,4	Confinado	120	Formacao serra geral									
4300003826	GRANJA 2B		1050	414967		Poço tubular	IRN-17 CIDA	Não instalado	Abastecimento doméstico/animal	13/06/1997	Roto-percussao	CIDASC	152,4	Confinado	150	Formacao serra geral	18/06/1997	Rebaixamento	N		132	73		4	
4300003879	LINHA CAROVEIRA	30/10/1986	707	410234			IU596	Bombeando	Abastecimento doméstico/animal	30/10/1986	Roto-percussao	CIDASC	152,4	Confinado	65	Formacao serra geral	30/10/1986	Rebaixamento	N		21,2	5	0,556	9	Bomba submersa
4300003880	LINHA PIGOSO	03/03/1998	630	408761			IRN-19 CIDA	Abandonado		01/03/1998	Roto-percussao	CIDASC	152,4	Confinado	120	Formacao serra geral	01/03/1998	Rebaixamento	N			7,4		3,5	
4300003881	LINHA CAROVEIRA	01/11/1997	725			Poço tubular	IRN-20 CIDA	Não instalado		01/11/1997	Percussao	CIDASC	152,4	Confinado	121	Formacao serra geral	01/11/1997	Rebaixamento	N			16,5		3,5	
4300013041	LINHA PIGOSO		722			Poço tubular	IU575	Seco		21/09/2000	Rotopneumatico	CIDASC	152,4	Confinado	104	Formacao serra geral									
4300013042	LINHA PIGOSO		712			Poço tubular	IU576	Não instalado		16/07/2005	Rotopneumatico	ROANI PERFURACOES	152,4	Confinado	108	Formacao serra geral	16/07/2005		N			2		9	
4300013043	LINHA PIGOSO		675	409264			IU577	Bombeando	Abastecimento doméstico/animal	30/03/2004	Rotopneumatico	ROANI PERFURACOES	152,4	Confinado	60	Formacao serra geral	30/03/2004		N			3		8	Bomba submersa
4300013044	LINHAGUARANI		724	409237	7007395		IU578	Bombeando	Abastecimento doméstico/animal	12/08/2003	Rotopneumatico	CIDASC	152,4	Confinado	108	Formacao serra geral	12/08/2003		N			1		4,2	Bomba submersa
4300013045	LINHA LAJEADO DO MEIO		621	408287		Poço tubular	IU579	Bombeando	Abastecimento doméstico/animal	23/03/2002	Rotopneumatico	CIDASC	152,4	Confinado	150	Formacao serra geral	23/03/2002		N			2		9	Bomba submersa
4300013046	LINHA LAJEADO DO MEIO		590	407542	7003495	Poço tubular	IU580	Não instalado		15/05/2005		ROANI PERFURACOES	152,4	Confinado	78	Formacao serra geral	15/05/2005		S			3		16	
4300013047	LINHA LAJEADO PROCOPIO		574	404953	7003080	Poço tubular	IU581	Não instalado		01/08/2005	Rotopneumatico	CIDASC	152,4	Confinado	84	Formacao serra geral	01/08/2005		N			1		24	
4300013048	LINHA LAJEADO OLIVEIRA		538	402544			IU582	Bombeando	Abastecimento doméstico/animal	13/02/2001	Rotopneumatico	ROANI PERFURACOES	152,4	Confinado	60	Formacao serra geral	13/02/2001		N			2		11	Bomba submersa
4300013049	LINHA ALTO CASCALHO		604			Poço tubular	IU586	Bombeando	Abastecimento doméstico/animal	11/08/2000		CIDASC	152,4	Confinado	104	Formacao serra geral	11/08/2000		N			3		5,6	Bomba submersa
4300014238	LINHA ALTO ENGANO		895	404582	7012261	Poço tubular	IU521	Seco		06/08/2004	Rotopneumatico	CIDASC		Confinado	150	Formacao serra geral									
4300014239	LINHA LAJEADO DA ANTA		837	400215		Poço tubular	IU590	Bombeando	Abastecimento doméstico/animal	03/08/2004	Rotopneumatico	CIDASC	152,4	Confinado	150	Formacao serra geral	03/08/2004		N		130	103	0,133	3,6	Bomba submersa
4300014240	LINHA CERRO AGUDO					Poço tubular	IU591	Bombeando	Abastecimento doméstico/animal	27/09/2000	Rotopneumatico	CIDASC	152,4	Confinado	92	Formacao serra geral	27/09/2000		N			1		4	Bomba submersa
4300014241	LINHA CERRO AGUDO					Poço tubular	IU592	Bombeando	Abastecimento doméstico/animal	14/08/2003	Rotopneumatico	CIDASC	152,4	Confinado	120	Formacao serra geral	14/08/2003		N			3		17	Bomba submersa
4300014242	DISTRITO INDUSTRIAL		1183	413344	7013713	Poço tubular	IU594	Seco		06/08/2004	Rotopneumatico	CIDASC	152,4	Confinado	150	Formacao serra geral									
4300014243	DISTRITO INDUSTRIAL		1079	413201	7013084	Poço tubular	IU595	Bombeando	Abastecimento industrial	10/08/2004	Rotopneumatico	CIDASC	152,4	Confinado	90	Formacao serra geral	13/08/2004	Rebaixamento	N	Bomba submersa	35,4	13,1	0,785	17,5	Bomba submersa
4300014244	LINHA CAROVEIRA		673	410950	7004091	Poço tubular	IU597	Bombeando	Abastecimento doméstico/animal	04/10/2001	Rotopneumatico	CIDASC	152,4	Confinado	102	Formacao serra geral	04/10/2001		N			2		35	Bomba submersa
	RUA JOSÉ KADES, CENTRO -															Formacao Serra Geral, Grupo									
4300026638	PRÓXIMO AO GINÁSIO		1053	411277	7010770	Poço tubular	00000279/2016 POÇO 01	Bombeando	Abastecimento urbano	22/08/2015	Rotopneumatico	NAO INFORMADO.	152,4	Livre	100	Sao Bento	22/08/2016	Rebaixamento	N	Bomba submersa	41,9	25,12	0,965	16,2	Bomba submersa
	RUA OSÓRIO DE OLIVEIRA		1	1	1		1	1	· · · · · · · · · · · · · · · · · · ·					1		Formacao Serra Geral, Grupo					1				
4300026639	VARGAS, CENTRO		1038	410425	7010835	Poço tubular	00000279/2016 POÇO 02	Bombeando	Abastecimento urbano	04/09/2015	Rotopneumatico	NAO INFORMADO.	152,4	Livre	99,8	Sao Bento	04/09/2015	Rebaixamento	N	Bomba submersa	39,18	11,76	0,788	21,6	Bomba submersa
																Formacao Serra Geral, Grupo									
4300026640	AVENIDA LESTE OESTE		1046	410467	7011087	Poço tubular	00000279/2016 POÇO 04	Bombeando	Abastecimento urbano	08/09/2015			152,4	Livre	100	Sao Bento	08/09/2015	Rebaixamento	N	Bomba submersa	36,97	26,2	1,565	16,85	
Fonte: CPRN	1 - SIAGAS																								

Fonte: CPRM - SIAGAS

Cartograma Localização Unidades SAA urbano

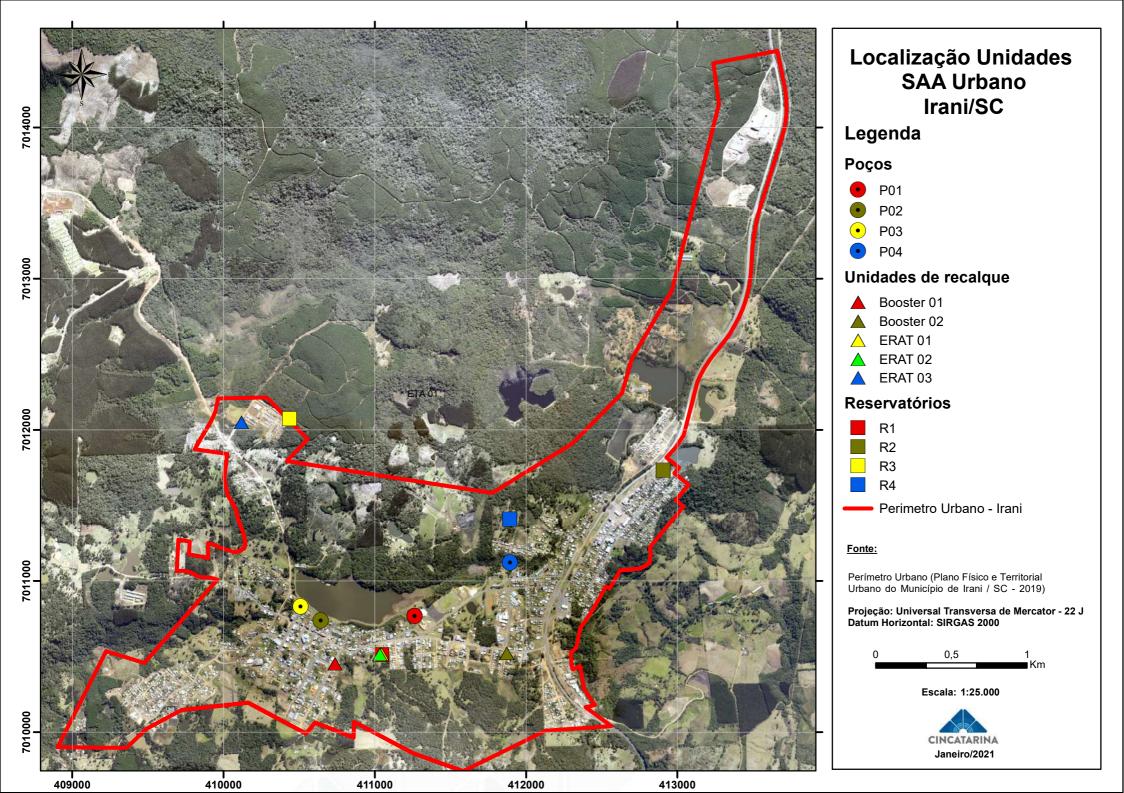


Tabela de serviços e prazos CASAN

	Tabela de Serviços CASAN			
Serviço	Descrição		Preço*	Prazo
· ·	Extravio	R\$	3,63	Imediato
Emissão 2 via de fatura	Por culpa CASAN		Gratuito	Imediato
	Emitida pelo usuário por meio de internet ou totem		Gratuito	Imediato
	Corte Cavalete - Falta Pagamento	R\$	56,75	48 horas
	Corte Cavalete - Sanção Regulamentar	R\$	169,05	15 dias úteis
	Corte Ramal Predial - Falta de Pagamento	R\$	94,26	15 dias úteis
Religação	Corte Ramal Predial - Sanção Regulamentar	R\$	267,63	15 dias úteis
Religação	Corte Ramal Predial - Ligação By-Pass ou Clandestina	R\$	380,08	15 dias úteis
	Sanção Regulamentar em Unidade Cancelada com	R\$	535,24	15 dias úteis
	Reincidência		333,24	
	Suspensão Indevida	R\$	-	6 horas
Taxa entrega de Fatura	Via Correio	R\$	1,40	5 dias úteis
	Diâmetro 1/2" e 3/4" em Logradouro com Asfalto	R\$	153,86	20 dias úteis
	Diâmetro 1/2" e 3/4" em Logradouro sem Asfalto	R\$	110,60	20 dias úteis
	Diâmetro 1" em Logradouro com Asfalto com material fornecido pelo Cliente	R\$	48,54	20 dias úteis
	Diâmetro 1" em Logradouro sem Asfalto com material		,	
Deslocamento de Ramal Predial	fornecido pelo Cliente	R\$	48,54	20 dias úteis
	Diâmetro Superior a 1" em Logradouro com Asfalto com			
	material fornecido pelo Cliente	R\$	60,68	20 dias úteis
	Diâmetro Superior a 1" em Logradouro sem Asfalto com			
	material fornecido pelo Cliente	R\$	60,68	20 dias úteis
	A pedido do cliente para eventos temporários - preço por			
Fornecimento Especial de água por carro pipa		R\$	247,65	24 horas
	Interesse CASAN	R\$	-	24 horas
	não residencial Diâmetro de 1/2" e 3/4" em Logradouro com			
	asfalto	R\$	127,46	15 dias úteis
	não residencial Diâmetro de 1/2" e 3/4" em Logradouro sem	D.#	127.46	4 F 4: /4-:-
	asfalto	R\$	127,46	15 dias úteis
	não residencial Diâmetro de 1" em Logradouro com asfalto	D¢	270.24	1 F dina /haia
	com material fornecido pelo cliente	R\$	378,24	15 dias úteis
	não residencial Diâmetro de 1" em Logradouro sem asfalto	R\$	378,24	15 dias úteis
	com material fornecido pelo cliente	ΝФ	370,24	13 dias dieis
	Residencial - Baixa Renda Diâmetro de 1/2" e 3/4" em	R\$	43,74	15 dias úteis
	logradouro com Asfalto	Ιζφ	13,71	15 did5 dtci5
	Residencial - Baixa Renda Diâmetro de 1/2" e 3/4" em	R\$	43,74	15 dias úteis
	logradouro sem Asfalto Residencial Diämetro de 1/2" e 3/4" em logradouro com		.57	20 0.00 0.00
	Asfalto	R\$	115,90	15 dias úteis
	Residencial Diâmetro de 1/2" e 3/4" em logradouro sem		,	
	Asfalto	R\$	115,90	15 dias úteis
Instalação de Ligação de água	Residencial Diâmetro 1" em Logradouro com Asfalto com			
	material fornecido pelo Cliente	R\$	378,24	15 dias úteis
	Residencial Diâmetro 1" em Logradouro sem Asfalto com			
	material fornecido pelo Cliente	R\$	378,24	15 dias úteis
	Diâmetro Nominal 1 1/2" em Logradouro com asfalto -			_
	Material fornecido pelo Cliente	R\$	563,98	15 dias úteis
	Diâmetro Nominal 1 1/2" em Logradouro sem asfalto -			
	Material fornecido pelo Cliente	R\$	563,98	15 dias úteis
	Diâmetro Nominal 2" em Logradouro com asfalto - Material	D.#	700.00	4 F 4: /4-:-
	fornecido pelo Cliente	R\$	789,98	15 dias úteis
	Diâmetro Nominal 2" em Logradouro sem asfalto - Material	R\$	790.09	15 dias úteis
	fornecido pelo Cliente	Кֆ	789,98	15 dias dieis
	Diâmetro Nominal Superior a 2" em Logradouro com asfalto	R\$	2.111,11	15 dias úteis
	- Material fornecido pelo Cliente	ψ		15 did5 dtel5
	Diâmetro Nominal Superior a 2" em Logradouro sem asfalto	R\$	2.111,11	15 dias úteis
	- Material fornecido pelo Cliente		,	
Inspeção em serviços de ligação	Primeira Inspeção Segunda e demais inspeções		Gratuito	5 dias úteis
, , , , , , , , , , , , , , , , , , , ,		R\$	31,29	5 dias úteis
Substituição de Cavalete	A pedido do cliente	R\$	46,23	20 dias úteis
	Diâmetro de 1/2" e 3/4" para aferição a pedido do cliente	R\$	37,98	10 dias úteis
	Diâmetro de 1/2 e 3/4 para aferição a pedido do cliente			
	Diâmetro de 1 1/2" para aferição a pedido do cliente	R\$	81,54 129,60	10 dias úteis 10 dias úteis
	Diâmetro de 1 1/2 para aferição a pedido do cliente	R\$	188,22	
	Danificado Diâmetro 1/2" e 3/4" Capacidade 3m³/hora	R\$		10 dias úteis 10 dias úteis
	Danificado Diâmetro 3/4" Capacidade 5m³/hora	R\$	246,65 257,33	10 dias úteis
	Danificado Diâmetro 1" Capacidade 7m³/hora	R\$	509,16	10 dias úteis
	Danificado Diâmetro 1" Capacidade 7111-71101a Danificado Diâmetro 1" Capacidade 10m3/hora	R\$		
Substituição do Hidrômetro	Danificado Diâmetro 2" Capacidade 1011/1101a Danificado Diâmetro 2" Capacidade 30m³/hora	R\$ ₽¢	488,52 1.167,44	10 dias úteis 10 dias úteis
Sabsataigas as maiometro	Danificado Diâmetro 2" Capacidade 300m³/dia	R\$		
	Danificado Diâmetro 3" Capacidade 300m³/dia	R\$ ₽¢	2.471,52 3.377,90	10 dias úteis 10 dias úteis
	Danificado Diâmetro 4" Capacidade 1100m²/dia	R\$ R\$	4.852,22	10 dias úteis
	Danificado Diâmetro 4" Capacidade 1000m²/dia	R\$	16.617,39	10 dias úteis
	Invertido Consumidor Normal	R\$	220,07	10 dias úteis
	Invertido Consumidor Normal Invertido Grande Consumidor	R\$	220,07	10 dias úteis
	z c. a.ao oranac consumuoi	1/4	ZZU,U/	±0 dias utels

Tabela de Serviços CASAN												
Serviço	Descrição		reço*	Prazo								
	Por Furto/Roubo - Com B.O. Manutenção Corretiva (desgaste)	R\$	246,65	10 dias úteis								
	Lacre Violado	R\$	ratuito 36,60	10 dias úteis 10 dias úteis								
	Acidez	R\$	18,84	24 horas								
	Alcalinidade Fenoftaleina	R\$	18,84	24 horas								
	Alcalinidade Total Metilorange	R\$	18,84	24 horas								
	Alumínio Residual	R\$	29,39	24 horas								
	Bióxido / Carbono	R\$	9,07	24 horas								
	Cálcio	R\$	9,07	24 horas								
	Cloretos	R\$	18,84	24 horas								
	Cloro Residual Condutância Específica	R\$	18,84	24 horas								
	Contagem Padrão / Placa	R\$	18,84	24 horas								
	Cor Aparente	R\$	131,07	24 horas 24 horas								
	Cor Real	R\$ R\$	18,84 18,84	24 horas								
	Dureza Total	R\$	18,84	24 horas								
	Dureza Cálcio	R\$	9,07	24 horas								
	Dureza Magnésio	R\$	9,07	24 horas								
	Ferro	R\$	29,39	24 horas								
Análise de Água Físico Quimico	Fluoreto	R\$	29,39	24 horas								
	Fosfatio Total	R\$	141,99	24 horas								
	Magnésio	R\$	29,39	24 horas								
	Nitratos	R\$	44,89	24 horas								
	Nitritos	R\$	44,89	24 horas								
	Oxigênio Consumido/Meio Ácido Oxigênio Dissolvido	R\$	29,39	24 horas								
	PH	R\$ R\$	29,39	24 horas 24 horas								
	Sólidos Sedimentares	R\$	18,84 28,75	24 horas								
	Sólidos Totais Dissolvidos / 105 Graus Centigrados	R\$	33,28	24 horas								
	Sólidos Totais Fixos / 550 Graus Centígrados	R\$	33,28	24 horas								
	Sólidos Totais Voláteis / 550 Graus Centígrados	R\$	49,87	24 horas								
	Sólidos / Totais / 105 Graus Centígrados	R\$	26,73	24 horas								
	Sólidos / Suspensos Voláteis / 550 graus centígrados	R\$	18,84	24 horas								
	Sulfato Total	R\$	33,52	24 horas								
	Temperatura	R\$	3,28	24 horas								
	Turbidez	R\$	18,84	24 horas								
A (1) A A B A A A A	Determinação número mais provável de coliformes totais /	R\$	263,91	24 horas								
Análise de Água Bacteriológica	E. Colli											
Conserto Cavalete	Danificado Diämetro Nominal Superior a 2" - Material Fornecido pelo	R\$	22,96	48 horas								
	Cliente	R\$	-	20 dias úteis								
	Cheffee											
Deslocamento de Cavalete	Diâmetro Nominal 1 1/2" - Material fornecido pelo Cliente	R\$	=	20 dias úteis								
	Diâmetro Nominal 1/2" e 3/4"	R\$	46,08	20 dias úteis								
	Diâmetro Nominal 1" - Material Fornecido Pelo Cliente	R\$		20 dias úteis								
	Diâmetro Nominal 6" Material Fornecido Pela CASAN	R\$	867,75	15 dias úteis								
Dada da Esgata - Daslasamento da Caiva da F	Diâmetro Nominal 6" Material Fornecido Pelo Cliente	R\$		15 dias úteis								
Rede de Esgoto - Deslocamento da Caixa de F	Diametro Nominai 4 Materiai Fornecido Pela CASAN	R\$	313,10	15 dias úteis								
	Diâmetro Nominal 4" Material Fornecido Pelo Cliente	R\$	96,76									
Rede de Esgoto - Desobstrução de Caixa de P	Imóvel com 1 Economia	R\$	66,61	24 horas								
Rede de Esgoto Besobstração de Caixa de 1	Imóvel com 2 ou mais economias	R\$	103,60	24 horas								
	Diämetro Nominal Superior a 6" Localidade Com Asfalto /	R\$	_	15 dias úteis								
	Material Fornecido pelo cliente Diâmetro Nominal Superior a 6" Localidade Sem Asfalto /	<u> </u>										
	Material Fornecido pelo cliente	R\$	-	15 dias úteis								
	Diâmetro Nominal 6" Localidade Com Asfalto / Material	<u> </u>										
	Fornecido pelo cliente	R\$	=	15 dias úteis								
	Diâmetro Nominal 6" Localidade Com Asfalto / Material	D.+		45 11 /1 1								
	Fornecido pela CASAN	R\$	-	15 dias úteis								
	Diâmetro Nominal 6" Localidade Sem Asfalto / Material	R\$	_	15 dias úteis								
	Fornecido pelo cliente	Κֆ		13 dias dieis								
	Diâmetro Nominal 6" Localidade Sem Asfalto / Material	R\$	_	15 dias úteis								
	Fornecido pelo CASAN Não Residencial Diämetro Nominal 4" Localidade Com	- `~										
	Asfalto / Material Fornecido Pela CASAN	R\$	_	15 dias úteis								
	Não Residencial Diâmetro Nominal 4" Localidade Com	<u> </u>										
	Asfalto / Material Fornecido Pela Cliente	R\$	-	15 dias úteis								
Ligação de Esgoto Instalação	Não Residencial Diâmetro Nominal 4" Localidade Sem	<u> </u>										
	Asfalto / Material Fornecido Pela CASAN	R\$	-	15 dias úteis								
	Não Residencial Diâmetro Nominal 4" Localidade Sem			15 dias úteis								
	Não Residenciai Diametro Nominai 4 Localidade Sem											
	Asfalto / Material Fornecido Pela Cliente	R\$	-	13 dias dieis								
	Asfalto / Material Fornecido Pela Cliente Residencial Baixa Renda Diâmetro Nominal 4" Localidade											
	Asfalto / Material Fornecido Pela Cliente Residencial Baixa Renda Diâmetro Nominal 4" Localidade com asfalto	R\$ R\$	-	15 dias úteis								
	Asfalto / Material Fornecido Pela Cliente Residencial Baixa Renda Diâmetro Nominal 4" Localidade											

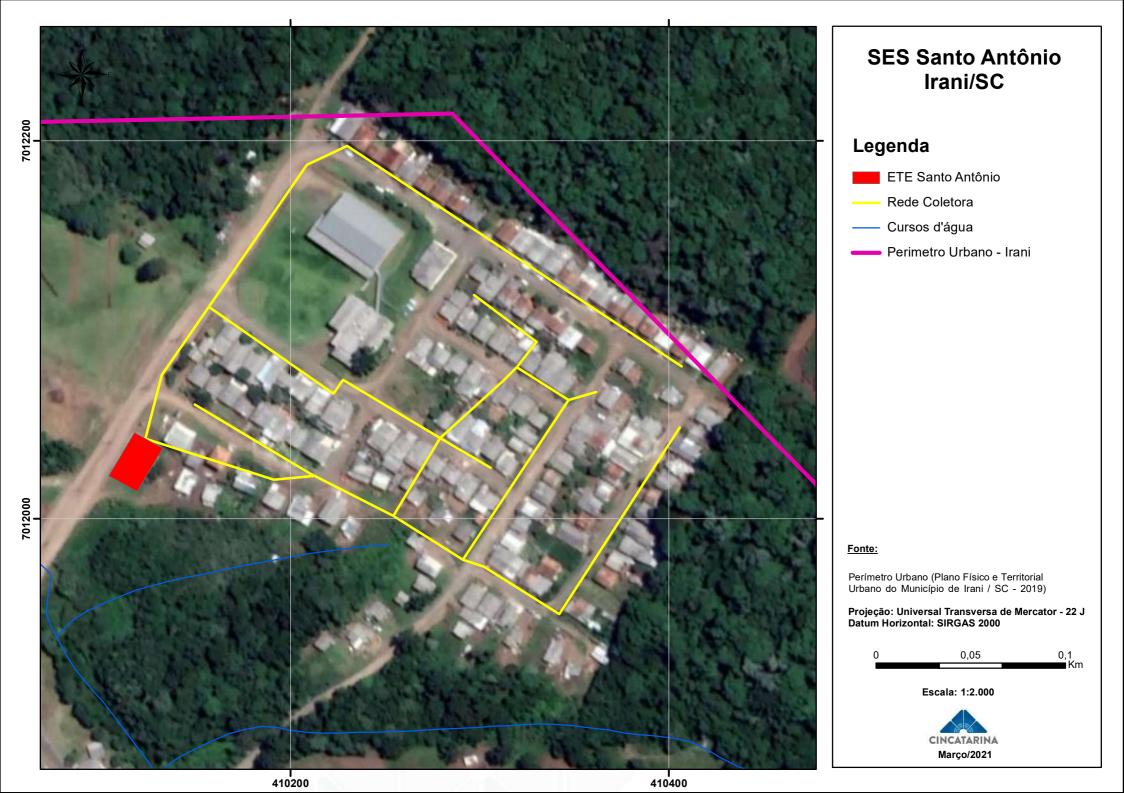
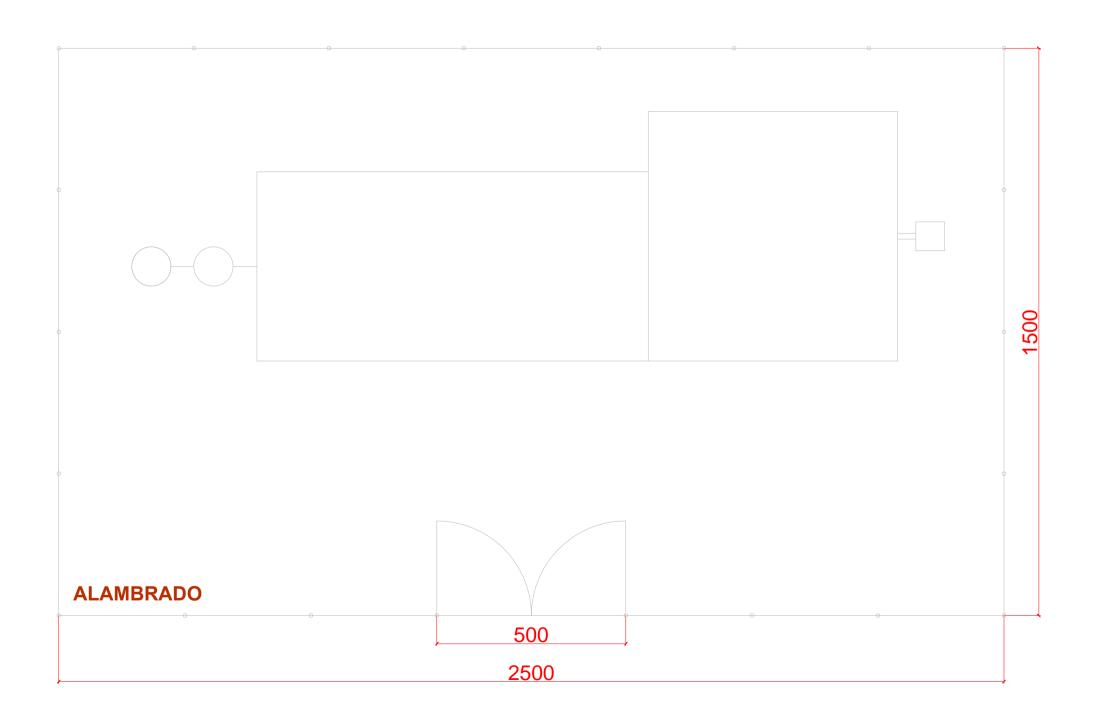
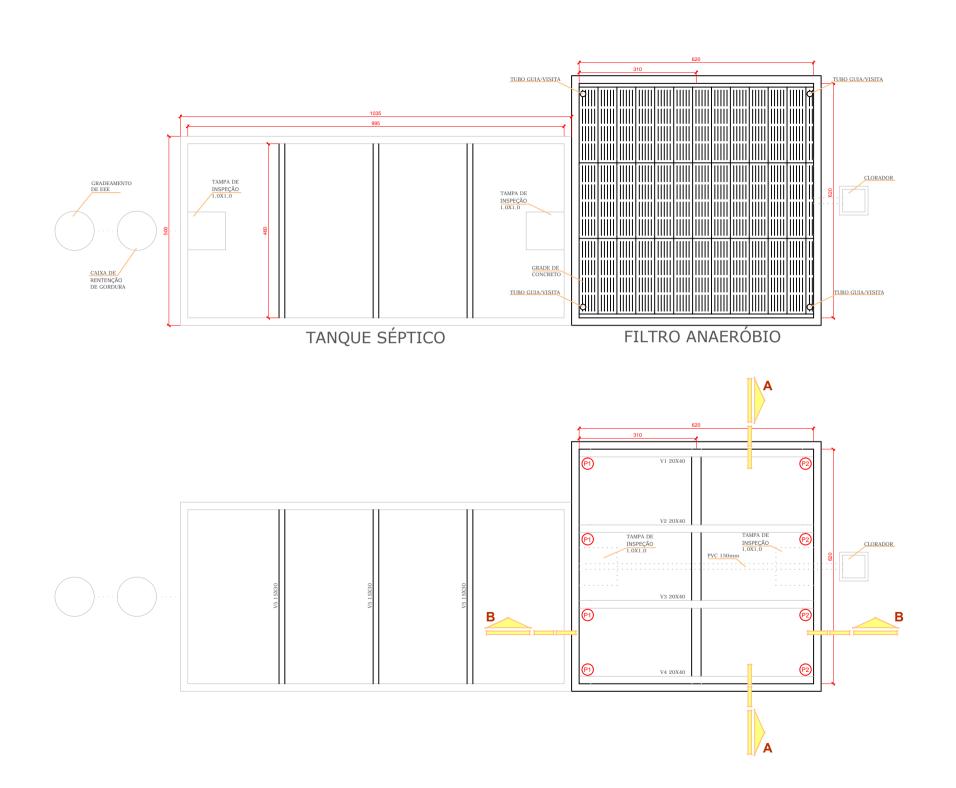
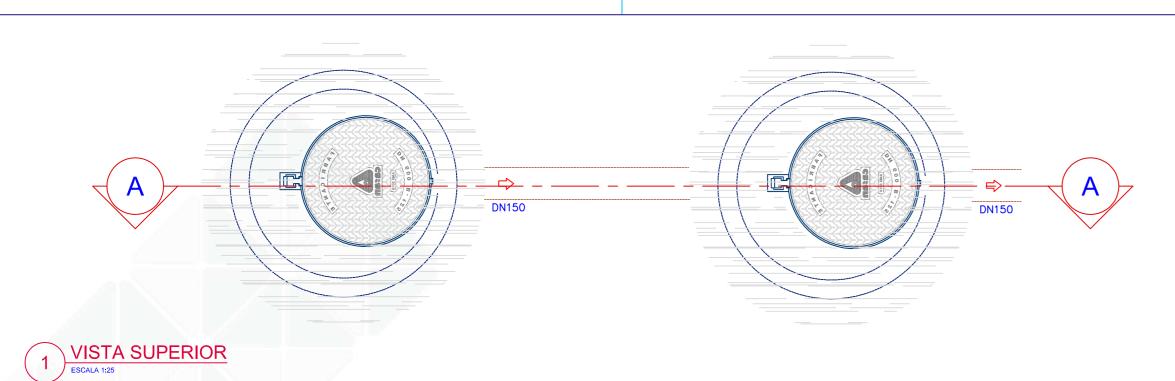


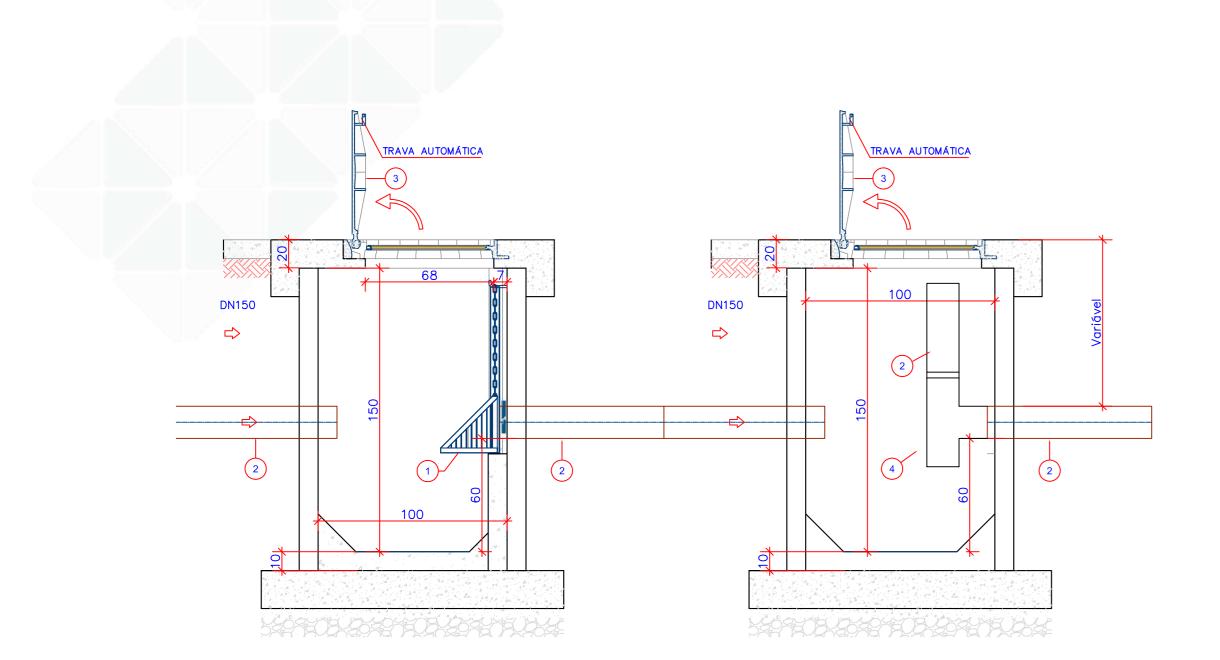
Tabela de Serviços CASAN									
Serviço	P	Preço*	Prazo						
	Residencial Diâmetro Nominal 4" Localidade Com Asfalto / Material Fornecido Pela CASAN	R\$	-	15 dias úteis					
	Residencial Diâmetro Nominal 4" Localidade Com Asfalto / Material Fornecido Pela Cliente	R\$	-	15 dias úteis					
	Residencial Diâmetro Nominal 4" Localidade Sem Asfalto / Material Fornecido Pela CASAN	R\$	-	15 dias úteis					
	Residencial Diâmetro Nominal 4" Localidade Sem Asfalto / Material Fornecido Pela Cliente	R\$	-	15 dias úteis					
	Caixa de Passagem Diâmetro Nominal Superior à 6" Localidade com asfalto Material Fornecido pelo cliente	R\$	96,58	15 dias úteis					
	Caixa de Passagem Diâmetro Nominal Superior à 6" Localidade sem asfalto Material Fornecido pelo cliente	R\$	96,58	15 dias úteis					
	Caixa de Passagem Diâmetro Nominal 4" Localidade com asfalto Material Fornecido Pelo Cliente	R\$	96,58	15 dias úteis					
	Caixa de Passagem Diâmetro Nominal 4" Localidade sem asfalto Material Fornecido Pelo Cliente	R\$	96,58	15 dias úteis					
Rede de Esgoto Substituição	Caixa de Passagem Diâmetro Nominal Superior a 4" Material Fornecido pela CASAN	R\$	313,02	15 dias úteis					
	Caixa de Passagem Diâmetro Nominal 6" Localidade com asfalto Material Fornecido pelo Cliente	R\$	96,58	15 dias úteis					
	Caixa de Passagem Diämetro Nominal 6" Localidade sem asfalto Material Fornecido pelo Cliente	R\$	96,58	15 dias úteis					
	Caixa de Passagem Diâmetro Nominal 6" Material Fornecido pela CASAN	R\$	867,75	15 dias úteis					
	Reposição da Tampa da Caixa de Inspeção Danificada	R\$	153,38	15 dias úteis					
Rede de Esgoto Declaração	Para processo de Habite-se	R\$	27,58	15 dias úteis					
Consulta Viabilidade	Ligação de Agua	R\$	115,91	15 dias úteis					
Consulta viabiliuaue	Ligação de Esgoto	R\$	115,91	15 dias úteis					
Análise de Projeto	Projeto Hidrosanitário	R\$	173,87	15 dias úteis					

^{*}Valores com aplicação do Reajuste Tarifário em vigor a partir do dia 01 de novembro de 2019, conforme autorizado pelas Agências Reguladoras.

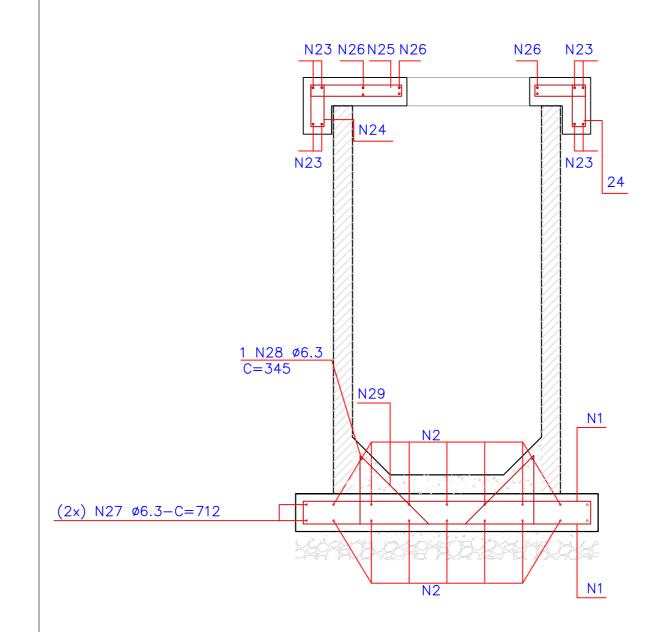


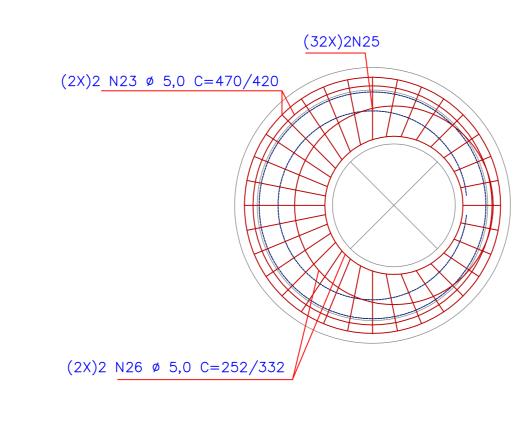

Cartograma SES Santo Antônio


Projeto de adequação SES Santo Antônio

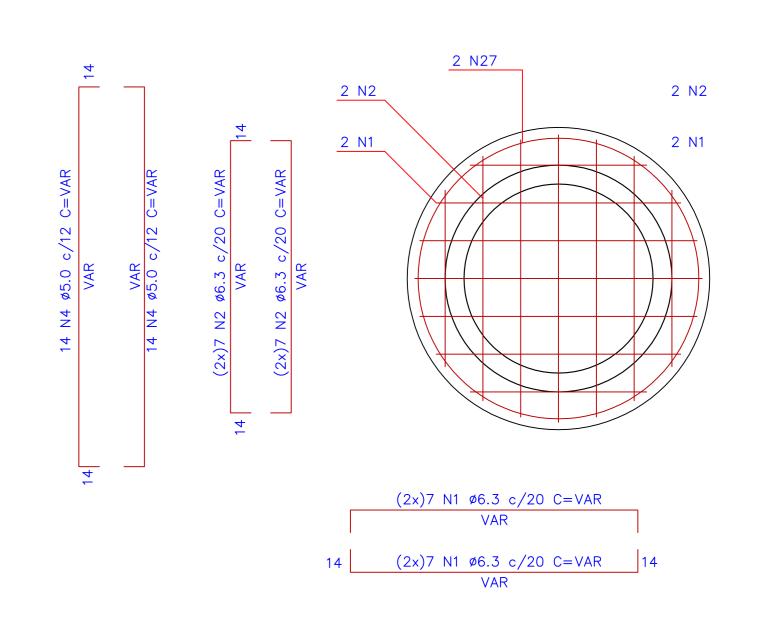


3 CORTE AA
ESCALA 1:25




CAIXA DE RETENÇÃO DE GORDURA

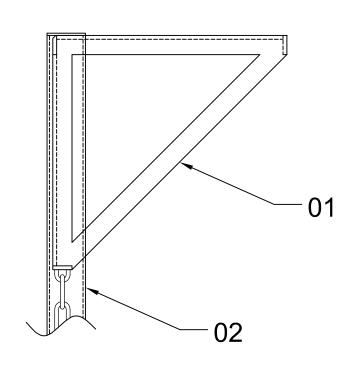
	RELAÇÃO DOS MATERIAIS		
N°	DISCRIMINAÇÃO	M.	Q.
01	GRADE INOX (VER DETALHE)	AÇO	01
02	TUBO PVC DEFoFo DN150 6M	PVC	01
03	TAMPÃO ARTICULADO DE FERRO FUNDIDO DÚCTIL — DN600 — Classe D-400 PADRÃO CASAN	F*F*	02
04	TEE PVC DEFoFo DN150	PVC	01

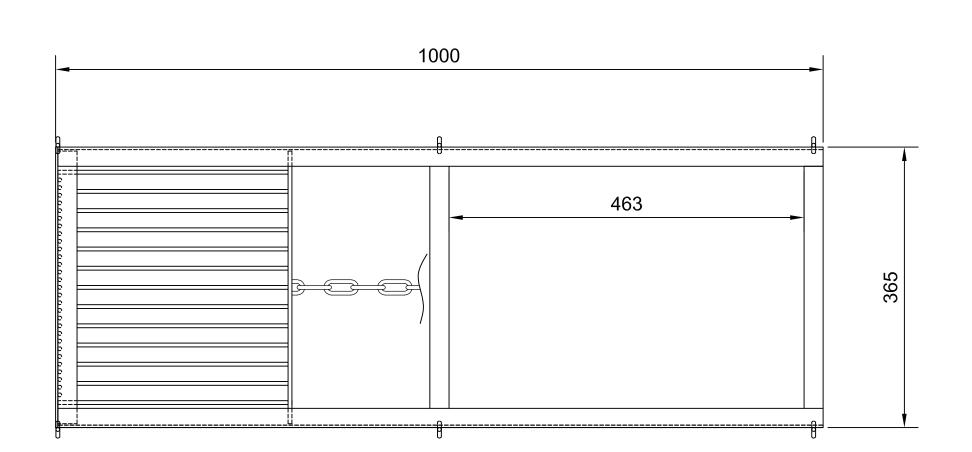

GRADEAMENTO

1 ARMADURA DAS PLACAS DE APOIO CORTE-AA-ESCALA 1:25

2 ARMADURA DAS PLACAS DE APOIO (VISTA SUPERIOR) ESCALA 1:25

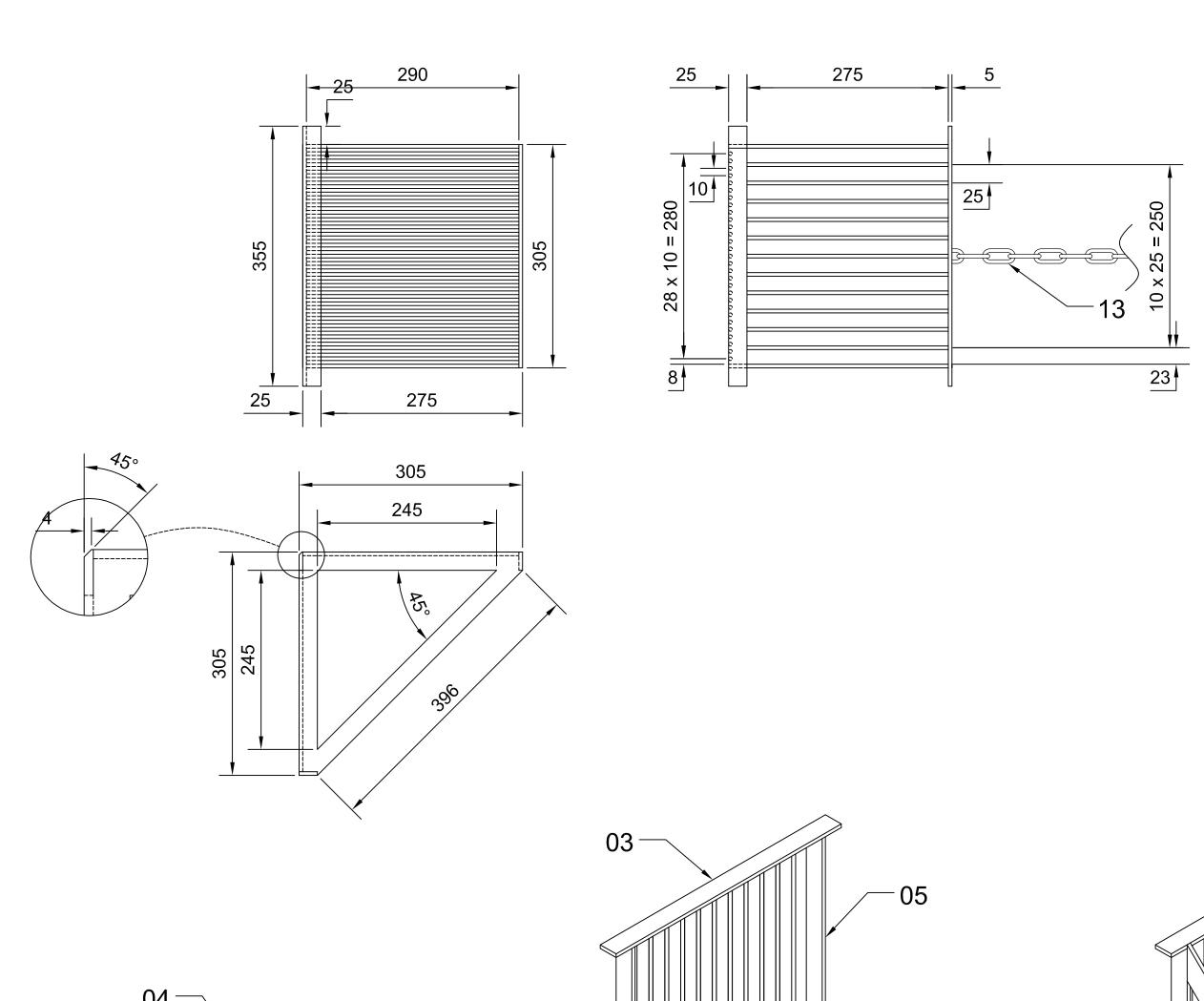
RELAÇÃO DO AÇO										
N	DIAM	Q	UNIT (cm)	C.TOTAL (cm)						
1	6.3	28	VAR.	2621						
2	6.3	28	VAR.	2621						
23	5.0	8	VAR	3696						
24	5.0	64	70	4480						
25	5.0	64	VAR,	6400						
26	5.0	4	VAR	1168						
27	6.3	4	712	2848						
28	6.3	2	345	690						
29	5.0	46	75	3450						


F	RESUMO	TOTAL DO	AÇO
AÇO	DIAM	C. TOTAL (m)	PESO (kg)
CA50 A	6,3	88	23
CA60	5,0	192	31
PESO 7	ΓΟΤΑL		
CA50	23		
CA60	31		


Volume de concreto = 2 m3 Área de forma plana = 7 m2 Área de forma curva = 1 m2 Vol. concreto magro= 0,5 m3 Vol. brita 2= 0,5 m3

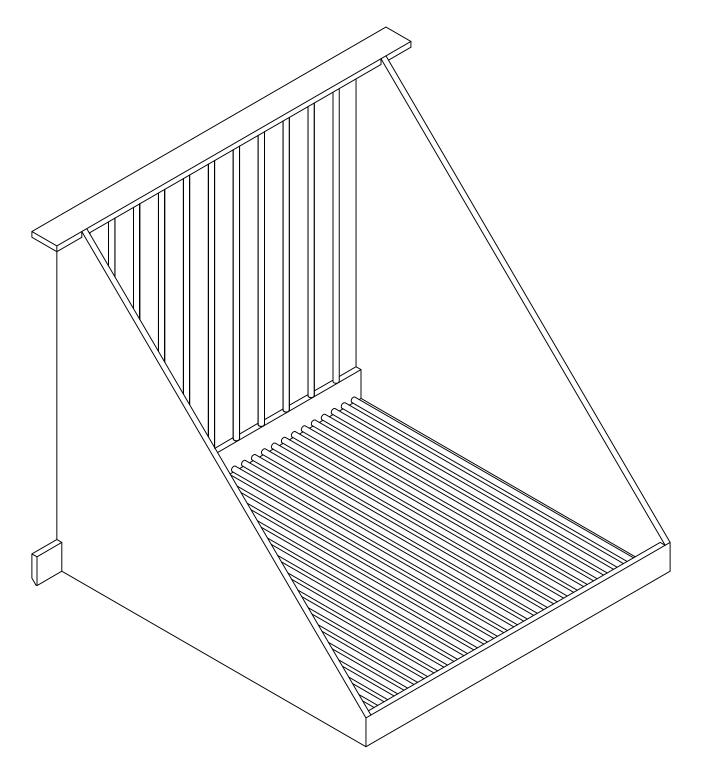
fck = 40 MPA

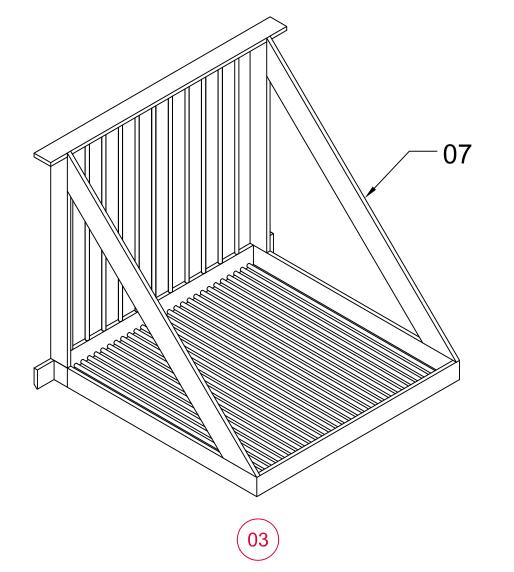
ARTICULAÇÕES	N°	REVISÃO	DATA	LOGOMARCA DA CONSULTORA		Compan	nhia Catariner	nse de Águ	uas e Saneamento
	Α	EMISSÃO INICIAL - SRO/GOPS	MAR/2017		SISTEMA	\	SI	ES DE IRA	NI
			C	casan	CALIDADE - MUNICÍPIO IRANI - SC				
			GERÊNCIA OPERACIONAL - CASAN	PROJETO ARQUITETÔNICO TRATAMENTO PRELIMINAR COHAB RELAÇÃO DE MATERIAIS E DETALHES					
				N° DA CONSULTORA	PROJETO Eng. Daniel Bocchese	VISTOS	DESENHO Daniel Bocchese	DATA Mar/2017	FOLHA N' SES-ARQ-0010-A
					ESCALA INDICADA		TOPOGRAFIA AMMOC	DATA TOP.	3E3-ARQ-0010-A

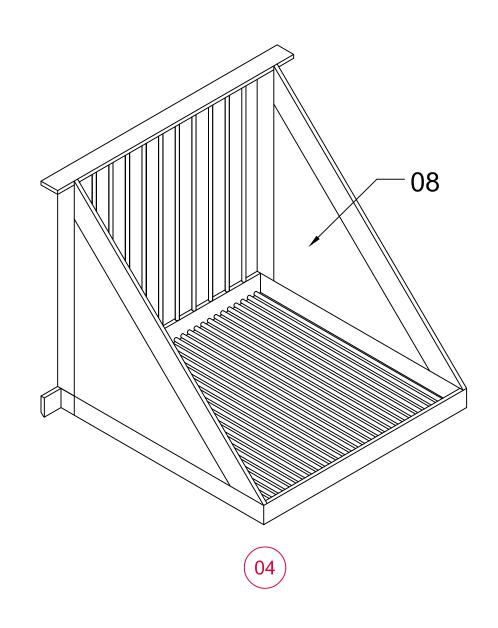


	RELAÇÃO DOS MATERIAIS			
N°	DISCRIMINAÇÃO	Mat.	ġ	DESENHO
1	Cesto	Aisi 304	01	SES-EEE-002-01
2	Trilho guia	Aisi 304	01	SES-EEE-002-02

Observações:

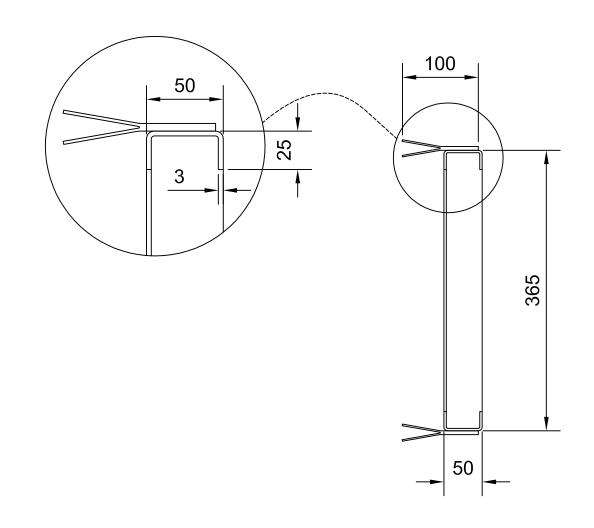

- 1 Estrutura soldada;
- 2 As regiões soldadas devem ser decapadas e passivadas;
 3 Deverá ser confeccionado sistema de fixação para corrente na parte superior da estrutura.

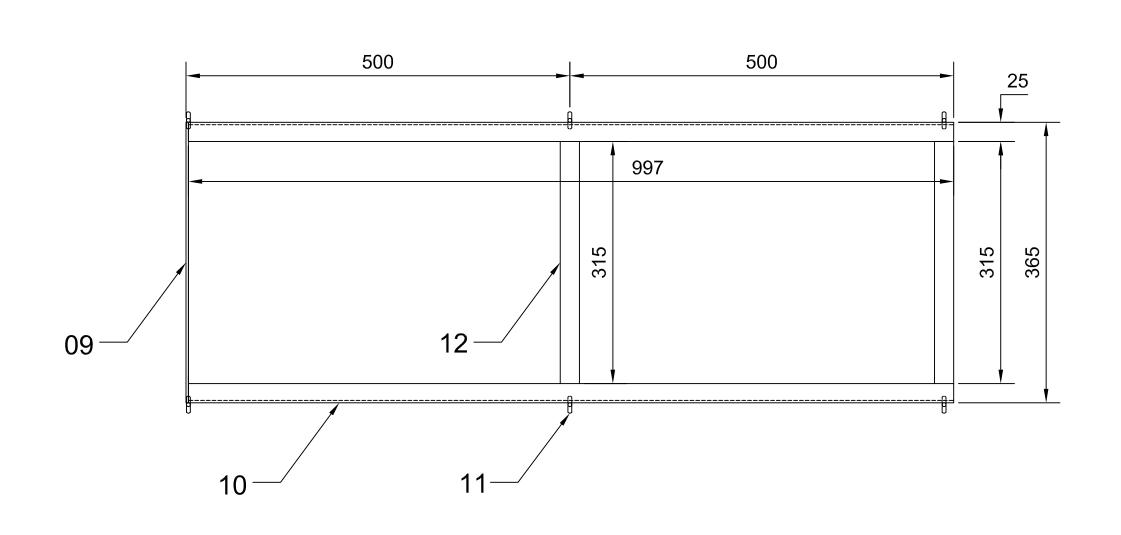



06 –

03

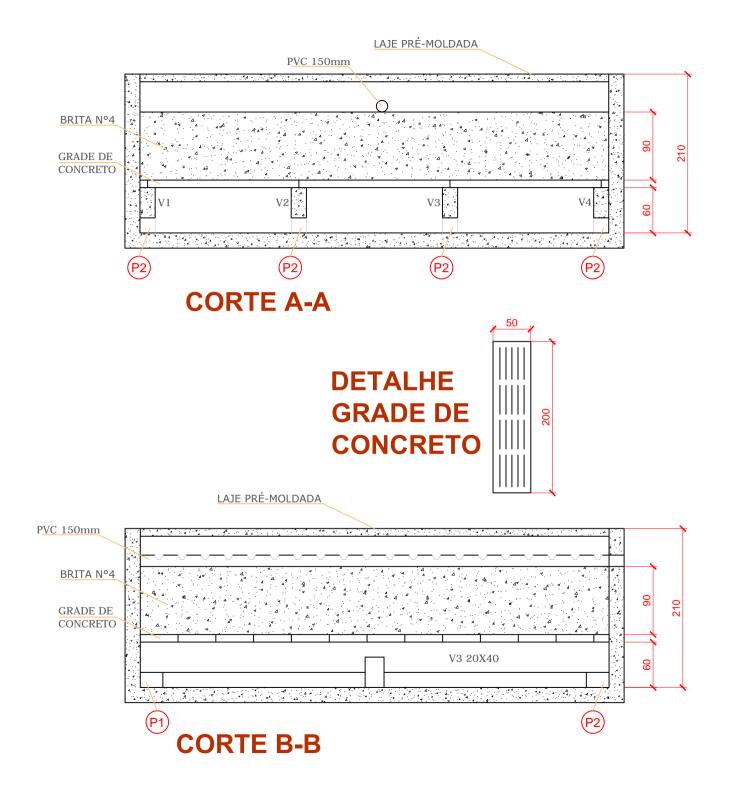
Perspectiva de cesto acabado





Sequência de montagem sugerida do cesto

	RELAÇÃO DOS MATERIAIS		
N°	DISCRIMINAÇÃO	Mat.	Q.
1	Barra Chata # 25 x 5 mm - L = 290	Aisi 304	02
2	Barra Chata # 25 x 5 mm - L = 305	Aisi 304	01
3	Barra Chata # 25 x 5 mm - L = 355	Aisi 304	02
4	Barra Ø 5 mm - L = 290	Aisi 304	29
5	Barra Chata # 25 x 5 mm - L = 275	Aisi 304	02
6	Barra Ø 5 mm - L = 275	Aisi 304	11
7	Barra Chata # 25 x 5 mm - L = 396 corte 45 graus conforme desenho	Aisi 304	02
8	Chapa # 1,5 mm - 245 x 245 x 45 graus conforme desenho	Aisi 304	02
13	Corrente # 3,2 mm - 11 x 25 - L = 1.100 mm	Aisi 304	01



	RELAÇÃO DOS MATERIAIS		
N°	DISCRIMINAÇÃO	Mat.	Q.
9	Chapa # 3,0 mm - 365 x 50	Aisi 304	01
10	Perfil "U" dobrado # 3,0 mm - 25 x 50 x 25 - L = 997	Aisi 304	02
11	Barra Ø 10 mm - L = 100 confeccionado conforme desenho	Aisi 304	06
12	Chapa # 3,0 mm - 25 x 315	Aisi 304	02

Anexo 09 Índice de Fragilidade do Sistema – IFS

ANEXO 09

Natureza	IGF
Institucional	x1
Tecnológica	x2
Ambiental	х3

VALORES

0 - não contribui

1 - contribui

Natureza	Indicadores	AP-01	AP-02	AP-03	AP-04	AP-05	AP-06	AP-07	AP-08	AP-09	AP-10	AF
	Elevação dos gastos com manutenção e conservação:	1	1	1	1	1	1	1	1	1	1	
Institucional	Encarecimento das soluções técnicas;	1	1	1	1	1	1	1	1	1	1	
montucional	Perda de credibilidade da administração pública;	1	1	1	1	1	1	1	1	1	1	
	Ausência de manutenção regular do sistema de drenagem urbana;	1	1	1	1	1	1	1	1	1	1	
	IGF Institucional	4	4	4	4	4	4	4	4	4	4	
	Inexistência de pavimentação	1	1	1	1	0	1	1	1	1	1	
	Deterioração física dos equipamentos de drenagem:	0	0	0	0	0	0	0	0	0	0	
	Ineficiência do escoamento nos eixos viários	1	1	1	1	1	1	1	1	1	1	
	Inexistência de diretrizes para a execução das estruturas de drenagem urbana	1	1	1	1	1	1	1	1	1	1	
	Ineficiência dos dispositivos de coleta	1	1	1	1	1	1	1	1	1	1	
Tecnológico	Ineficiência da capacidade de transporte pelos condutos	1	0	0	0	1	1	0	1	0	1	
	Redução da vida útil das estruturas de drenagem	1	0	0	0	1	1	0	1	0	1	
	Redução da vida útil dos pavimentos	1	0	0	0	1	0	0	0	0	1	
	Incompatibilização das curvas verticais nos cruzamentos viários:	1	1	0	0	1	0	1	1	0	1	
	Passeios e/ou calçadas totalmente impermeabilizadas	0	0	0	0	1	0	0	0	0	0	
	Interferência no escoamento das águas pluviais no corpo receptor	1	1	1	1	1	1	1	1	1	0	
	IGF Tecnológico	18	12	10	10	18	14	12	16	10	16	
	Ocorrência de alagamentos	1	0	1	1	1	1	0	1	1	1	
	Ausência de dispositivos de armazenamento e de áreas para a infiltração da água pluvial nos lotes	1	1	1	1	1	1	1	1	1	1	
	Favorecimento da produção de sedimentos;	1	1	1	1	0	1	1	1	1	1	
	Possível erosão da pavimentação das vias de acesso ocasionada pelo escoamento superficial;	1	0	0	0	1	0	0	0	0	0	
	Disposição de resíduos sólidos e deposição de sedimentos em vias públicas;	0	0	0	0	0	0	0	0	0	0	
Ambiental	Interação inadequada com esgoto nos equipamentos de drenagem;	1	1	1	1	1	1	1	1	1	1	
Allibielitai	Interferência no trânsito de veículos na ocorrência de alagamentos;	1	0	0	0	0	0	0	0	0	0	
	Interferência no movimento de pedestres na ocorrência de alagamentos;	1	0	0	0	1	0	0	0	0	0	
	Ocupações ribeirinhas na calha do corpo receptor	1	1	1	1	1	1	1	1	1	0	
	Assoreamento, presença de vegetação, resíduos sólidos e esgotos no corpo receptor	1	1	1	1	1	1	1	1	1	1	
	Canalização e revestimento da seção hidráulica do corpo receptor	1	1	1	1	1	1	1	1	1	1	
	Restrição à implantação de áreas de inundação:	0	0	0	0	0	0	0	1	0	0	
	IGF Ambiental	30	18	21	21	24	21	18	24	21	18	
	IGF 2021	52	34	35	35	46	39	34	44	35	38	

PLANO DE SANEAMENTO

A revisão do Plano Municipal de Saneamento Básico elaborada pelo CINCATARINA é um documento técnico que contempla: a avaliação das metas do PMSB em vigor, a análise do crescimento populacional do município, a elaboração de diagnósticos e prognósticos dos serviços de abastecimento de água potável, esgotamento sanitário, e drenagem e manejo das águas pluviais urbanas, o controle social através de órgão colegiado e da participação social e ainda a revisão das estimativas de investimentos, conforme Política Nacional de Saneamento Básico.

O Consórcio Interfederativo Santa Catarina CINCATARINA é um consórcio Público, Multifinalitário, constituído na forma de associação Pública com personalidade jurídica de direito público e natureza autárquica interfederativa.

CNPJ: 12.075.748/0001-32 www.cincatarina.sc.gov.br cincatarina@cincatarina.sc.gov.br